Charles R Gerfen

Charles R Gerfen
National Institute of Mental Health (NIMH) | NIMH · Laboratory of Systems Neuroscience

PhD

About

183
Publications
35,971
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
32,640
Citations

Publications

Publications (183)
Preprint
Full-text available
The striatonigral neurons are known to promote locomotion1,2. These neurons reside in both the patch (also known as striosome) and matrix compartments of the dorsal striatum ³⁻⁵. However, the specific contribution of patch and matrix striatonigral neurons to locomotion remain largely unexplored. Using molecular identifier Kringle-Containing Protein...
Preprint
Striatonigral neurons, known to promote locomotion, reside in both the patch and matrix compartments of the dorsal striatum. However, their compartment-specific contributions to locomotion remain largely unexplored. Using molecular identifier Kremen1 and Calb1, we showed in mouse models that patch and matrix striatonigral neurons exert opposite inf...
Article
Full-text available
Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1–4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The...
Article
Full-text available
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate...
Preprint
Full-text available
Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural...
Preprint
Full-text available
Neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision making, where lateralization of function may be less important. This study contrasted the topographic precision of cell type-specific ip...
Preprint
Neuronal connections provide the scaffolding for neuronal function. Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behavior. Yet, the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain la...
Article
Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Do...
Preprint
Full-text available
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirec...
Article
Full-text available
Fronto-striatal circuits have been implicated in cognitive control of behavioral output for social and appetitive rewards. The functional diversity of prefrontal cortical populations is strongly dependent on their synaptic targets, with control of motor output mediated by connectivity to dorsal striatum. Despite evidence for functional diversity al...
Article
Full-text available
The direct and indirect striatal pathways form a cornerstone of the circuits of the basal ganglia. Dopamine has opponent affects on the function of these pathways due to the segregation of the D1- and D2-dopamine receptors in the spiny projection neurons giving rise to the direct and indirect pathways. An historical perspective is provided on the d...
Preprint
Full-text available
The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions, but the precise mechanisms remain unclear. One way to study action selection is when it breaks down. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson disease therapy ch...
Article
Full-text available
Dorsal striatum is important for movement control and motor skill learning. However, it remains unclear how the spatially and temporally distributed striatal medium spiny neuron (MSN) activity in the direct and indirect pathways (D1 and D2 MSNs, respectively) encodes motor skill learning. Combining miniature fluorescence microscopy with an accelera...
Article
Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circu...
Preprint
Full-text available
Fronto-striatal circuits have been extensively implicated in the cognitive control of behavioral output for both social and appetitive rewards. The functional diversity of prefrontal cortical populations is strongly dependent on their synaptic targets, with control of motor output strongly mediated by connectivity to the dorsal striatum. Despite ev...
Preprint
Full-text available
Understanding how feedforward inhibition regulates movement requires knowing how cortical and thalamic projections connect to inhibitory interneurons in primary motor cortex (M1). We quantified excitatory synaptic input from sensory cortex and thalamus onto two main classes of M1 inhibitory interneurons across all cortical layers: parvalbumin (PV)...
Article
Full-text available
Elucidation of the mechanism of dopamine signaling to ERK that underlies plasticity in dopamine D1 receptor-expressing neurons leading to acquired cocaine preference is incomplete. NCS-Rapgef2 is a novel cAMP effector, expressed in neuronal and endocrine cells in adult mammals, that is required for D1 dopamine receptor-dependent ERK phosphorylation...
Article
Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we...
Preprint
Full-text available
The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamaterg...
Preprint
Full-text available
Elucidation of the underlying mechanism of dopamine signaling to ERK that underlies plasticity in dopamine D1 receptor expressingneurons leadingto acquired cocaine preference is incomplete. NCS-Rapgef2 is a novel cAMP effector, expressed in neuronal and endocrine cells in adult mammals, that is required for D1 dopamine receptor-dependent ERK phosph...
