ArticlePDF Available

Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere

Authors:

Abstract

Climate change has substantial influences on autumn leaf senescence, i.e., the end of the growing season (EOS). Relative to the impacts of temperature and precipitation on EOS, the influence of drought is not well understood, especially considering that there are apparent cumulative and lagged effects of drought on plant growth. Here, we investigated the cumulative and lagged effects of drought (in terms of the Standardized Precipitation‐Evapotranspiration Index, SPEI) on EOS derived from the NDVI3g data over the Northern Hemisphere extra‐tropical ecosystems (>30° N) during 1982‐2015. The cumulative effect was determined by the number of antecedent months at which SPEI showed the maximum correlation with EOS (i.e., Rmax‐cml) while the lag effect was determined by a month during which the maximum correlation between 1‐month SPEI and EOS occurred (i.e., Rmax‐lag). We found cumulative effect of drought on EOS for 27.2% and lagged effect for 46.2% of the vegetated land area. For the dominant time scales where the Rmax‐cml and Rmax‐lag occurred, we observed 1‐4 accumulated months for the cumulative effect and 2‐6 lagged months for the lagged effect. At the biome level, drought had stronger impacts on EOS in grasslands, savannas, and shrubs than in forests, which may be related to the different root functional traits among vegetation types. Considering hydrological conditions, the mean values of both Rmax‐cml and Rmax‐lag decreased along the gradients of annual SPEI and its slope, suggesting stronger cumulative and lagged effects in drier regions as well as in areas with decreasing water availability. Furthermore, the average accumulated and lagged months tended to decline along the annual SPEI gradient but increase with increasing annual SPEI. Our results revealed that drought has strong cumulative and lagged effects on autumn phenology, and considering these effects could provide valuable information on the vegetation response to a changing climate. This article is protected by copyright. All rights reserved.
Glob Change Biol. 2019;1–15. wileyonlinelibrary.com/journal/gcb  
|
 1
© 2019 John Wiley & Sons Ltd
Received:4Februa ry2019 
|
  Revised:4February2019 
|
  Accepted:16March2019
DOI:10.1111/gcb.14627
PRIMARY RESE ARCH ARTICLE
Satellite detection of cumulative and lagged effects of drought
on autumn leaf senescence over the Northern Hemisphere
Jie Peng1,2| Chaoyang Wu1,2 | Xiaoyang Zhang3| Xiaoyue Wang1|
Alemu Gonsamo4
1TheKeyLaborator yofLandSurface
Patter nandSimulation,Instituteof
GeographicalScien cesandNatural
ResourcesResearch,ChineseAc ademyof
Science s,Beijing,China
2UniversityoftheChineseAcad emyof
Science s,Beijing,China
3Depar tmentofGeography,Geosp atial
Science sCenterofExcellence(GSC E),South
DakotaStateUniversity,Brooking s,South
Dakota
4Depar tmentofGeographyand
Plannin g,Unive rsit yofToronto,Toronto,
ON,Canada
Correspondence
Chaoyan gWu,TheKeyL aboratoryofL and
SurfacePatternandS imulation,Ins titute
ofGeogr aphic alSciencesandNatural
ResourcesResearch,ChineseAc ademyof
Science s,Beijing,China.
Email:wucy@igsnrr.ac.cn
Funding information
ChineseAcade myofScien ces,Gr ant/Award
Number :XDA1904 0103;NationalNatural
ScienceFoundationofChin a,Grant/Award
Number :41871225;KeyResea rchProgram
ofFrontierS cience s,Gra nt/AwardNumber:
QYZDB-SSW-DQC011
Abstract
Climatechangehassubstantialinfluencesonautumnleafsenescence,thatis,theend
ofthegrowingseason(EOS).Relativetotheimpactsoftemperatureandprecipitation
onEOS, the influence of drought is not wellunderstood, especiallyconsideringthat
ther ea reapp arentcu mulativea ndlag gedef fec t sofdrough to nplantg rowth.He re,we
inve sti gat edt hec umu lat iveandla g gedef f ectsofd rou ght(inte rms oftheStan dar dized
Precipitation–EvapotranspirationIndex,SPEI)onEOSderivedfromthenormalizeddif-
ferencevegetationindex(NDVI3g)dataovertheNorthernHemisphereextra-tropical
ecosystems(>30°N)during1982–2015.Thecumulativeeffectwasdeterminedbythe
number of antecedent monthsatwhich SPEI showedthe maximum correlation with
EOS(i.e.,Rmax-cml)while the lageffectwasdetermined by a monthduring whichthe
maximumcorrelationbetween1-monthSPEIandEOSoccurred(i.e.,Rmax-lag).Wefo u nd
cumulative ef fect of drought on EOS for 27.2% and lagge d effect for 46 .2% of the
vegetatedland area.For thedominanttimescaleswheretheRmax-cml and Rmax-lag oc-
curred, we observed 1–4 accumulated months for the cumulative effect and 2–6
laggedmonthsforthelaggedeffect.Atthebiomelevel,droughthadstrongerimpacts
onEOSingrasslands,savannas,andshrubsthaninforests,whichmayberelatedtothe
differentrootfunctionaltraitsamongvegetationtypes.Consideringhydrologicalcon-
ditions,themeanvaluesofbothRmax-cml and Rmax-lagdecreasedalongthegradientsof
annual SPEIand its slope,suggestingstrongercumulative and laggedeffectsindrier
regionsaswellasinareaswithdecreasingwateravailabilit y.Furthermore,theaverage
accumulatedandlaggedmonthstendedtodeclinealongtheannualSPEIgradientbut
increasewithincreasingannualSPEI.Ourresultsrevealedthatdroughthasstrongcu-
mulativeandlaggedeffectsonautumnphenology,andconsideringtheseeffectscould
providevaluableinformationonthevegetationresponsetoachangingclimate.
KEY WORDS
autumnphenolog y,cumulativeeffect,drought,laggedeffect
1 | INTRODUCTION
Global climate change has influenced vegetation phenology con-
siderably over the past decades (Chen et al., 2014; Dannenberg,
Song, Hwa ng, & Wise, 2015; Go nsamo, Chen, & O oi, 2018; Piao,
Fang, Zhou, Philippe, & Zhu, 2006; Richardson etal., 2013; Zhang
et al., 2018). While numerous research focused upon the spring
phenology(i.e.,thestart ofgrowingseason,SOS)(Piaoetal.,2011;
2 
|
   PENG Et al.
Seyednasrollah,Swenson,Domec,&Clark,2018;Shen,Tang,Chen,
Zhu,&Zheng,2011;Whiteetal.,2009),influencesofclimatechange
onautumnleafsenescence(i.e.,theendofthegrowingseason,EOS)
received less attention(Liu,Fu,Zhu,et al., 2016b;Wu,Chen,etal.,
2013;Zhuetal.,2017).Itisthereforeimperativetocomprehendthe
effectofclimaticfac torsonEOS,giventhatthereareincreasingevi-
de nce ssh owi ngt h ei mpor t a nt f unc t ion of aut u mnp hen olo g yin con -
trollingecosystemproductivity,water,andcarboncycles(Balzarolo
etal.,2016;Ganguly,Friedl,Tan,Zhang, &Verma,2010;Piaoetal.,
2012;Wu,Chen,etal.,2013;Wu,Gough,Chen,&Gonsamo,2013).
Previousstudiesfoundthatchangesinautumnphenologycould
be attributed to climatic variable suchas solarradiation, tempera-
ture,andprecipitation(Keskitalo,Gustaf,Per,&Stefan,2005;Kong,
Qiang, Singh,&Shi,2016;Liu,Fu,Zeng,etal.,2016a;Liu, Fu,Zhu,
et al., 2016b; Pia o et al., 200 6; Zu et al., 2018). In temp erate for-
ests,delaysinEOScouldbelinkedtoincreasedtemperaturesinau-
tumn (Del pierre et al., 20 09; Estre lla & Menzel, 20 06; Ge, Wang,
Rutishauser,& Dai,2015; Jeong,Ho, Gim,&Brown, 2011; Liu,Fu,
Zeng, et al., 2016a; Yang, Guan, Shen, Liang, & Jiang, 2015), while
earlier leaf senescence may also relate to the warming-induced
drought(Estrella&Menzel,2006;Liet al.,2018;Liu, Fu,Zhu,etal.,
2016b;Zhu, Zheng,Jiang,&Zhang, 2018).Anincreasein precipita-
tioncoulddelay EOS(Liu,Fu,Zeng,etal.,2016a;Richardson et al.,
2013), but may also a dvance autu mn foliar event s (Cong, Shen , &
Piao, 2017;Xie, Wang, Wilson, &Silander,2018; Zhuetal., 2017),
sug ge st ingco mp lexre sp on se sofautumnp henologic aleve nt stoen -
vironmentalcues.
Drought is one of the more complic ated climatic phenomena
influencingvegetation(Chaves, Maroco, &Pereira, 2003; Vicente-
Serra no et al., 2012). It ca n be defined as p eriods of lower wat er
availability between precipitation and evapotranspiration, relative
to its loc al normal water b alance (Dai, 2011; D'Ora ngeville et al.,
2018;Vicente-Serrano et al., 2013; Wilhite&Glantz, 1985). Under
the background of global warming, the intensity and frequency of
droughteventsenhancedoverthelastdecades,resultinginincreas-
ingly seve re impacts on te rrestrial eco systems (Ciais et a l., 2005;
Zhang,Kong,Singh,&Shi,2017),includingconstraining vegetation
growth (D 'Orangev ille et al., 2018; H uang, Wang, Kee nan, & Piao,
2018; Zheng et al ., 2018), causing veg etation mor tality (F ensham,
Fairfax,&Ward, 2009;Huang,A sner, Barger,Neff,& Floyd,2010;
Martínez-Vilalta & Lloret, 2016), and even inducing wildfire and
biotic disturbance (Huang et al., 2017; Wendler, Conner, Moore,
Shulski,& Stuefer,2011).Recently,several studieshavebeen done
toinvestigate theeffec tsofdroughtonEOS. Forexample,drought
in summer a nd autumn adva nced EOS of grasslan ds in China and
Canad a (Cui, Martz , & Guo, 2017; Kang, Wang, & Liu , 2018; Tao,
Yokozawa,Zhang,Hayashi,&Ishigooka,2008).Conversely,itledto
laterleafsenescenceformostdeciduoustreesinnortheasternUSA
(Xie, Wan g, & Silander, 2015; Xie e t al., 2018). Due to th e limited
research, it is difficult to distinguish whether the inconsistency is
caused by d istinc t environmen t of study are as, diverse v egetation
communit ies, or other reaso ns. Thus, investi gation of drought-in-
duced aut umn phenologic al changes at a regi onal, continent al, or
globalscalewouldbeparticularlyimportanttoenhanceourunder-
standingofautumnphenologyanditsresponsetodrought.
Extensive studies have recognized that the cumulative effects
ofclimaticfactors(e.g.,temperatureandprecipitation)beforephe-
nologicalevenshavestrongimpactsonvegetationgrowth(Liu,Fu,
Zeng,etal.,2016a;Pastor-Guzman,Dash,& Atkinson,2018;Shen
et al., 2011). Recent ly,dr ought was uncove red to have legac y ef-
fectsonvegetationdynamics(D'Orangevilleetal.,2018;Huanget
al., 2018; Vicente-Serrano et al., 2013;Zhang, Kong,et al., 2017).
Thecumulativeandtime-lageffectofmajorclimaticdrivingforces
onphenologyshouldbepaidmoreat tentionforabetterprediction
andevaluationof vegetation response (Andersonet al.,2010; Wu
et al., 2015). G iven all thes e findings , we reasonabl y hypothesize
that drought may play a crucial rolein regulating EOS through its
cumulativeandlagged effects.Therefore,weaimtoquantitatively
investig ate the cumula tive and lagge d effect s of drought on EOS
usingthesatellitederivedNormalizedDifferenceVegetationIndex
(NDVI)dataset(1982–2015)fromtheGlobalInventoryModelingand
Mappin gStudi est hirdge nerat ion(GIMMS3g )andtheStan dardized
Precipitation–EvapotranspirationIndex(SPEI)timeseriesoverthe
NorthernHemisphereextra-tropicalecosystems(>30°N).Ourmain
objectiveswere(a)toanalyzethecumulativeandlaggedeffectsof
recentdroug hto nEOS;(b)tounder standhowt heseeff ec tschange
fordifferentbiometypesandwetnessconditions.