Chapter
The basal ganglia constitute a forebrain system associated with affecting motor and other behaviors that involve the cerebral cortex. The principal input nucleus is the striatum, which receives excitatory projections from the cerebral cortex and the intralaminar thalamus as well as neuromodulatory input from midbrain dopamine neurons. Output of the...
Article
Full-text available
Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly-defined. In this study, we le...
Article
This unit covers some basic procedures that are common to a wide range of neuroanatomical protocols for brain tissue. Procedures are provided for preparation of unfixed fresh brain tissue as well as for perfusion fixation of animals to obtain fixed neural tissue. A variety of methods for sectioning are described, including frozen sectioning using a...
Article
Full-text available
The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource¹, involving around a thousand new tracer experiments i...
Preprint
Full-text available
Exploration of novel environments ensures survival and evolutionary fitness. This behavior is expressed through exploratory bouts and arrests, which change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial explorati...
Article
Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neuron...
Article
Full-text available
Identification and delineation of brain regions in histologic mouse brain sections is especially pivotal for many neurogenomics, transcriptomics, proteomics and connectomics studies, yet this process is prone to observer error and bias. Here we present a novel brain navigation system, named NeuroInfo, whose general principle is similar to that of a...
Article
Advances in molecular neuroanatomical tools have expanded the ability to map in detail connections of specific neuron subtypes in the context of behaviorally driven patterns of neuronal activity. Analysis of such data across the whole mouse brain, registered to a reference atlas, aids in understanding the functional organization of brain circuits r...
Article
Full-text available
Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigg...
Preprint
Full-text available
Identification and delineation of brain regions in histologic mouse brain sections is especially pivotal for many neurogenomics, transcriptomics, proteomics and connectomics studies, yet this process is prone to observer error and bias. Here we present a novel brain navigation system, named NeuroInfo, whose general principle is similar to that of a...
Article
Full-text available
In the original version of this Article, support provided during initiation of the project was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include support from Karel Svoboda, members of the Svoboda lab, and members of Janelia’s Vivarium staff.
Article
Full-text available
The striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tr...
Preprint
Full-text available
The mammalian cortex is a laminar structure composed of many cell types densely interconnected in complex ways. Recent systematic efforts to map the mouse mesoscale connectome provide comprehensive projection data on interareal connections, but not at the level of specific cell classes or layers within cortical areas. We present here a significant...
Preprint
Full-text available
The striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tr...
Preprint
Activity in motor cortex predicts specific movements, seconds before they are initiated. This preparatory activity has been observed in L5 descending ‘pyramidal tract’ (PT) neurons. A key question is how preparatory activity can be maintained without causing movement, and how preparatory activity is eventually converted to a motor command to trigge...
Article
Persistent neural activity maintains information that connects past and future events. Models of persistent activity often invoke reverberations within local cortical circuits, but long-range circuits could also contribute. Neurons in the mouse anterior lateral motor cortex (ALM) have been shown to have selective persistent activity that instructs...
Chapter
The basal ganglia comprise a subcortical brain system through which the cerebral cortex affects behavior. The principal input structure is the striatum, whose GABAergic medium spiny neurons (MSNs) are the target of excitatory cortical and thalamic inputs. The output of the basal ganglia are GABAergic neurons in the internal segment of the globus pa...
Article
The neuronal circuits defined by the axonal projections of pyramidal neurons in the cerebral cortex are responsible for processing sensory and other information to plan and execute behavior. Subtypes of cortical pyramidal neurons are organized across layers, with those in different layers distinguished by their patterns of axonal projections and co...
Article
Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected...
Article
Significance The dopamine-containing nigrostriatal system and its return striatonigral pathway form a loop–circuit crucial for the functions of dopamine in modulating movement and mood. Here we identify a specialized subsystem within this loop. With new mouse models and tissue expansion to allow nanoscale imaging, we demonstrate that striatonigral...
Article
Full-text available
An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal populatio...
Article
The striatum contains neurochemically defined compartments termed patches and matrix. Previous studies suggest patches preferentially receive limbic inputs and project to dopamine neurons in substantia nigra pars compacta (SNc), whereas matrix neurons receive sensorimotor inputs and do not innervate SNc. Using BAC-Cre transgenic mice with viral tra...
Article
A new neuroanatomical method for tracing connections in the central nervous system based on the anterograde axonal transport of the kidney bean lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L) is described. The method, for which a detailed protocol is presented, offers several advantages over present techniques. First, when the lectin is delivere...
Article
Full-text available
Overgeneralization of conditioned threat responses is a robust clinical marker of anxiety disorders. In overgeneralization, responses that are appropriate to threat-predicting cues are evoked by perceptually similar safety-predicting cues. Inappropriate learning of conditioned threat responses may thus form an etiological basis for anxiety disorder...
Chapter
Full-text available
The basal ganglia plays a significant role in transforming activity in the cerebral cortex into directed behavior, involving motor learning, habit formation and the selection of actions based on desirable outcomes, and the organization of the basal ganglia is intimately linked to that of the cerebral cortex. In this chapter, we focus primarily on t...
Article
Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit d...
Article
Full-text available
We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons...
Article
Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex...
Article
Full-text available
The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iS...
Article
Full-text available
The mesofrontal dopaminergic circuit, which connects the midbrain motivation center to the cortical executive center, is engaged in control of motivated behaviors. In addition, deficiencies in this circuit are associated with adolescent-onset psychiatric disorders in humans. Developmental studies suggest that the mesofrontal circuit exhibits a prot...
Article
Full-text available
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level,...
Article
Recent development of molecular genetic techniques are rapidly advancing understanding of the functional role of brain circuits in behavior. Critical to this approach is the ability to target specific neuron populations and circuits. The collection of over 250 BAC Cre-recombinase driver lines produced by the GENSAT project provides a resource for s...
Article
The CA2 area is an important, although relatively unexplored, component of the hippocampus. We used various tracers to provide a comprehensive analysis of CA2 connections in C57BL/6J mice. Using various adeno-associated viruses that express fluorescent proteins, we found a vasopressinergic projection from the paraventricular nuclei of the hypothala...
Article
Full-text available
The nucleus accumbens (NAc) is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs) constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core...
Article
This chapter explores that the basal ganglia connect the cerebral cortex with neural systems that effect behavior. Most cortical areas provide inputs to the basal ganglia, which in turn provide outputs to brain systems that are involved in the generation of behavior. Among the behavior effector systems targeted are thalamic nuclei that project to t...
Article
This chapter discusses that a key to understanding the function of dopamine in the basal ganglia is the demonstration that D1 and D2 dopamine receptors are segregated in the direct and indirect striatal projection neurons. Striatal medium spiny neuronsare composed of two major subtypes based on their axonal projections. One subtype projects axons t...
Article
Full-text available
We reported previously that ethanol treatment regulates D(1) receptor phosphorylation and signaling in a protein kinase C (PKC) delta- and PKCgamma-dependent fashion by a mechanism that may involve PKC isozyme-specific interacting proteins. Using a PKC isozyme-specific coimmunoprecipitation approach coupled to mass spectrometry, we report the ident...
Article
Full-text available
The basal ganglia are a chain of subcortical nuclei that facilitate action selection. Two striatal projection systems--so-called direct and indirect pathways--form the functional backbone of the basal ganglia circuit. Twenty years ago, investigators proposed that the striatum's ability to use dopamine (DA) rise and fall to control action selection...
Article
The discovery of dopamine in 1957-8 was one of the seminal events in the development of modern neuroscience, and has been extremely important for the development of modern therapies of neurological and psychiatric disorders. Dopamine has a fundamental role in almost all aspects of behavior — from motor control to mood regulation, cognition and addi...
Article
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease ultimately experienced by the vast majority of patients. This article does not review the increased understanding of dyskinesia pathophysiology we have seen during the past few years but, instead, specifically focuses upon the ver...