2 | MATERIALS AND METHODS
2.1 | Study area
Our study was concentrated on the Northern Hemisphere extra-
tropical terrestrial ecosystems (>30°N, Figure 1) due to inherent
seasonality of vegetation in tropical regions. Considering that the
seasonalvariation of cropland ismostlycontrolledby humanactivi-
ties, we excl uded the pi xels covered by cro pland using t he classifi-
cationoftheInternationalGeosphere-BiosphereProgramme(IGBP)
intheModerateResolutionImagingSpectroradiometer(MODIS)
Land Cover Climate Modeling Grid Product (MCD12C1).To reduce
thenoisesfromnon-vegetationareas,NDVIpixelswithlowerannual
mean valu e (<0.15), which were usu ally identified as bare land or
sparse ve getation, were al so removed (Jeong e t al., 2011; Liu, Fu,
Zeng,etal.,2016a).
2.2 | Datasets
2.2.1| Satellite NDVI dataset
Weusedthe15-dayGIMMS3gNDVItimeseriesrangingfrom1982
to 2015 to extract EOS (ht tp://ecocast.arc.nasa.gov/data/pub/
gimms/3g.v1). It has a spatial resolution of approximately8km. As
the longest NDVI record, the GIMMS3g NDVI data have been ex-
tensively a pplied for vege tation dyn amics monito ring (Chen et al .,
2014;Kongetal.,2016;Panet al., 2018;Schut, Ivits,Conijn,Brink,
&Fensholt,2015;Wuetal.,2015;Zhang,Kong,etal.,2017;Zhang,
    
|
 3
PENG Et al .
Song,Band, Sun,&Li,2017).Numerousstudiesonvegetationphe-
nology were also conducted based on this dataset (Buitenwerf,
Rose,&Higgins, 2015;Garonna,De,& Schaepman, 2016;Jeong et
al.,2011;Liu,Fu,Zeng,etal., 2016a;Liu, Fu, Zhu, et al.,2016b). In
order to matc h datasets a t different s patial resolu tions, esp ecially
the GIMMS3g NDVI (~8km) and SPEI(0.5°) (see Section 2.2.2),all
thedata were interpolated into a spatialresolutionof 8km usinga
bilinearinterpolationalgorithm.
2.2.2 | Multi‐scalar SPEI dataset
To quantify drought duration and severity, we acquired the
monthlySPEIat1-to12-monthtimescales(1982–2015)fromthe
SPEIbasev.2.5atConsejoSuperiordeInvestigacionesCientíficas
(CSIC) (http://spei.csic.es/database.html). The dataset contains
monthly SPEI at1-to48-month time scales,covering aperiod of
1901–2015witha0.5°spatialresolution.ForthevalueofSPEIat
each pixel , it was compute d by the differe nce betwee n precipi-
tation and potential evapotr anspiration (PET) with t he Climatic
Research Unit Time series of the University of E ast Anglia, and
PET was calculated based on the FAO-56 Penman–Monteith
equatio n (Allen, Pereir a, Raes, & Smith , 1998) . To comp are the
degree of water availability spatially and temporally, the final
value of SPEI w as a standardi zed variable foll owing a log-logis-
tic distribution, representing deviations from the climatic water
balance (Vicenteserrano, Beguería, & Lópezmoreno, 2010). The
larger po sitive values indi cate excess water af ter satisfyi ng the
concurrent waterdemand, while lower negative valuesindicate
more sever e water defici ency. For the mult i-scalar tr ait of SPEI,
SPEI at n time s cale (i.e., n-month SPEI) denotesthe cumulative
climatic w ater balance for th e previous n months. For example,
the1-monthSPEIprovidest heclimaticwaterconditionatthecur-
rent month , while the 12-mont h SPEI (e.g., at De cember) repr e-
sents the accumulatedclimatic waterbalance for the wholeyear
(e.g., from January to December). Accordingly,this characteristic
ofSPEImakesitpossibletoidentifydifferentdroughttypes(e.g.,
sho rt-,me dium-,andl ong-te rmdrought )andv ar iousi nfluenceson
vegetation (Beguería, Vicenteserrano, & Angulomartínez, 2010;
Martin-Benito, Beeckman, & Cañellas, 2013; Vicenteserrano et
al.,2010; Vicente-Serranoetal.,2013;Zhang, Kong,etal.,2017).
Here, we used the 1-to 12-month SPEI dat asetsfor 1982–2015
assumingthatdroughtmayimpactthewholelifecycleofplantin
thefollowing12months(Gordo&Sanz,2010;Kangetal.,2018).
2.2.3 | Biome data
To investigate the influences of drought on EOS at different bi-
omes,weemployedthebiometypesfromtheTerrestrialecoregions
ofthe world(TEOW),which was developedby Olson etal. (2001)
(https://www.worldwildlife.org/publications/terrestrial-ecoregions-
of-the-world). The T EOW is a biogeograp hic regional ization base d
on terrestrial biodiversity. The biogeographic units within TEOW
are recognized as ecoregions, which were then classified into 14
different biome types, including forests, shrublands, grasslands,
and dese rts. In ord er to explore the c haracteri stics of cumul ative
andlaggedef fectsat differentbiomesintheNorthern Hemisphere
extra-tropicalecosystems, weselected 8of14biomet ypesby ex-
cludingbiomes thatcorrespondtotropicaland subtropical regions
(Table1).
FIGURE 1 Thespatialdistributionofbiometypeswithinourstudyareaobtainedfromtheterrestrialecoregionsoftheworld(TEOW)
data(Olsonetal.,20 01)
TABLE 1 Theselectedeightbiomet ypesfromterrestrial
ecoregionsoftheworlddataset
Value Biome typ e Abbreviation
4Temperatebroadleafandmixed
forests
TBMF
5Temperateconiferousforest s TCF
6Borealforests/taiga BF
8 Temperategrasslands,savannas,
andshrublands
TGSS
10 Montanegrasslandsand
shrublands
MGS
11 Tundra TUN
12 Mediterraneanforests,
woodlands,andscrub
MFWS
13 Deser tsandxericshrublands DXS
4 
|
   PENG Et al.
2.3 | Determination of EOS from NDVI
As the or iginal GIMM S3g NDVI value s were usually d epressed b y
unstableatmosphericstates,suchasclouds,we adoptedthemodi-
fied Savi tzky-G olay filter to l essen the n oises in NDVI tim e series
beforehand(Chenetal.,2004).Thesmoothingwindowanditeration
timeweresetas4 and 20,respectively.Athighlatitudes(or eleva-
tions),snowcoverisimportantforregionalclimateandarrivesearly
inautumnandpotentiallymasking evergreenvegetation.However,
wesuggestedthatusingaSavitzk y–Golayfiltercouldsolvethenoise
from a "sudd en" change in the tim e series of NDVI due to s now.
Then, to reduce errorsfrom different approaches, two individual
phenologyex trac tionmethodswereemployedtoextractEOSfrom
GIMMS3 g NDVI data (Figu re 2). The firs t method is the m idpoint
method,atwhich EOSis determined asthedaywhenNDVIr atio de-
creases to0.5 in autumn (White, Thornton, & Running, 1997), and
NDVIrat ioiscalculatedby:
where NDVIrepresents the linearly interpolated dailyNDVI after
smoothing,NDVImaxrepresentstheseasonalmaximumNDVIvalue,
andNDVIministheseasonalminimumNDVIvalue.
Thesecondmethodisthedoublelogisticmethod(Elmore,Guinn,
Minsley,& Richardson,2012;Zhangetal.,2003), and it can be de-
scribedas:
whereNDVI(t)is t h efit te d N DVI a tday t.Theannualvariationcurve
of15-dayNDVIwasdividedintotwosec tionsbytheNDVImax:th e
ascendingpart(i.e.,vegetationrecoveryfromnongrowingseason)
andthe descending part(i.e., aprocessof plantsenescencefrom
peak).Forthelatterpart,thesmoothedNDVItimeserieswasfitted
to NDVI (t)usingthedoublelogisticfunction.Theoptimalcoeffi-
cientsofN DVI(t)weredeterminedwhenR2betweenthesmoothed
andsimulatedNDVIreached 0.95or theiterationwaslargerthan
2,500times(Wuetal.,2017).Thereafter,thedateofEOSwasex-
tract ed at the loca l minimum in the f irst deri vative of the fi tted
NDVI(t). Finally,weusedtheaverage valueof two EOSextraction
resultsasthefinalEOSappliedinourstudytoremoveuncertainty
causedbysinglecalculationalgorithm(Wuetal.,2017).
2.4 | Determination of the cumulative and lagged
effects of drought on EOS
ThecumulativeeffectassessmentofdroughtonEOSwasconducted
todetermine on what time scaleof SPEI that EOSyieldedthelarg-
est signi ficant correl ation with SPEI. For e xample, if the n-month
SPEI(ncouldbeanymonthfrom1to12)showedthehighestcor-
relation withEOS,thecumulativeeffectofdrought onEOS forthis
pixelwouldbedeterminedasnmonths,indicatingthattheclimatic
waterbalance duringthecontinuousnmonthsbeforeEOS(includ-
ingthe EOS occurring month)isthe mostimportant cuetotrigger
EOS.Thespecificstepsfordeterminingthecumulativeeffectwere
representedasfollows:
First, at each pixel, we determined the month of EOS (i.e.,
EOSm) for each year(1982–2015)and then extracted 12monthly
SPEIvaluesatthe EOSmmonthfrom1-to12-monthSPEIateach
year.Second,weexploredtheresponseofEOSto1-to12-month
SPEIateach pixelthrough thePearson'scorrelation (significance
levelwassettop<0.05),andallsignificantcorrelationcoefficients
betweenEOSand SPEI wereconsideredas candidates for deter-
miningthecumulativeeffectatthispixel.Third,thecumulativeef-
fectofdroughtonEOSwasdeterminedasnaccumulatedmonths
(i.e.,accumulatedtimescales)whentheabsolutemaximumsignifi-
cantcorrelationcoefficient(i.e.,|Rmax-cml|atp<0.05)occurredbe-
tweenEOSandthen-monthSPEI,andthestrengthofcumulative
effec t was identif ied as Rmax-cml(Rmax-cml could be eitherpositive
ornegative).
ThelaggedeffectassessmentofdroughtonEOSwasconducted
todetermineatwhichmonththat1-monthSPEIhadthelargestsig-
nificantcorrelationwithEOSamongtheprevious12months.Unlike
thecumulativeeffectusing1-to12-monthSPEI,hereonly1-month
SPEIwasused. Toinvestigatethis laggedeffect, wecorrelatedEOS
with1-monthSPEIatprecedingnmonthsbeforeEOS(includingthe
EOSm mont h), and the lagged ef fect n was determined when the
Rmax-lagwasobtained.Forexample,ifthe1-monthSPEIattheEOSm
monthhadthehighestcorrelationwithEOS,thelaggedeffectwas
recordedas1laggedmonth (i.e.,laggedtime scales), indicating no
lagged effectonEOS;however,if EOShappened inOctoberin this
year, and the Rmax-lag was found u sing 1-month SPEI in Novem ber
from the previous year,then the lagged effect was recorded as 12
laggedmonths,andtheactuallagwas11months.Furtherstatistical
(1)
NDVI
ratio =
(
NDVINDVImin
)
(
NDVI
max
NDVI
min)
(2)
NDVI
(t)=a1+a2a7t×
1
1+exp a3t
a41
1+exp a5t
a6
FIGURE 2 Anexampleofdeterminationoftheendofthe
growingseason(EOS)usingGlobalInventoryModelingand
MappingStudiesthirdgenerationNDVIdatasetwiththetwoEOS
extractionmethods.Thedatescorrespondingtotheverticallines
ofAandBareEOSvaluesextractedbythemidpointmethodand
thedoublelogisticmethod,respectively
050100 150 200250 300350
0.2
0.4
0.6
0.8
1.0
NDVImin
Firstderivative(×10–2)
NDVI
Dayofyear(DOY)
Observed NDVI
Daily NDVI
Fitted NDVI(t)
NDVImax
–1.0
–0.5
0.0
0.5
1.0
B
Firstderivative line
A
    
|
 5
PENG Et al .
analysiswasconductedmainlybasedontheresultsof1to12lagged
months.
The subse quent analys es across biome an d wetness grad ients
wereinvestigatedprimarilyonthebasisofthemaximumcorrelation
coefficients (Rmax-cml and Rmax-lag,respectively)andthecorrespond-
ingtimescales(accumulatedandlaggedmonths,respectively).Here,
to detect t he influen ce of hydrologic al condition s on these cum u-
lative and l agged effec t, the 12-month S PEI dataset at De cember
(i.e.,annual SPEI) during1982–2015wasadopted, representingthe
annualwaterbalance(namely,annualwetnesssituation).Theslope
ofannualSPEI wasalsoquantifiedbasedontheannualSPEIduring
1982–2015 usingt heline arle ast-squares regression, representing
the chang ing trend of water balance (or wetness) over the thr ee
decades.Furthermore,the wetness gradients weredeterminedby
equalintervalbasedonthemeanvalueofannualSPEIandtheslope
ofannualSPEIoverthewholestudyduration,withinter valvaluesof
0.1and0.01,respectively.
3 | RESULTS
3.1 | The cumulative effect of drought on EOS
3.1.1| The responses of EOS to drought at different
time scales
The proportions of positive and negative significant correlations
betweenEOSand1-to12-monthSPEI arepresentedinFigure3.
As shown i n Figure 3, the p ercentage s of significa nt correlati on
weremainlypeakedat3–5months,andthepeakvaluewasfound
at 4-month time scale (positive in 9.0% and negative in 3.2%),
whereas i t had the minimu m value at 1month ( positive in 3.6%
and negat ive in 2.5%). Ove rall, the po sitive corre lation bet ween
EOSandSPEIhadlargerproportionthanthenegativecorrelation
ateachtimescale.
3.1. 2 | Spatial patterns of the cumulative effects of
drought on EOS
For the cumu lative effe ct of drought o n EOS, Figure 4 show s the
spatial pa tterns of the Rmax-cml bet ween them at p<0.05 a nd the
correspondingtimescales(i.e.,accumulatedmonths).Overall,27.2%
ofthevegetatedlandsshowed theRmax-cml(Figure4a).Positivecor-
relations(16.3%) were mostlylocated in Southern North America,
SouthernEurope, Central and WesternAsia, Central and Nor thern
Russia, an d Central Ch ina. Negati ve correlatio ns (10.9%)we re pri-
marily observed in Northern North America, Northern Europe,
WesternandEasternRussia,andNor theasternChina.InFigure 4b,
the accumulated months where the Rmax-cmloccurredwasconcen-
tratedatshortertimescales(i.e.,1–4months),totaling63.1%ofthe
areas, am ong which the 3-mo nth time scale occ upied the larges t
area(17.5%).Meanwhile,about13.7%ofthemaximumcorrelations
were occupied by the 1-month SPEI, largely located in middle and
highnorthernlatitudes.
3.1.3 | The cumulative effect of drought on EOS
at the biome level
Differentpatternswereshowninthepercentagesofmaximumsig-
nifica nt correlation bet ween EOS and 1- to 12-month SPEI (both
positive and negative correlations) across biomes(Figure 5).In the
viewof thetotal percentagesateachbiome,weobserved thelarg-
est percentage of maximum significant correlation in temperate
grassla nds, savannas, a nd shrublands ( TGSS) (48.5%), follow ed by
mediterranea nfores ts,w oo dl an ds ,a nd sc ru b(MF WS )(36.7% ),mon-
tanegrasslandsandshrublands(MGS)(36.3%),anddesert sandxeric
shrublands(DXS)(32.5%),whilethesmallestproportion wasshown
in boreal forests/taiga (BF) (21.5%). Meanwhile, the Rmax-cml was
primarilypositive in TGSS,MGS, MFWS,and DXS biomes,andthe
ratiosofnegativeandpositivecorrelationwereapproximatelyclose
attemperatebroadleafandmixedforests(TBMF),temperate conif-
erou sf or est s(TCF ), BF,an dt undra (TU N) bi ome s. Fromth ep ers pec-
tiveoftimescale,thepercentagesofRmax-cmlbetweenSPEIan dEOS
predominated at3–4accumulatedmonths forgrassland,savannas,
andshrubland(i.e.,TGSS,MGS,andDXSbiomes),2monthsforTUN,
and 1–6months for th e MFWS biome, resp ectively. Though EOS
showedslightlylargerproportionswith1-to4-monthSPEIinforests
(i.e.,TBMF,TCF,andBFbiomes),thereseemsnocleardominanttime
scalesinthesebiomes.
The potential relationship between the cumulative effect and
thewetnessacrossbiomeswasinvestigated,andanegativecorrela-
tion between themean Rmax-cmlandmeanSPEIattheEOSmmonth
wasfound(R2=0.75inFigure6).Generally,theaverageRmax-cml de-
creasedfrom0.38 to −0.07 with the increasing wetness,whichin-
dicates thatbiomes with positivewater balanceat theEOSm month
hadlowerco rr el ationbetweenEOSandSP EI(e.g.,BF,TCF,andTUN).
FIGURE 3 Percentagesofsignificantcorrelationbetween
StandardizedPrecipitation–EvapotranspirationIndexandEOS(at
p<0.05)from1-to12-monthtimescales
123456789101112
0
2
4
6
8
10
Percentage (%)
Accumulatedmonths
PositivecorrelationNegative correlation
6 
|
   PENG Et al.
3.1.4 | The cumulative effect of drought on EOS
along the water balance gradient
Boththe Rmax-cml and corresponding accumulated months showed
correlationswiththewaterbalancegradients(Figure7).Forthetime
scale of cumulative effect, the accumulated month was negatively
correlatedwith the meanannual SPEI (R2=0.36inFigure 7a),sug-
gesting thatdrought had cumulative effect on EOS atshortertime
scales at wet ter regions(i.e., regionswith larger valueofmean an-
nual SPEI). At t he same time, th e accumulated mont hs tended to
increas e from 3.7 to 5.3 with th e increased slo pe of annual SPEI
(R2=0.34 in Figure 7b). As showninFigure 7c, the correlationbe-
tweentheannualSPEIandpositiveRmax-cmlwasnegative(R2=0.57),
butthecorrelationwithnegativeRmax-cmlwas in sig nif ica nt. Alo ngt he
gradientofslopeofannualSPEI,thepositiveRmax-cmlalsoshowedan
obviouslydecliningtrend(R2=0.65inFigure7d),whilethevariation
ofnegativeRma x-cmlwasnotsignific ant.
3.2 | The lagged effect of drought on EOS
3.2.1| The responses of EOS to drought at different
lagged time scales
We acquired t he percentages of p ositive and negati ve significant
correlations between EOS and 1-month SPEI during 1982–2015
(Figure8).The1-monthSPEIhadvariouscorrelationwithEOSduring
thepreviouslyindividual12months.Generally,thesignificantcorre-
lation betweenthem was mainly focused on short-term lag within
6months(positivein26.5%andnegativein17.0%).Comparedwith
otherlaggedtimescales,thelargestproportionwasobservedinthe
3-month lag,andthepercentage ofpositivecorrelation(8.1%)was
clearlylargerthanthenegativeone(1.7%).
3.2.2 | Spatial patterns of the lagged effects of
drought on EOS
Fromtheperspectiveoflaggedeffect,thespatialpatternsoftheRmax-lag
betweenEOSand1-monthSPEI(atp<0.05)aswellasthecorrespond-
inglagged months are presented inFigure 9.Generally,about 50.4%
of the veget ated pixels showe d the maximu m significa nt correlatio n
betweenEOS andSPEIovertheNorthernHemisphere(>30°N),and
the distributionof the Rmax-lagwasspatiallyheterogeneous.Thepro-
portionsofpositive andnegative correlation were26.6%and23.8%,
respectively. Consideringthe lag time, only4.2% of the area was af-
fected by t he concurre nt SPEI of the EOS month ( Figure 9b), which
sugges ts that 46.2% of t he vegetated lands s howed certain la gged
effectsbetweenEOSandSPEI.Among the pixelsshowing laggedef-
fect,nearly59.1%ofthemoccurredatshorterlaggedtimescales(e.g.,
1–6months),and the Rmax-lagat3laggedmonthsheldthelargestper-
centage (12. 8%). Moreover, in midlat itudes (30 °N–55°N),t he lagged
effectmostlyfellintherangebet ween2and3laggedmonths.
3.2.3 | The lagged effect of drought on EOS
at the biome level
The perce ntages of lagged e ffect varie d substantia lly at different
laggedmonthswithineachbiomeaswellasamongdif ferentbiomes
(Figure 10).Overall, droughtshowedevidentlagged effectonEOS,
FIGURE 4 Spatialdistributionofthecumulativeef fectofdroughtonEOS.(a)Spatialdistributionofthemaximumsignificantcorrelation
coefficients(i.e.,Rmax-cml)betweenStandardizedPrecipitation–EvapotranspirationIndexandEOSduring1982–2015.(b)Spatialpatternof
thecorrespondingtimescales(i.e.,accumulatedmonths)wheretheRmax-cml occurred
    
|
 7
PENG Et al .
with over 45% of the a reas showing m aximum corr elation in ea ch
biome.ThelargestpercentageoftheRmax-lagwas68.7 %inTGSS,fo l-
lowedbyMGS(61.4%),MFWS(57.1%),andDXS(55.3%),while the
smallestproportion was45.5%inBF.Thereinto,themaximumcor-
relationwithconcurrentSPEIonlyaccountedfor3.1%–6.2%among
biomes.EOSinTGSS,MGS,andMF WSbiomessharedsubstantially
largerareas ofpositivecorrelationswithSPEI, which were approxi-
matelytwicethesizeofnegativecorrelation.However,wefoundno
apparentdifference betweentheproportionsof positiveandnega-
tive corre lations in oth er five biome s, and BF was t he only biome
which had a slightly larger percentage of negative correlation. For
thelagged monthsoflagged effect,thehighestproportions ofthe
Rmax-lagwereapparentlyobservedat2laggedmonthsforTUNand3
laggedmonthsforTGSS,MGS,MFWS,andDXSbiomes.Thelagged
effectof droughtonEOS was almostuniformlydistributedateach
laggedmonthfortheremainingbiomes(i.e.,TBMF,TCF,andBF).
Across biomes, we further found a significant correlat ion be-
tweenthebiome-averagedRmax-lagan d m e anSP E Iatt h e EO S mm o n t h
(R2=0.66 in Figure 11). Generally,themean Rmax-lag was smaller if
thebiomepossessedalargervalueofmeanSPEI.ThemeanRmax-lag
FIGURE 5 Percentagesofthe
Rmax-cmlbetweenEOSandStandardized
Precipitation–EvapotranspirationIndex
(SPEI)at1-to12-monthtimescales
ateachbiome.Ineachbiome,the
percentageofpositivecorrelation(P)at
iaccumulatedmonthsrepresentsthe
ratioofpixelsshowingpositiveRmax-cml
betweenEOSandi-monthSPEItoallthe
vegetatedpixelswithinthisbiome,while
thepercentageofnegativecorrelation
(N)representstheratioofpixelsshowing
negativeRmax-cml.Theletters(a–h)
representTBMF(a),TCF(b),BF(c),TGSS
(d),MGS(e),TUN(f),MFWS(g),andDXS
(h)biomes,respectively,anddetailed
descriptionsarefoundinTable1
123456789101112
0
3
6
9
12
15
Percentage (%)Percentage (%)Percentage (%)Percentage (%)
Percentage (%)Percentage (%)Percentage (%)Percentage (%)
(a) TBMF P: 15.3%
N: 12.1%
123456789101112
0
3
6
9
12
15
Positive correlation Negative correlation
(b) TCF P: 14.2%
N: 16.1%
123456789101112
0
3
6
9
12
15 (c) BF P: 9.0%
N: 12.5%
123456789101112
0
3
6
9
12
15 (d) TGSS P: 42.6%
N: 5.9%
123456789101112
0
3
6
9
12
15 (e) MGS P: 29.6%
N: 6.7%
123456789101112
0
3
6
9
12
15 (f) TUN P: 13.8%
N: 10.1%
123456789101112
0
3
6
9
12
15
Accumulatedmonths
(g) MFWS P: 32.5%
N: 4.2%
123456789101112
0
3
6
9
12
15
Accumulatedmonths
(h) DXS P: 25.7%
N: 6.8%
FIGURE 6 RelationshipbetweenthemeanvaluesofRmax-cml
andthemeanStandardizedPrecipitation–EvapotranspirationIndex
(SPEI)attheEOSmmonthacrossbiomes.Thesolidanddashlines
arethelinearfittedcurveandtheconfidencelevelforcurves(95%),
respectively
–0.15 –0.10 –0.05 0.00 0.05 0.100.15 0.20
–0.1
0.0
0.1
0.2
0.3
0.4
0.5
TBMF TCF
BF TGSS
MGS TUN
MFWS DXS
Mean Rmax-cml
Mean SPEI
y=–1.727x+0.253
R2=0.75, p<0.05
8 
|
   PENG Et al.
wasmorepositiveforTGSS,MFWS,andMGS,whilethevaluewas
negativeforBF.