Article
Full-text available
Dopamine receptor signaling exhibits prominent plasticity that is important for the pathogenesis of both addictive and movement disorders. Psychoactive stimulants that activate the dopamine D(1) receptor (Drd1a) induce the rapid phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in neurons of the nucleus accumbens...
Article
Matrix metalloproteinase-7 (MMP-7) belongs to a family of zinc dependent endopeptidases that are expressed in a variety of tissues including the brain. MMPs are known to be potent mediators of pericellular proteolysis and likely mediators of dynamic remodelling of neuronal connections. While an association between proteases and the neuronal synapse...
Article
Full-text available
Transgenic mouse lines are characterized with Cre recombinase driven by promoters of CNS-specific genes using bacterial artificialchromosome (BAC) constructs. BAC-Cre constructs for 10 genes (Chat, Th, Slc6a4, Slc6a2, Etv1, Ntsr1, Drd2, Drd1, Pcp2, and Cmtm5)produced 14 lines with Cre expression in specific neuronal and glial populations in the bra...
Article
Mutations in the gene for DJ-1 have been associated with early-onset autosomal recessive parkinsonism. Previous studies of null DJ-1 mice have shown alterations in striatal dopamine (DA) transmission with no DAergic cell loss. Here we characterize a new line of DJ-1-deficient mice. A subtle locomotor deficit was present in the absence of a change i...
Article
Matrix metalloproteinases (MMPs) belong to a family of zinc dependent enzymes best studied for their role in cancer and inflammation. Though MMPs typically target extracellular proteins, here we show that MMP-7, an MMP family member which lacks a C-terminal hemopexin-like domain, can cleave an intraneuronal protein that is critical to vesicular fus...
Article
Lentiviral vectors have emerged over the last decade as powerful, reliable, and safe tools for stable gene transfer in a wide variety of mammalian cells. Unlike other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells, including neurons. This is why lentivectors (LVs) are becoming the most...
Article
Dysfunction within the striatal direct and indirect projecting systems arises after 6-hydroxydopamine (6-OHDA)-induced dopamine depletion, highlighting the central regulatory function of dopamine in motor systems. However, the striatal 5-hydroxytryptamine (5-HT) innervation remains intact after 6-OHDA lesions, suggesting that the 5-HT system may co...
Article
The Cav1.3 calcium channel is found on striatopallidal neurons expressing the D2 dopamine receptor. A new study finds that in an animal model of Parkinson disease, this channel is involved in degeneration of dendritic spines on striatal projection neurons.
Article
Lesions of dopaminergic nigrostriatal neurons cause supersensitivity to dopamine in the striatum. Previous work has shown that such supersensitivity, an important aspect of rodent models of Parkinson's disease, is associated with anatomically abnormal patterns in the activation of extracellular signal-regulated kinase. After lesions of dopaminergic...
Article
The effect of coincident stimulation of convergent corticostriatal inputs was analyzed by the induction of immediate early genes in striatal neurons. Cortical motor areas were stimulated through implanted electrodes in awake, behaving rats, and the induction of the mRNAs encoding the immediate early genes (IEGs) c-fos and arc was analyzed in the st...
Chapter
A key feature of basal ganglia organization is the existence of the “direct” and “indirect” pathways, which arise from two distinct intermingled populations of medium spiny neurons within the striatum and connect either directly or indirectly with the output nuclei of the basal ganglia. Physiologically, these neuron populations are often indistingu...
Article
The basal ganglia are a richly interconnected set of brain nuclei found in the forebrain and midbrain of mammals, birds, and reptiles. In many species, including most mammals, the forebrain nuclei of the basal ganglia are the most prominent subcortical telencephalic structures. This chapter discusses the general organization of the basal ganglia, c...
Article
Dopamine acts in the striatum principally through the D1 and D2 dopamine receptor subtypes, which are segregated to the direct and indirect striatal projection neurons, respectively. As a consequence, degeneration of the dopamine input to the striatum results in opposing affects in these pathways. The resulting functional imbalance is thought to be...