3.2.4 | The lagged effect of drought on EOS
along the water balance gradient
We explored the patterns of the lagged effect of drought on
EOS along the water balance gradients and found significant
correlations between the mean Rmax-lagandmeantimescales
with the meanannual SPEIand slope of annual SPEI (Figure 12).
From the per spective of lagged time scale, the average lagged
monthshowe daninsignificantdownwardtrendalongtheincreas-
ing mean annual SPEI (Figure 12a), and it decreased from 6.4 to
6.1months. Along the gradient of slopeof annual SPEI, thetime
scalesoflaggedeffectexperiencedasignificantuptrend,increas-
ingfrom 5.3 to 6.7 (R2=0.92 in Figure12b).Inthe view of Rma x-
lag, the mean v alue of positi ve Rmax-lagwas negativelycorrelated
withthemeanannual SPEI (R2=0.76),whilethe relationship was
positivebetweenthenegativeRmax-lagandmeanSPEI(R2 = 0.34 in
Figure 12c).Similarly,the slope of annual SPEI showed negative
correlation with positive Rmax-lag(R2=0.67) and positive correla-
tionwithnegativeRmax-lag(R2=0.43inFigure12d).
4 | DISCUSSION
4.1 | The cumulative effect of drought on EOS
ThecumulativeeffectofdroughtonEOShasbeenquantifiedbased
onthe Pearsoncorrelation between EOS and 1-to12-month SPEI
during 1982–2015.Resultsshowed that thecumulative ef fect sex-
isted in 27.2% of the veget ated lands, wit h dominant time sc ales
beingconcentratedbetween1and4months.Thecumulativeeffect
ofdroughton EOS exhibited spatially heterogeneous distributions
overtheNorthernHemisphere(>30°N).Ourstudyreveals that the
wateravailabilitymayplayalong-termroleonautumnphenologyin
FIGURE 7 Distributionofthe
accumulatedmonths(a,b)andthemean
valuesofRmax-cml(c,d)alongthewater
balancegradients.Thewaterbalance
gradientsarerepresentativesofthe
meanannualStandardizedPrecipitation–
EvapotranspirationIndex(SPEI)(left)and
theslopeofannualSPEI(right).Thesolid
anddashlinesarethelinearfittedcurve
andtheconfidencelevelforcur ves(95%),
respectively,whenthefitissignificantat
p<0.05
0.80.6 0.40.2 0.00.2 0.40.6 0.8
3.5
4.0
4.5
5.0
5.5
0.06 0.04 0.02 0.00 0.02 0.04 0.06
3.5
4.0
4.5
5.0
5.5
0.80.6 0.40.2 0.00.2 0.40.6 0.8
0.45
––––
0.40
0.40
0.45
0.50
0.55
0.06 0.04 0.02 0.00 0.02 0.04 0.06
0.45
0.40
0.40
0.45
0.50
0.55
Mean R
max-cml
Mean annual SPEI
(a)
Mean Rmax-cml
SlopeofannualSPEI
(b)
y=–0.276x+4.728
R2=0.36, p<0.05
Accumulatedmonths
Mean annual SPEI
(c)
R2=0.57, p<0.05
Rmax>0:y=–0.024x+0.437
Rmax<0:NS
Rmax>0:y=–0.666x+0.444
Rmax<0:NS
y=7.728x+4.757
R2=0.34, p<0.05
(d)
Accumulatedmonths
SlopeofannualSPEI
R2=0.65, p<0.05
–––– ––
FIGURE 8 PercentagesofsignificantcorrelationbetweenEOS
and1-monthStandardizedPrecipitation–EvapotranspirationIndex
atdifferentlaggedtimescales(atp<0.05)
123456789101112
0
2
4
6
8
10
Percentage (%)
Laggedmonths
Positive correlation Negativecorrelation
    
|
 9
PENG Et al .
terrestrial ecosystems.Thebiological implicationssuggest thatthe
moisture(orwaterdeficiency)duringdifferentperiodsfacilitates(or
inhibits) vegetation growth and development synchronously, and
subsequentlyinfluencescurrentstageofplant'slifecycle.Basically,
the timin g and status of e ach stage d epend on the p revious ones
during th e life cycle (Liu, Fu, Zh u, et al., 2016b; Zu et al., 2018).
Therefore,theimpactsofwateravailabilityoneachstageconjointly
form thecu mu lat iv ee f fe c to nt hen ex tst a ge ,w hic hc aus et hecum u-
lativeeffectofwateronvegetationphenologyinautumn.
The cumulative effects of drought on EOS were substantially di-
vers ea mon gb iom es .InTGSS ,MF WS,MG S ,a ndDX Sbiom es, th epro-
portionsofmaximumcorrelationbetweenSPEIandEOS were larger
thanthose inforestsandtundra(i.e.,TBMF,TCF,BF,and TUN), con-
firmingthekey roleof wateravailability ingrasslands, savannas, and
shrubs(Knapp&Smith,2001;Liu,Fu,Zhu,etal.,2016b;Zhang,Kong,
etal., 2017). Theunderlying mechanism may be linked to the dif fer-
ent root fun ctional t raits (e.g ., root diamet er and root dep th) across
herbaceousandwoodyplants.Herbaceousplantswiththinnerroots
canrespondquicklytoseasonallyinfertile resourcesandunfavorable
conditions(e.g.,seasonal droughtorcold)by exploring soil resources
efficiently and reducing dependence on symbiotic mycorrhizal fungi
(Ma etal .,2018),buttheirshallowr oo tspreven tt he ma bs or bingwa te r
fromdeeper soillayerstosomeextent(Dodd, Lauenroth,&Welker,
1998;Dorjiet al.,2013; Fan, Miguez-Macho, Jobbágy,Jackson,& R.,
&OteroCasal,C .,2017;Wuetal.,2018),whichconjointlymakesEOS
respond rapidly to drought in grasslands. On the contrary, woody
plants w ith thicker roots a re usually more relia nce on mycorrhizae
which ena ble them to comp ete for abund ant resource s and survi ve
inintenseplant–plantcompetition(Maetal.,2018),anddeeperroots
arefavorablefordeeper soilwateruptake (Doddet al.,1998; Fan et
al., 2017; Wu et al., 2018), resulting in less dependent on variations
ofwatervariabilityontheterrestrialsurface.Besidesthat,forwoody
plants,thecapability andprocessesof waterstorage in planttissues
arecomplexandsubstantiallydifferfromthoseofherbaceousplants
(whosewaterstoragechieflydependsonthequantityofleaf),proba-
blycontributingtotheirdroughtresistance(Tianetal.,2018).
Meanwhile, the positive correlation between EOS and SPEI
waspredominant in TGSS, MF WS, MGS ,and DXS, suggestingthat
drought couldadvance thedateof EOS in thesebiomes. However,
theimpactofdroughtonEOSwasmoreambiguousinforests,asthe
propor tionsofnegativeandpositivecorrelationweresimilar.Onone
hand,treegrowthissensitivetoearly-seasondrought(i.e.,periodof
cambial g rowth) (D'Or angeville et al. , 2018), and water defi ciency
couldinduceearlierleafsenescence,especiallyolderleaves,formin-
imizingwaterlossandreallocating nutrients tootherpart s(Chaves
etal.,20 03).Ontheotherhand, for some treespecies, drought-in-
duced changesatgenelevelcould resultinstrongerdrought resis-
tance in leaves, preventingcell death induced by drought, altering
therelationshipsbetweenphotosyntheticsourcesandsinksamong
plantorgans, and thus delayed autumnsenescenceanddormancy
(Xie et al ., 2015). Moreover, the cumulative effect was predomi-
nated at 3- an d 4-month time s cales amo ng grassland s, savannas ,
and shru bs (i.e., TGSS, M GS, and DXS), wh ile there wer e no obvi-
ously dominant time scales for forests (Figure 5). Characterizedby
diverse plantspecies and complexrootsystems,forestsmay adapt
tovariousclimaticandhydrologicalconditionsandrespondtowater
availability at differenttime scales (Ma etal., 2018; Yan, Zhong, &
Shangg uan, 2017). The diverge nt hydraulic strateg ies in different
ecosystems(e.g., temperate andboreal forests) and areaswith dif-
ferenttreecovermaybeanotherreason(Tianetal.,2018).
FIGURE 9 SpatialpatternsofthelaggedeffectsobservedbetweenStandardizedPrecipitation–EvapotranspirationIndex(SPEI)andEOS.
(a)Spatialpat ternofthemaximumsignificantcorrelationcoefficients(i.e.,Rmax-lag)between1-monthSPEIandEOSduring1982–2015.(b)
Spatialdistributionofthecorrespondinglaggedmonths(i.e.,laggedtimescales)wheretheRmax-lagwasobserved
10 
|
   PENG Et al.
Additionally,inMFWS, thevariationinEOScould be largely
attributed to SPEI, especially at 1–6 accumulated months,
which was su pported by oth er studies tha t summer drought is
the primary environmental driver of the plant phenology at
Mediterraneanregions(Debussche,Garnier,&Thompson,2015;
Montserratmartíetal.,2009;Richardsonetal.,2013).Intundra,
the cumulative effect of drought on EOS was relativelyweaker,
mostly because that temperatureisthemaincontrol on vegeta-
tion in cold r egions, and th e various enviro nmental dri vers, in-
clud ingphotoperiod,insolation,permaf ros tdy nam ics,andlength
ofice/snowfreeperiod,maketheresponseofEOSmorecompli-
cated(Bin,Huang,Chen,&Wang,2018;Forkeletal.,2014,2015;
Khorsandetal.,2016).
Among al l these biom es, water def iciency w hen EOS occurre d
resultedinstrongerimpactsonEOSinaridbiomes(e.g.,MFWSand
TGSS),becausewateravailabilityhascriticalclimaticconstraints on
vegetatio n dynamics in t hese areas ( Wu et al., 2015). Conver sely,
those bio mes who were in favor able water condi tions when EOS
occurred (e.g., TCF and BF) exhibited less influences by water
availability.
FIGURE 10 PercentagesoftheRmax-lag
betweenEOSand1-monthStandardized
Precipitation–EvapotranspirationIndex
(SPEI)at1–12laggedmonthsateach
biome.Ineachbiome,thepercentage
ofpositivecorrelation(P)ati lagged
monthsrepresent stheratioofpixels
showingpositiveRmax-lagbetweenEOS
andtheSPEIatalagofimonthstoallthe
vegetatedpixelswithinthisbiome,while
thepercentageofnegativecorrelation
(N)representstheratioofpixelsshowing
negativeRmax-lag.Theletters(a-h)
representTBMF(a),TCF(b),BF(c),TGSS
(d),MGS(e),TUN(f),MFWS(g),andDXS
(h)biomes,respec tively,andmoredetailed
descriptionsarefoundinTable1
123456789101112
0
5
10
15
20
Percentage (%)Percentage (%)Percentage (%)Percentage (%)
Percentage (%)Percentage (%)Percentage (%)Percentage (%)
(a)TBMF P: 25.9%
N: 22.2%
123456789101112
0
5
10
15
20
Positivecorrelation Negativecorrelation
(b) TCFP: 26.9%
N: 23.3%
123456789101112
0
5
10
15
20 (c) BF P: 21.1%
N: 24.4%
123456789101112
0
5
10
15
20 (d) TGSS P: 42.4%
N: 26.3%
123456789101112
0
5
10
15
20 (e) MGSP: 41.6%
N: 19.8%
123456789101112
0
5
10
15
20 (f) TUNP: 26.4%
N: 23.1%
123456789101112
0
5
10
15
20
Lagged months
(g) MFWS P: 39.0%
N: 18.1%
123456789101112
0
5
10
15
20
Laggedmonths
(h) DXS P: 30.0%
N: 25.3%
FIGURE 11 RelationshipbetweenthemeanvaluesofRmax-lag
andthemeanStandardizedPrecipitation–EvapotranspirationIndex
(SPEI)atEOSmmonthacrossbiomes.Thesolidanddashlinesare
thelinearfittedcurveandtheconfidencelevelforcur ves(95%),
respectively
0.040.02 0.00 0.02 0.040.06 0.08
––
0.05
0.00
0.05
0.10
0.15
0.20
TBMF TCF
BF TGSS
MGS TUN
MFWS DXS
Mean Rmax-lag
Mean SPEI
y=–1.809x+0.126
R2=0.66, p<0.05
    
|
 11
PENG Et al .
Theclearpatternsofcumulativeeffectalongthewetnessgradi-
entcouldbeassociatedwithhydrologicalconditions.Vegetation in
aridregions(i.e.,withlowerannualSPEI)usuallyexperiencedstron-
gercumulativeeffectofdroughtonEOS,indicatedbylargerpositive
Rmax-cml(Fig ure 7c) .It is rea s ona ble beca u seveg eta t ion gr owth ina rid
regions issensitiveto availablewater,and droughtin theseregions
wouldaggravatewaterdeficiency,constrainvegetationac tivit y,and
usually l ed to earlier de foliation (Dor man, Svoray, Perevolot sky, &
Sarris , 2013; Vicente-Serran o et al., 2013). Meanwhile , the larger
positive Rmax-cml was also obser ved in regions whe re annual SPEI
decreased during the period of 1982–2015 (Figure 7d), suggesting
that increased water loss exacerbated its influence on EOS, and
theweakerimpactofdroughtcouldbe attributed torelievedwater
stress.Fromthe viewpointofaccumulated time scale, EOS tended
torespondtoSPEIatshortertimescalesindrierregions(Figure7a)
probablydue to theirquick response to limitedwater in water-de-
ficient re gions and the refore mitig ate drought-induced d amage by
meansofvariousphysiologicaladaptationsandfunctionalstrategies
(Chaves et al. , 2003; Dorma n et al., 2013; Vicente-Ser rano et al.,
2013).
4.2 | The lagged effect of drought on EOS
Inthis study,we found that46.2% of the vegetated lands showed
certainlaggedeffects,withtheRmax-lagbetweenEOSandSPEIfrom
antecedent2ndto12thmonths.TheeffectofdroughtonEOSwas
mainly occ urred at short t ime scales withi n 6months, which fur-
ther emphasized that EOS usually responds to shor t-termdrought.
Especially,thepredominant 3 laggedmonths indicate thatdrought
that happ ened 2month s before EOS had th e stronges t impact on
EOS,consistentwiththetime-lageffectofprecipitation(Congetal.,
2017;Liu, Fu,Zhu,etal.,2016b).Biologically,wateravailabilityhas
influenceonconcurrentstageofvegetation'slifecycle,andthenext
stageiscloselyconnectedwiththepreviousones,andconsequently,
thewateravailabilityduring the previousstageshowed indirectef-
fectonthenextstageofvegetationdevelopment.Hence,theavail-
ablewaterduringthepreceding monthsprobablyhaslaggedef fect
onautumnphenology.
Similar tothecumulativeeffect,thelaggedeffec tof droughton
EOSwasapparentlydifferentamongbiomesespeciallybetweenfor-
ests (i.e., TBMF, TCF,andBF) andgrasslands, savannas, andshrubs
(i.e., MGS, DXS,andTGSS).Ingrasslands,savannas,andshrubs,the
laggedeffectpredominatedat3laggedtimescale,inlinewithprevi-
ousresultsshowingcumulativeandlaggedeffectsofprecipitationon
plants based on the 3-month StandardizedPrecipitation Index (Ji &
Peters,2003).Conversely,inforest s,thelaggedeffectsofdroughton
EOSwerem or ec om pl ic at ed an da lm os tu ni fo rm ly di st ributedate ac h
laggedmonth.Thediffe renceoflagge def fectbet weenthes ebi omes
mayberelatedtothespecies-specificsensitivit ytodroughtanddis-
tinctive local e nvironments (Anderson et al., 2010; D u, He, Yang,
Chen,&Zhu,2014;Wuetal.,2015).Consideringthedifferentwater
bal an cewhenEOSocc ur re da crossbi om es ,d roughts ho wedstronger
FIGURE 12 Distributionofthe
laggedtimescales(a,b)andthemean
Rmax-lagbetweenEOSandSt andardized
Precipitation–EvapotranspirationIndex
(SPEI)(c,d)alongthewaterbalance
gradients.Thewaterbalancegradients
areindicatedbythemeanannualSPEI
(left)andtheslopeofannualSPEI(right).
Thesolidanddashlinesarethelinear
fittedcurveandtheconfidencelevelfor
curves(95%),respectively,whenthefitis
significantatp<0.05
––
––––
––––0.80.6 0.40.2 0.00.2 0.40.6 0.8
5.0
5.5
6.0
6.5
7.0
0.06 0.04 0.02 0.00 0.02 0.04 0.06
5.0
5.5
6.0
6.5
7.0
0.80.6 0.40.2 0.00.2 0.40.6 0.8
0.45
0.40
0.40
0.45
0.50
0.55
0.06 0.04 0.02 0.00 0.02 0.04 0.06
0.45
0.40
0.40
0.45
0.50
0.55
Mean Rmax-lag
Mean annualSPEI
(a)
Mean Rmax-lag
Slopeofannual SPEI
(b)
Rmax>0:y=0.006x–0.415
Rmax<0:y=–0.031x+0.424
y=–0.161x+5.986
R2=0.15, p=0.21
Lagged months
Mean annual SPEI
(c)
R2=0.76, p<0.05
R2=0.34, p<0.05
Rmax>0:y=0.139x–0.416
Rmax<0:y=–0.614x+0.428
y=9.795x+5.881
R2=0.92, p<0.05
(d)
Lageed months
Slopeofannual SPEI
R2=0.43, p<0.05
R2=0.67, p<0.05
12 
|
   PENG Et al.
laggedeffe ct sonEOSindrierbio mes(e.g.,MFWSa ndMGS),whileit
hadweakercontrolinmoisterbiomes(e.g.,BF)(Figure11).
Underthehydrologicalconditions,thegeneralpatternoflagged
effectis similarto thecumulativeeffect.Forexample, droughthad
strongerlaggedeffectsonEOSindrierregionsthanwetterregions,
reflec ted by both posi tive and negat ive Rmax-lag(F igure 12a). From
theperspectiveoflaggedtimescale,clearpatternsthatEOSusually
respondstodrought at longer lagged monthsindrier regionswere
recognized,but respondstodroughtmorequicklywhenexperienc-
ingwaterloss.
Overall , at both the biome level a nd water balance level , the
lag gede ffectofd ro ug htonEOSh asasimi la rpat te rnwiththecumu-
lativeeffect.However,theaveragetimescalesoflaggedeffectwere
1monthlongerthanthe cumulativeeffect(Figure7andFigure12).
It confirm ed our assum ption that EOS was n ot only influe nced by
droughtoftheEOSmonthbutalsoaffectedbythelegacyofdrought
during earlier months. Moreover, the proportions of the maximum
correlat ion betwee n SPEI and EOS in fores ted lands were sm aller
than tho se in the grass lands, sava nnas, and shr ubs both in lag ged
andcumulativeef fect s(Figure 5andFigure 10),indicatingthatau-
tumnphenologyofforest shasstrongerresistancetowaterstress.
Additionally, it should be noted that SPEI is the representa-
tive of climat ic water balan ce between th e precipita tion and PET.
Therefo re, both precip itation and PE T contribute to t he status of
SPEI,consequentlyaffectingtherelationshipbetweenSPEIandEOS.
Studies have confirmed thatincreasedevapotranspiration not only
aggravatesthearidit yinareas with lower precipitation, it mayalso
leadtodroughtinregionswithsufficientandabundantprecipitation
(Cook, Sm erdon, Seage r, & C oats, 2014). Altho ugh SPEI respond s
theoreticallyequaltoprecipitationandevapotranspiration,thecon-
tributionofthesetwofactorstodrought iscomplicatedand varies
withregions(Vicente-Serrano, Schrier,Beguería, Azorin-Molina, &
Lopez-Moreno, 2015). According to the Penman–Monteith equa-
tion, the calculation of evap otranspiration u sed in SPEI database
involves various climatic parameters, such as temperature, relative
humidity,and insolation (Allen etal., 1998).Therefore,theimpacts
of drought on EOS c ould be more com plex due to the v arious in-
fluentialfactors(e.g.precipitation,evapotranspiration,temperature,
andinsolation),probablyrequiringmoreresearchontheinteractions
and mechanisms in thefuture.Moreover, the quantitative cumula-
tive and lagged effects of droughton EOS (e.g.,the dominant 1–4
and2–6months,respectively)provideanalternativetobetter pre-
dict autumnphenological datesbyincorporating theSPEIdatasets
atthe dominanttimescalesintoaphenologicalmodel,whichcould
furt her benefit t he modeling an d evaluating of eco system carb on
flux by using accuratelypredicted autumnphenology andadvance
ourunderstandingofthevegetation–climateinteractions.
ACKNOWLEDGMENTS
ThisworkwasfundedbytheStrategicPriorityResearchProgramof
theChineseAcademyofSciences(XDA19040103),NationalNatural
Science Foundation of China (41871225), and the Key Research
ProgramofFrontierSciences,CAS(QYZDB-SSW-DQC011).
ORCID
Chaoyang Wu https://orcid.org/0000-0001-6163-8209
Alemu Gonsamo https://orcid.org/0000-0002-2461-618X
REFERENCES
Allen,R.G.,Pereir a,L.S.,Raes,D.,&Smith,M.(1998).Crop evapotranspi-
ration: Guidelines for computing crop water requirements. Irrigation and
drainage paper no 56.Rome,Italy:FoodandAgricultureOrganization
oftheUnitedNations(FAO)
Anderson,L.O., Malhi,Y.,Aragão,L .E. O.C.,Ladle,R .,Arai,E .,Barbier,
N., & Phill ips, O. (2010). Remote s ensing detec tion of droug hts in
Amazonianforestcanopies.New Phytologist,187,733–750.https://
doi.org/10.1111/j.1469-8137.2010.03355.x
Balzarolo, M., Vicca,S., Nguy-Rober tson, A. L., Bonal, D., Elbers, J.A.,
Fu,Y.H.,…Veroustr aete, F.(2016).Matching thephenology ofNet
EcosystemExchangeandvegetationindicesestimatedwithMODIS
andFLUXNET in-situ observations. Remote Sensing of Environment,
174,290–300.https://doi.org/10.1016/j.rse.2015.12.017
Beguería, S., V icenteserrano, S. M., & A ngulomartínez, M. (2010). A
multiscalar global drought dataset: The SPEIbase: A new gridded
produc tfor the analysis of drought variabilityand impac ts. Bulletin
of the American Meteorological Society, 91, 1351–1356 . https://doi.
org /10.1175/2010 BAMS2988.1
Bin,H.E.,Huang,L.,Chen ,Z.Y.,&Wang,H .Y.(2018).Weakeningsensi-
tivityofglobalvegetationtolong-termdroughts.Science China Ear th
Sciences,61,60–70.https://doi.org/10.1007/s11430-016-9119-8
Buitenwerf,R .,Rose,L., &Higgins,S. I. (2015). Threedec ades ofmulti-
dimensionalchangeingloballeafphenology.Nature Climate Change,
5,364–368.https://doi.org/10.1038/nclimate2533
Chaves,M.M.,Maroco,J.P.,&Pereira,J.S.(2003).Under standingplant
respon ses to drought—From genes t o the whole plant . Functional
Plant Biology,30,239–264.https://doi.org/10.1071/FP02076
Chen, B.,Xu ,G., Coops, N. C.,Ciais, P.,Innes, J. L ., Wang, G.,…Liu, Y.
(2014).Changesinvegetationphotosyntheticactivitytrendsacross
the Asia-Pacificregion over the last three decades. Remote Sensing
of Environment, 144, 28–41. https://doi.org/10.1016/j.rse.2013.
12.018
Chen, J., Jönsson, P.,Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L.
(2004). A simple method for recons truc ting a high-quality NDVI
time-series dat a set based on the Savitzk y-Golay filter. Remote
Sensing of Environment, 91, 332–344 . ht tps ://doi.org/10.1016/j .
rse.2004.03.014
Ciais, P.H.,Reichstein, M., Viovy,N ., Granier,A ., Ogée, J.,Allard, V., …
Valentini,R . (2005). Europe-wide reductionin primary productiv-
ity caused bythe heat and drought in 2003. Nature,437,529–533.
https://doi.org/10.1038/nature03972
C o ng , N . , S h e n , M . ,& P i a o , S .( 2 0 1 7 ). S p a t i a l v ar i a t i o n s i nr e s p o n s e s o fv e g -
etationautumnphenolog ytoclimatechangeontheTibetanPlateau.