Article
This unit covers some of the basic procedures that are common to a wide range of neuroanatomical protocols. Procedures are provided for the preparation of unfixed, fresh brain tissue as well as for perfusion fixation of animals resulting in fixed neural tissue. A variety of methods for sectioning brains are described, including frozen sectioning in...
Article
Full-text available
Dopamine effects in the striatum are mediated principally through the D1 and D2 dopamine receptor subtypes, which are segregated to the direct and indirect striatal projection neurons. After degeneration of the nigrostriatal dopamine system, direct pathway neurons display a supersensitive response to D1 dopamine receptor agonists, which is demonstr...
Article
Gene regulation studies demonstrate that dopamine differentially regulates the direct and indirect projection neurons of the striatum through their respective expression of the D1 and D2 dopamine receptors. Induction of immediate-early genes (IEGs) in striatal neurons is used to study dopamine-receptor-mediated neuronal plasticity. In the dopamine-...
Article
Gene regulation studies demonstrate that dopamine differentially regulates the direct and indirect projection neurons of the striatum through their respective expression of the D1 and D2 dopamine receptors. Induction of immediate-early genes (IEGs) in striatal neurons is used to study dopamine-receptor-mediated neuronal plasticity. In the dopamine-...
Article
Full-text available
Central effects of psychostimulants such as cocaine are predominantly mediated by dopamine receptors. We have used mice with a targeted deletion of the D3 dopamine receptor subtype to investigate the role of this receptor in the regulation of gene expression in striatal neurons and behavior by acute and repeated treatment with cocaine (25 mg/kg). I...
Article
Central effects of psychostimulants such as cocaine are predominantly mediated by dopamine receptors. We have used mice with a targeted deletion of the D3 dopamine receptor subtype to investigate the role of this receptor in the regulation of gene expression in striatal neurons and behavior by acute and repeated treatment with cocaine (25 mg/kg). I...
Article
The normal functioning of the basal ganglia is dependent on dopamine maintaining a balance between the two major output pathways of the striatum, through the D1 and D2 dopamine receptors, which have opposing effects on these pathways. Lesions of the dopamine system, such as occur in Parkinson's disease (PD), disrupt this balance. Gene regulation st...
Article
The role of the D3 dopamine receptor in mediating the effects of clozapine was analysed using in situ hybridization histochemistry to measure the induction of the immediate early gene c-fos in different brain areas of mice lacking a functional D3 dopamine receptor compared to wild type mice. Clozapine treatment (15 and 30 mg/kg, s.c.) resulted in a...
Article
Administration of selective agonists of D, dopamine receptors increases immediate early gene expression in striatal neurons, a response which is particularly robust in the dopamine-depleted striatum. Although interactions between dopamine and glutamate receptor-mediated responses in striatal neurons have been demonstrated in a number of experimenta...
Article
Projection neurons of the striatum release opioid peptides in addition to GABA. Our previous studies showed that the opioid peptide dynorphin regulates that subtype of projection neurons which sends axons to the substantia nigra/entopeduncular nucleus, as indicated by an inhibitory action of dynorphin/agonists on D1 dopamine receptor-mediated immed...
Article
Full-text available
Projection neurons in the striatum give rise to two output systems, the "direct" and "indirect" pathways, which antagonistically regulate basal ganglia output. While all striatal projection neurons utilize GABA as their principal neurotransmitter, they express different opioid peptide co-transmitters and also different dopamine receptor subtypes. N...
Article
Full-text available
The members of a recently identified protein family termed regulators of G-protein signaling (RGS) act as GTPase-activating proteins for certain Gα subunitsin vitro, but their physiological effects in cells are uncertain in the face of similar biochemical activity and overlapping patterns of tissue expression. Consistent with its activity in in vit...
Article
Full-text available
Dopamine acting in the striatum is necessary for normal movement and motivation. Drugs that change striatal dopamine neurotransmission can have long-term effects on striatal physiology and behavior; these effects are thought to involve alterations in gene expression. Using the 6-hydroxydopamine lesion model of Parkinson's disease and differential d...

Network

Cited By