Journal of Plant Ecology, 10, 744 –752 . http s://doi .org/10 .1093/jpe /
rtw084
Cook,B.I.,Smerdon,J.E.,Seager,R.,&Coat s,S.(2014).Globalwarming
and21stcentur ydrying.Climate Dynamics,43, 2607–2627. ht tps://
doi.org/10.10 07/s00 382- 014-2075-y
Cui, T., Mart z, L., & Gu o, X. (2017). Gr assland phe nology re sponse to
droughtintheCanadianPrairies.Remote Sensing,9, 1–21.htt ps ://doi .
org/10.3390/rs9121258
    
|
 13
PENG Et al .
Dai, A. (2011). Drought under global warming: A review. Wiley
Interdisciplinary Reviews: Climate Change, 2, 45–65. https://doi.
org /10.1002/w cc. 81
Dannenberg, M. P.,Song,C., Hwang,T., &Wise, E. K. (2015). Empirical
evidenceofEl Niño-SouthernOscillationinfluenceon landsurface
phenol ogy and prod uctivit y in the wester n United States . Remote
Sensing of Environment, 159, 167–180. https://doi.org/10.1016/j.
rse.2014.11.026
Debussche, M., Garnier, E., & Thompson, J. D. (2015). Exploring
the causes of variation in phenology and morphology in
Mediterranean geophy tes: A genus-wide study of Cyclamen.
Botanical Journal of the Linnean Society, 145, 469–48 4. https://doi.
org /10.1111/j .1095-8 33 9.20 0 4. 00 298.x
Delpie rre, N., Duf rêne, E., S oudani, K ., Ulrich, E ., Cecchini , S., Boé, J.,
& François, C. (20 09). Modelling interannual and spatial variabil-
ity of lea f senescence f or three deci duous tree sp ecies in Franc e.
Agricultural and Forest Meteorology, 149, 938–948. https://doi.
org/10.1016/j.agrformet.2008.11.014
Dodd, M. B., Lauenroth, W. K., & Welker, J. M. (1998). Dif ferential
water resource useby herbaceous and woodyplant life-forms in a
short grass steppe community.Oecologia,117,50 4–512.https://doi.
org/10.1007/s004420050686
D'Ora ngeville, L ., Maxwell , J., Kneesh aw,D., P ederson, N ., Duches ne,
L.,Logan,T.,…Phillips,R.P.(2018).Droughttimingandlocalclimate
determi ne the sens itivit y of easter n tempera te forest s to drought .
Global Change Biology, 24, 2339–23 51. https: //doi.org/10 .1111/
gcb.140 96
Dorji,T.,Totland,O.,Moe,S.R.,Hopping,K.A.,Pan,J.B.,&Klein,J.A.
(2013).Plantfunctionaltraits mediatereproductivephenologyand
success in response to experimental warming and snow addition in
Tibet.Global Change Biology,19, 459– 472. h tt ps://do i.or g/10 .1111/
gcb.12059
Dorman , M., Svoray, T., Perevolotsk y, A., & Sar ris, D. (2013). Forest
performance during two consecutive drought periods: Diverging
long-termtrendsandshort-termresponsesalongaclimaticgradient.
Forest Ecology and Management,310,1–9.htt ps: //doi.or g/10.1016/j.
foreco.2013.08.009
Du,J.,He,Z.,Yang, J.,Chen, L.,&Zhu, X.(2014).Detectingtheef fect s
of climate change on canopy phenolog y in coniferous forests in
semi-aridmountain regionsof China.International Journal of Remote
Sensing,35,6490–6507.https://doi.org/10.1080/01431161.2014.95
5146
Elmore, A . J., Guinn , S. M., Minsl ey,B. J ., & Richards on, A. D. (2012).
Lands cape control s on the timing of sp ring, autum n, and growing
season length in mid-Atlantic forests. Global Change Biology, 18,
656– 674.https://doi .org/10.1111/j.1365 -2486. 2011 .0 2521 .x
Estre lla, N., & Menzel , A. (2006). Re sponses of leaf col ouring in four
deciduoustree speciestoclimate and weather inGermany.Cli mate
Research,32,253–267.https://doi.org/10.3354/cr032253
Fan, Y., Miguez-Ma cho, G., Job bágy, E. G., Jac kson, R. B ., & Otero-
Casal, C. (2017). Hydrologic regulation of plant rooting depth.
Proceedi ngs of the National Academy of Sciences of the United
States of America, 114, 10572–10577. ht tps ://doi.org/10.1073/
pna s.171 2381114
Fensham,R.J.,Fairfax,R.J.,&Ward,D.P.(2009).Drought-inducedtree
death in s avanna. Global Change Biology, 15, 380–387. https://doi.
org /10.1111/j .136 5-2486.200 8. 01718.x
Forkel, M., Migliavacca, M., Reichstein, M., Schaphoff, S., Thonicke,
K., Thurner, M., … Carvalhais, N. (2014). Identifying controls on
vegetation greenness phenology through model-data integration.
Biogeosciences Discussions,11,7025–7050.https://doi.org/10.5194/
bg-11-7025-2014
Forkel, M.,Migliavacca, M.,Thonicke,K., Reichstein,M., Schaphoff,S.,
Weber, U., & Car valhais, N. (2 015). Codominant w ater control on
globalinterannual variability and trendsinland surfacephenology
and greenness. Global Change Biology, 21, 3414–3435. htt ps://doi.
org /10.1111/gcb.12 950
Ganguly,S.,Friedl, M.A., Tan, B., Zhang, X ., & Verma, M.(2010). Land
surfacephenologyfromMODIS:CharacterizationoftheCollection
5globallandcoverdynamicsproduct.Remote Sensing of Environment,
114,1805–1816.https://doi.org/10.1016/j.rse.2010.04.0 05
Garonna,I.,De,J. R.,& Schaepman, M. E. (2016).Variabilit yandevolu-
tion of global land sur face phenology over the past three decades
(1982–2012). Global Change Biology, 22, 1456–1468 . ht tps: //doi.
org /10.1111/gcb.13168
Ge,Q.,Wang,H .,Rutishauser,T.,&Dai,J.(2015).Phenologicalresponse
toclimate changein China: Ameta-analysis.Global Change Biology,
21,265–274.https://doi.org/10.1111/gcb.12648
Gonsa mo, A., Che n, J. M., & Ooi, Y. W. (2018). Peak se ason plant ac-
tivity shifttowards spring isreflec ted by increasing carbon uptake
byextratropicalecosystems. Global Change Biology,24, 2117–2128.
https ://doi.or g/10.1111/gcb.140 01
Gord o,O.,&Sanz,J.J.(2010).Impactofclimatechangeonplan tphe nol-
ogyinMediterranean ecosystems.Global Change Biology,16, 10 82–
1106.https://doi.org/10.1111/j.1365-2486.2009.02084.x
Huang,C.Y.,Asner,G.P.,Barger,N.N.,Neff,J.C.,&Floyd,M.L.(2010).
Regionalabovegroundlivecarbonlossesduetodrought-inducedtree
diebackinpinon-juniperecosystems.Remote Sensing of Environment,
114,1471–1479.https://doi.org/10.1016/j.rse.2010.02.003
Huang, L.,He,B., Han, L.,Liu,J.,Wang, H., & Chen, Z. (2017).A global
examina tion of the re sponse of eco system wa ter-use effic iency to
droughtbasedonMODISdata.Science of the Total Environment,6 01–
602,1097–1107.https://doi.org/10.1016/j.scitotenv.2017.05.084
Huang, M . T.,Wang, X.H., Keenan, T.F.,& Piao, S. L.(2018). Drought
timing influencesthelegacy oftreegrowth recovery.Global Change
Biology,24,3546–3559.https://doi.org/10.1111/gcb.14294
Jeong, S . J., Ho, C. H., G im, H. J., & Brown, M . E. (2011). Phenolog y
shift s at start vs. end of growing season in temperate vege-
tation over the Nor ther n Hemisp here for the period 1982–
2008 . Global Change Biology, 17, 2385–2399. https://doi.
org /10.1111/j .136 5-2486.2011. 023 97.x
Ji, L., & Peters,A. J. (20 03). Assessing vegetation response to drought
in the nor thern G reat Plai ns using veget ation an d drought in dices.
Remote Sensing of Environment,87, 85–98. https://doi.org/10.1016/
S0034-4257(03)00174-3
Kang,W.,Wang,T.,&Liu,S.(2018).Theresponseofvegetationphenology
andproductivit ytodroughtinsemi-aridregionsof Northern China.
Remote Sensing,10,1–15.https://doi.org/10.3390/rs10050727
Keskitalo,J.,Gustaf,B.,Per,G.M.,&Stefan,J.(2005).Acellulartimeta-
bleofautumnsenescence.Plant Physiology,139,1635–1648.https://
doi.org/10.1104/pp.105.066845
Khorsand,R.R.,Oberbauer,S.F.,Starr,G.,Parker,L.P.I.,Pop,E.,Ahlquist,
L.,&Baldwin ,T.(2016).Plantphenologicalresponsestoalong-term
experimentalextension of growing season and soil warming inthe
tussock tundra of Alaska. Global Change Biology, 21, 4520–4532.
https ://doi.or g/10.1111/gcb.130 40
Knapp, A . K., & Smit h, M. D. (2001). Var iation amon g biomes in tem-
poral d ynamics of aboveg round primar y productio n. Science, 291,
481–484.https://doi.org/10.1126/science.291.5503.481
Kong,D., Qiang,Z.,Singh,V.P.,&Shi,P.(2016).Seasonalvegetationre-
sponse to climatechange in the northernhemisphere (1982–2013).
Global and Planetary Change, 148 , 1–8. https://doi.org/10.1016/j.
gloplacha.2016.10.020
Li, P., Peng, C. , Wang, M., Luo , Y.,Li , M., Zhang , K., … Zhu, Q. ( 2018).
Dynamicsofvegetationautumnphenologyanditsresponsetomul-
tiple environmental factors from 1982to2012 on Qinghai-Tibetan
PlateauinChina.Scien ce of the Total Environ ment,637–638,855–86 4.
https://doi.org/10.1016/j.scitotenv.2018.05.031
Liu, Q., Fu, Y. H., Zeng, Z., Huang, M., Li, X., & Piao, S. (2016a).
Temperature, precipitation, and insolation effects on autumn
14 
|
   PENG Et al.
vegetationphenologyintemperateChina.Global Change Biology,22,
64 4–655.ht tp s://doi.o rg /10.1111 /gcb .13081
Liu, Q., Fu, Y.H., Zhu, Z.,Liu, Y.,Liu, Z., Huang, M.,… Piao, S. (2016b).
DelayedautumnphenologyintheNorthernHemisphereisrelatedto
changeinbothclimateandspringphenology.Global Change Biology,
22,370 2–3711.ht tps: //doi.org/10.1111/gc b.13 311
Ma,Z.,Guo,D.,Xu,X.,Lu,M.,Bardgett,R.D.,Eissenstat,D.M.,…Hedin,
L. O. (2018). Evolutionar y history resolves global organization of
root func tional t raits . Nature, 555, 94–97. htt ps://doi. org /10.1038/
nature25783
Martin-Benito, D., Beeckman, H ., & Cañellas, I. (2013). Influence of
drought on tree ringsandtracheidfeatures of Pinus nigra and Pinus
sylvestrisinamesicMediterraneanforest.European Journal of Forest
Research,132,33–45.ht tp s://doi.org /10.10 07/s10342-012-0652-3
Martínez-Vilalt a,J.,&Lloret,F.(2016).Drought-inducedvegetationshifts
in terrestrial e cosystems: The ke y role of regenerati on dynamics.
Global and Planetary Change,144 ,94–108.ht tps://doi.o rg/10.1016/j.
gloplacha.2016.07.009
Montserratmartí,G ., Camarero, J. J., Palacio,S., Pérezrontomé,C ., Milla,
R., Alb uixech, J. , & Maestro , M. (2009). S ummer-drough t constrai ns
the ph enolog yan dg row thoftwoco existingM edite rr an ea noakswi th
contrastin gle afhab it:Im plicati onsforth eirpe rsisten cea ndrep ro duc-
tion.Tre es ,23,787–799.https://doi.org/10.1007/s00468-009-0320-5
Olson, D. M ., Dinerstein, E., Wik ramanayake, E. D., Burgess, N.
D., Powell, G . V. N., Under wood, E . C., … Kassem, K . R. (2001).
Terrestrial ecoregions of the world: A new map of life on earth.
Bioscience,51 ,933–938.https://doi.org/10.16 41/0006-3568(20 01)
051[0933:TEOTWA]2.0.CO;2
Pan,N.,Feng,X.,Fu,B.,Wang,S.,Ji,F.,&Pan,S.(2018).Increasingglobal
vegetationbrowning hiddenin overallvegetationgre ening:Insights
fromtime-varyingtrends.Remote Sensing of Environment,214,59–72.
https://doi.org/10.1016/j.rse.2018.05.018
Pastor-Guzman,J.,Dash,J.,&Atkinson,P.M.(2018).Remotesensingof
mangroveforest phenology and its environmental drivers.Re mote
Sensing of Environment, 205, 71–84. https://doi.org/10.1016/j.
r se . 2 01 7.1 1. 0 0 9
Piao, S., Cui,M., Chen, A., Wang,X., Ciais, P.,Liu,J., &Tang,Y.(2011).
Altitudeandtemperaturedependenceofchangein thespringveg-
etation green-up date from 1982 to 2006 in the Qinghai-Xizang
Plateau.Agricultural and Forest Meteorology,151 ,159 9–16 0 8. htt p s: //
doi.org/10.1016/j.agrformet.2011.06.016
Piao, S., Fang, J., Zhou, L., Philippe, C., & Zhu, B. (20 06).
Variations in satellite-derived phenology in China's temper-
ate vegetation. Global Change Biology, 12, 672–685. https://doi.
org /10.1111/j .136 5-2486.200 6. 0112 3. x
Piao, S., Tan, K., Nan, H., Ciais,P.,Fang, J.,Wang, T., … Zhu, B.(2012).
Impacts ofclimate andCO2changes on thevegetationgrowthand
carbon balance of Qinghai-Tibetan grasslands over the past five
decades. Global and Planetary Change, 98–99, 73–80. https://doi.
org/10.1016/j.gloplacha.2012.08.009
Richardson,A.D., Keenan,T.F.,Migliavacca,M.,Ryu,Y.,Sonnentag,O.,
&Toomey,M.(2013).Climate change,phenology,andphenological
control of ve getatio nf eedbac ks to the clim ate syste m. Agricultural
and Forest Meteorology, 169, 156–173. ht tp s://doi .or g/10.1016/j.
agrformet.2012.09.012
Schut,A.G .T.,Ivits,E.,Conijn,J.G.,tenBrink,B.,&Fensholt,R .(2015).
Trends in globa l vegetation a ctivit y and climatic d rivers ind icate a
decoupled response to climate change. Plos One, 10, 1–21.https://
doi.org/10.1371/journal.pone.0138013
Seyednasrollah,B.,Swenson,J.J.,Domec,J.-C.,&Clark,J.S.(2018).Leaf
phenology paradox:W hywarming mattersmostwhere itisalready
warm. Remote Sensing of Environment, 209, 4 46–455. ht tps://doi.
org /10.1016/j.r se.2018.02.059
Shen, M ., Tang, Y.,C hen, J., Zhu , X., & Zheng , Y.(20 11).Inf luences of
temperature and precipitationbeforethegrowing seasononspring
phenology ingrasslands ofthecentral and eastern Qinghai-Tibetan
Plateau.Agricultural and Forest Meteorology,1 51,1711–1722.https://
doi.org/10.1016/j.agrformet.2011.07.003
Tao, F., Yokozawa, M., Zhang, Z., Hayashi, Y., & Ishigooka, Y.
(2008). Land surface phenology dynamic s and climate varia-
tions in the Nort h East China Transec t (NECT ), 1982–2000.
International Journal of Remote Sensing,29, 5461–5478. https://doi.
org/10.1080/01431160801908103
Tian, F., Wign eron, J. P., Ciais, P., Chave, J., Oge e, J., Penuela s, J., …
F en s h o l t , R . ( 2 01 8 ) . Co u p l i n g o fe c o s y s t e m - sc a l e p l a n t wa t e r s t o r a ge 
andleafphenolog yobservedbysatellite.Nature Ecolog y & Evolution,
2,1428–1435.https://doi.org/10.1038/s41559-018-0630 -3
Vicenteserrano,S.M.,Beguería,S.,&Lópezmoreno,J.I.(2010).Amulti-
scalar drought indexsensitiveto global warming: The Standardized
PrecipitationEvapotranspirationIndex.Journal of Climate,23,1696–
1718. https://doi.or g/10 .1175/20 09JCLI290 9.1
Vicente-Serrano, S. M., Beguería, S., Lorenzo-L acruz, J., Camarero, J.
J., López-Moreno, J. I., Azorin-Molina, C., … Sanchez-Lorenzo, A.
(2012).Performance of drought indicesforecological,agricultural,
andhydrologicalapplications.Earth Interactio ns,16,1–27.ht t ps ://doi .
org /10.1175/2012EI 00 0 43 4.1
Vicente-Serrano,S.m.,Gouveia,C.,Camarero,J.j.,Begueria,S.,Trigo,R.,
Lopez-Moreno,J.i.,…Sanchez-Lorenzo,A .(2013).Responseofveg-
etationtodroughttime-scalesacrossgloballandbiomes.Proceedings
of the Nation al Acade my of Sciences of the United States of America,
110,52–57.https://doi.org/10 .1073/pn as.1207068110
Vicente -Serra no, S. M., Schrie r, G . V. D. , Beguería, S., A zorin-Molina ,
C., & Lop ez-Moren o, J. I. (2015). Co ntribut ion of preci pitatio n and
referenceevapotranspirationtodroughtindicesunderdifferentcli-
mates. Journal of Hydrology, 526, 42–5 4. http s://d oi.org /10.1016/j.
jhydrol.2014.11.025
Wendler, G., C onner, J., Moore, B., S hulski, M., & Stu efer, M. (2011).
Climatol ogy of Alask an wildfire s with specia l emphasis on t he ex-
treme year of 20 04. Theoretical and Applied Climatology,10 4, 459–
472.https://doi.org/10.1007/s00704-010-0357-9
White,M.A .,deBEURS,K .M.,Didan,K .,Inouye, D.W.,Richardson,A.
D.,Jensen,O. P.,…Lauenroth,W.K .(20 09).Intercomparison ,inter-
pretation,andassessmentofspringphenolog yinNor thAmericaes-
timated from remote sensingfor1982–2006.Global Change Biology,
15,2335–2359.https://doi.org/10.1111/j.1365-2486.2009.01910.x
Whi te, M.A .,Th ornton,P.E.,&R unning,S .W.(1997).Aco ntine ntalp he-
nologymodelformonitoringvegetationresponsestointerannualcli-
matic variability.Global Biogeochemical Cycles,11,217–234.ht tps://
doi.org/10.1029/97GB00330
Wilhite,D. A.,& Glantz, M.H.(1985). Under standing the droughtphe-
nomenon:Theroleofdefinitions.Water International,10, 111–120. 
https://doi.org/10.1080/02508068508686328
Wu,C.,Chen,J.M.,Black, T.A., Price,D.T.,Kurz,W.A.,Desai,A.R.,…
Bo hr er,G .( 20 13).I ntera nnu al va ria bi li t yo fn et ec os yst empro du c ti v-
ityinforestsisexplainedbycarbonfluxphenologyinautumn.Global
Ecology and Biogeography, 22, 994–1006 . ht tps: //doi.org/10 .1111/
geb.12044
Wu, C., Gough, C . M., Chen, J. M.,& Gonsamo, A.(2013). Evidence of
autumn phenologycontrolonannualnetecosystemproductivityin
twotemper atedeciduousforest s.Ecological Engineering,60,88–95.
https://doi.org/10.1016/j.ecoleng.2013.07.019
Wu,C .,Peng, D.,S oudani,K .,Soudani,K .,Siebicke,L .,G ough,C.M.,…
Ge,Q.(2017).L andsurfacephenolog yderivedfromnormalizeddif-
ferencevegetationindex(NDVI)atglobalFLUXNETsites.Agricultural
and Forest Meteorology, 233, 171–182. htt ps://doi.org /10.1016/j.
agr for met.2016.11.193
Wu,D.,Zhao,X.,Liang,S.,Zhou,T.,Huang,K.,Tang,B.,&Zhao,W.(2015).
Time-lag effects ofglobal vegetation responses to climate change.
Global Change Biology, 21, 3520–3531 . ht tps://doi.org /10.1111/
gcb.12945
    
|
 15
PENG Et al .
Wu, X., Liu, H., Li, X., Ciais, P., Babst, F., Guo, W., … Ma, Y. (2018).
Diffe rentiating drou ght legacy eff ects on veget ation growth over
the temperate Northern Hemisphere. Global Change Biology, 24,
504–516.https://doi.org/10.1111/gcb.13920
Xie,Y.,Wang,X.Jr,&Silander,J.A. (2015).Deciduousforestresponses
to temper ature, precip itation, and dr ought imply comp lex climate
change impacts. Proceedings of the National Academy of Sciences
of the United States of America, 112, 13585–13590. https://doi.
org /10.1073/p nas.1509 99111 2
Xie, Y., Wang, X ., Wilson, A . M. Jr, & Siland er,J. A . (2018). Pred icting
autumnphenology:Howdeciduoustreespeciesrespondtoweather
stressors. Agricultural and Forest Meteorology, 250–251, 127–137.
htt ps://doi.org/10.1016/j. agrfo rmet. 2017.12.259
Yan,W.,Zhong,Y.,&Shangguan,Z.(2017).Responsesofdiffe rentphys-
iologic alparameterthresholdsto soilwateravailability infourplant
speciesduringprolongeddrought.Agricultural and Forest Meteorology,
247,311–319.https://doi.org/10.1016/j.agrformet.2017.08.017
Yang, Y., Guan, H. , Shen, M., L iang, W., & Jiang , L. (2015). Ch anges in
autumn vegetationdormancy onset date and the climatecontrols
across te mperate ecos ystems in Chin a from 1982 to 2010. Global
Change Biology,21,652665.https://doi.org/10.1111/gcb.12778
Zhang, Q., Kong, D., Singh, V.P.,&Shi, P.(2017). Resp onse of vegeta-
tionto different time-scales droughtacross China: Spatiotemporal
patterns,causesandimplications.Global and Planetary Change,152,
1–11.https://doi.org/10.1016/j.gloplacha.2017.02.008
Zhang, X ., Friedl, M . A., Sc haaf, C. B., Str ahler, A. H ., Hodges, J . C. F.,
Gao,F.,… Huete,A.(2003).Monitoringvegetation phenologyusing
MODIS. Remote Sensing of Environment, 84, 471–475. ht tp s://doi .
org/10.1016/S0034- 4257(02)0 0135-9
Zhang,X .,Liu,L .,Liu,Y.,Jayavelu,S.,Wang,J.,Moon,M.,…Schaaf,C.B.
(2018).GenerationandevaluationoftheVIIRSlandsurfacephenol-
ogy product.Remote Sensing of Environment,216, 2 12–2 29.  ht tp s: //
doi.org/10.1016/j.rse.2018.06.047
Zhang,Y.,Song,C.,Band,L.E.,Sun,G.,&Li,J.(2017).Reanalysisofglobal
terrestrial vegetation trends from MODIS products: B rowning or
greening? Remote Sensing of Environment,191 ,145–155.https://doi.
org/10.1016/j.rse.2016.12.018
Zheng, C., Tang,X.,Gu,Q.,Wang ,T.,Wei,J., Song,L.,& Ma,M.(2018).
Climatic anomalyand its impact on vegetation phenology, carbon
seques tration and w ater-use efficie ncy at a humid tem perate for-
est. Journal of Hyd rology, 565, 150–159. htt ps://doi.org/10.1016/j.
jhydrol.2018.08.012
Z h u , W. , J i a n g , N . , C h e n , G . , Z h a n g , D . , Z h e n g , Z . , & F a n , D. ( 2 0 1 7 ) . D i v e r g e n t 
shi ftsandre sp on se sof plantau tu mnphenolo gytoclima techa ng eon
theQinghai-TibetanPlateau.Agricultural and Forest Meteorology,239,
166–175.https://doi.org/10.1016/j.agrformet.2017.03.013
Zhu,W.Q.,Zheng,Z.T.,Jiang,N.,&Zhang,D.H.(2018).Acomparative
analysisofthe spatio-tempor al variation in thephenologies of two
herbac eous species a nd associated c limatic drivi ng factors o n the
Tibet an Plateau . Agricultural and Forest Meteorology, 248, 177–184.
https://doi.org/10.1016/j.agrformet.2017.09.021
Zu,J.,Zhang,Y.,Huang,K.,Liu,Y.,Chen,N.,&Cong,N.(2018).Biological
andclimatefactors co-regulatedspatial-temporaldynamicsofveg-
etation autumn phenology on the Tibetan Plateau.International
Journal of Applied Earth Observation and Geoinformation,69,198–205.
https://doi.org/10.1016/j.jag.2018.03.006
How to cite this article:PengJ,WuC,ZhangX,WangX,
GonsamoA.Satellitedetectionofcumulativeandlagged
effectsofdroughtonautumnleafsenescenceoverthe
NorthernHemisphere.Glob Change Biol. 2019;00:1–15.
https://doi .org /10.1111/gcb.14627
... To examine the influence of drought on POG, we calculated Pearson's correlation coefficient between POG and DI/SPEI (RPOG_drought index) for each of five potential influencing periods, i.e., the current month of the multiyear average POG (M0), the 1st month before the multiyear average POG (M1), the 2nd month before the multiyear average POG (M2), the current and 1st month before the multiyear average POG (M0-1) and the current, 1st, and 2nd month before the multiyear average POG (M0-2), because plant phenology is mainly affected by droughts in the preseason 1-3 months [41]. Subsequently, the absolute values of the correlation coefficients were compared. ...
... To examine the influence of drought on POG, we calculated Pearson's correlation coefficient between POG and DI/SPEI (R POG_drought index ) for each of five potential influencing periods, i.e., the current month of the multiyear average POG (M0), the 1st month before the multiyear average POG (M1), the 2nd month before the multiyear average POG (M2), the current and 1st month before the multiyear average POG (M0-1) and the current, 1st, and 2nd month before the multiyear average POG (M0-2), because plant phenology is mainly affected by droughts in the preseason 1-3 months [41]. Subsequently, the absolute values of the correlation coefficients were compared. ...
Article
Full-text available
The peak of growing season (POG) represents the timing of the maximum capacity of vegetation photosynthesis and acts as a crucial phenological indicator for the carbon cycle in terrestrial ecosystems. However, little is known about how POG responds to extreme climate events such as drought across different biomes. Based on two drought indices, we analyzed the temporal–spatial pattern of drought and POG in China and then investigated how drought influenced the POG in different periods of the early season through correlation analysis. In general, a trend towards increased aridity and earlier POG was found in most areas. The impact of drought on POG differed among periods. On the one hand, an earlier POG enabled plants to reduce evapotranspiration and mitigate the risk of severe summer drought. On the other hand, the drought that occurred in spring impeded plant growth and caused a delay in spring phenology, thereby postponing POG. Summer drought led to an earlier POG in relatively dry biomes but inversely led to a later peak in photosynthetic activity in wetter biomes. We also observed a 1-month/2-month lagged effect of drought on POG in almost half of the areas and a 2-month/ 3-month cumulative effect of drought in the north of 50° N. These findings enhance our understanding of carbon uptake in terrestrial ecosystems by clarifying the mechanisms by which climate change impacts vegetation growth and photosynthetic activity.
... This can be attributed to changes in the spatio-temporal distribution pattern of precipitation and soil evapotranspiration resulting from global warming. Each grassland type exhibits a distinct response to climate variations Peng et al. 2019;Wen et al. 2019). Located in arid and semi-arid regions, Qinghai is prone to year-round wind erosion. ...
Article
Full-text available
Quantifying the change of drought and their driving mechanisms is essential for monitoring land surface environmental changes and for understanding the land–atmosphere interaction in the arid region. Most researches are limited to average climate change, whereas the response analysis of extreme climate, the interaction of different climate factors and human activities to changes in drought are still lacking or not comprehensively considered. Firstly, we employed the temperature vegetation dryness index (TVDI), which associates land surface temperature with vegetation cover, to explore the spatiotemporal variation of drought across seasons in Qinghai province. Then, we specifically quantify the contribution of different climate factors and human activities to surface drought. Our findings revealed that drought exhibited upchange covering 73.71% in spring, 19.32% in summer, and 89.25% in winter, while autumn witnessed an decreasing trend in TVDI, with a rate of decrease exceeding 0.005 per year. Notably, drought in the meadow region was primarily influenced by average climate change. In the shrub-tussock region, extreme climate factors predominantly affected drought during spring and winter, whereas average climate change played a greater role during summer and autumn. The sensitivity of drought to temperature was greater than precipitation during spring and autumn, whereas the reverse was observed during summer and winter. In the steppe, swamp, and desert region, drought was mainly driven by average climate change during spring but by extreme climate events during summer, autumn, and winter. Furthermore, we discovered that the interaction between any two climate factors had a stronger explanatory power for the spatial distribution of drought in the steppe and desert region. The effect of the interaction between any two environmental factors on the TVDI was greater than that of a single climate factor. In summary, our study demonstrated significant spatiotemporal variations in the response of drought to different environmental factors across various grassland types and seasons, highlighting the importance of considering the interactions between environmental factors in understanding drought dynamics.
... The drought tolerance of different flora categories is different, from grassland to cropland, to forest. This tendency could be associated with the root traits and water utilization behaviors of different flora categories (Peng et al. 2019). ...
Article
Full-text available
Since the initiation of the Grain for Green Project (GFGP) in 1999, dramatic change in vegetation status on the Loess Plateau. Spatially, geographical detector was employed to detect dominant variables influencing the spatial arrangement of normalized difference vegetation index (NDVI). Temporally, lagged or accumulated monthly precipitation, temperature and standardized precipitation evapotranspiration indices (SPEIs) sensitive to the monthly NDVI were first detected for every individual pixel, and the correlation between the NDVI and meteorological elements with time-lag effects was established a random forest model of unchanged land cover, followed by attributing impacts of climatic alterations and human interventions through residual examination across changed land cover. The findings indicate that (1) precipitation, slope, and soil dominantly influence the spatial arrangement of the NDVI. (2) Precipitation in current the month and cumulative temperatures of the previous 1–2 months steadily affect vegetation growth significantly, the optimal accumulation time interval for SPEI around 2000 are 8 months and 4 months, respectively. (3) Increases in the average NDVI within woodland and meadow vegetation on the Loess Plateau were primarily driven by climate change before 2000, accounting for 76.2%, whereas after 2000 it was dominantly driven by human activities, accounting for 64.16%.
... Previous research has indicated that the period of climate and plant changes usually falls within a monthly range; the relationship between vegetation and climate changes in season periods can be used to determine time differences or time lag. Climate variables like temperatures and precipitation have a direct impact on vegetation, which affects the timing of plants' growth and changes throughout the year (Peng et al. 2019;Zhe and Zhang 2021). Thus, delays or presentations of certain seasons can be monitored for normal conditions. ...
Article
Full-text available
It is necessary to understand vegetation evolution and its sensitivity to the global climate, particularly with regard to ecosystems and environmental balance. 25 watersheds were selected in Algeria for this study. Here, the vegetation index (NDVI) and climatic variables (precipitation and temperature) were used to verify the temporal-spatial patterns and impact of the time difference from 1981 to 2021 by applying the correlation coefficient and time delay analysis. The NDVI showed a significant decline, especially in recent years, and spatial differences in NDVI in all areas of study were narrow (slope values from 0.0005 to 0.04), decrease in surface water area from year to year was observed in all regions. The vegetation index was negatively associated with low rainfall and high temperatures. The vegetation’s reaction to temperature has been greater than that too rainfall. In general, a time lag in the vegetation response was found over a time period of at least 1 month. This study provided new insights into variations in vegetation change and the importance of vegetation recovery.
Article
Drought generally causes the significant reduction of vegetation productivity. Most studies focus on the vegetation response to gradual water variabilities instead of anomalies in water availability, however, the spatiotemporal patterns of vegetation response to extreme water deficits during drought are still unclear. Here, basedon leaf area index (LAI) and solar-induced chlorophyll fluorescence (SIF), we employed coincidence analysis toidentify the susceptibility and response time of vegetation productivity to drought, and further investigated thespatiotemporal changes of them during 2001-2021 across the globe. We found stronger susceptibility and shorterresponse time both in areas occupied by more grasses and in more arid regions. Temporally, we revealed apredominately increasing susceptibility (P < 0.05) and shortening response time (P < 0.05) in drought-sensitiveregions from 2001 to 2021. These changes have been majorly attributable to the elevated atmospheric CO2,which tended to strengthen the susceptibility in areas covered by more grasses and in arid regions. Our findinghighlighted the increasing risk of decline in vegetation production under drought particular in grasslands anddrylands.
Article
Full-text available
Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth. We find that seasonal variations in plant water storage are highly synchronous with leaf phenology for the boreal and temperate forests, but asynchronous for the tropical woodlands, where the seasonal development of plant water storage lags behind leaf area by up to 180 days. Contrasting patterns of the time lag between plant water storage and terrestrial groundwater storage are also evident in these ecosystems. A comparison of the water cycle components in seasonally dry tropical woodlands highlights the buffering effect of plant water storage on the seasonal dynamics of water supply and demand. Our results offer insights into ecosystem-scale plant water relations globally and provide a basis for an improved parameterization of eco-hydrological and Earth system models.
Article
Full-text available
Changing climate, especially extreme weather event, is exerting considerable impacts on the hydrological and biogeochemical processes in forests worldwide. A deep understanding of climate change–terrestrial feedbacks is essential to predict future regional/global carbon and water budgets, which can be used to develop potential strategies for forest management. In this study, totally 11 years of eddy covariance tower measurements of CO2 and H2O fluxes, as well as the relevant environmental variables were analyzed to reveal the effects of climate anomalies on vegetation phenology, carbon sequestration and ecosystem water-use efficiency (WUE) dynamics in a humid temperate deciduous forest. Warmer spring temperatures altered the phenological phases with the green-up date advanced approximately 3.5 days per °C, and the extended growing season of about 3 days per °C, reaching the peak in 2012. Because of spring temperature anomaly, the shift from carbon source to sink occurred nearly 40 days earlier than usual. But the abnormal carbon dynamics happened during the peak growth period. Correlation analyses indicated that the amount of precipitation dominantly controlled the capacity of forest carbon sequestration (NEP) in this area. Therefore, the subsequent water scarcity owing to the extremely dry summer together with heatwave severely decreased the forest NEP by about 64.1%. Further analyses implied that the sharp reduction in gross primary production (GPP) rather than ecosystem respiration (Re) resulted to the decrease in NEP. Both GPP and evatranspiration (ET) were larger during the springtime in 2012 than those at adjacent years. But severe summer drought reduced the ecosystem WUE and yielded the lowest GPP and ET. Further work must focus on improving the recognition of forest feedback to climate systems.
Article
Full-text available
A major disturbance in nature, drought, has a significant impact on the vulnerability and resilience of semi-arid ecosystems by shifting phenology and productivity. However, due to the various disturbance mechanisms, phenology and primary productivity have remained largely ambiguous until now. This paper evaluated the spatio-temporal changes of phenology and productivity based on GIMMS NDVI3g time series data, and demonstrated the responses of vegetation phenology and productivity to drought disturbances with the standardized precipitation evapotranspiration index (SPEI) in semi-arid ecosystems of northern China. The results showed that (1): vegetation phenology exhibited dramatic spatial heterogeneity with different rates, mostly presented in the regions with high chances of land cover type variation. The delayed onset of growing season (SOS) and advanced end of growing season (EOS) occurred in Horqin Sandy Land and the eastern Ordos Plateau with a one to three days/decade (p < 0.05) rate and in the middle and east of Inner Mongolia with a two days/decade rate, respectively. Vegetation productivity presented a clear pattern: south increased and north decreased. (2) Spring drought delayed SOS in grassland, barren/sparsely vegetated land, and cropland, while autumn drought significantly advanced EOS in grassland and barren/sparsely vegetated lands. Annual drought reduced vegetation productivity and the sensitivity of productivity regarding drought disturbance was higher than that of phenology.
Article
Full-text available
Whether and how the timing of extreme events affects the direction and magnitude of legacy effects on tree growth is poorly understood. In this study, we use a global database of Ring‐Width Index (RWI) from 2500 sites to examine the impact and legacy effects (the departure of observed RWI from expected RWI) of extreme drought events during 1948‐2008, with a particular focus on the influence of drought timing. We assessed the recovery of stem radial growth in the years following severe drought events with separate groupings designed to characterize the timing of the drought. We found that legacies from extreme droughts during the dry season (DS droughts) lasted longer and had larger impacts in each of the three years post drought than those from extreme droughts during the wet season (WS droughts). At the global scale, the average integrated legacy from DS droughts (0.18) was about 9 times that from WS droughts (0.02). Site‐level comparisons also suggest stronger negative impacts or weaker positive impacts of DS droughts on tree growth than WS droughts. Our results, therefore, highlight that the timing of drought is a crucial factor determining drought impacts on tree recovery. Further increases in baseline aridity could therefore exacerbate the impact of punctuated droughts on terrestrial ecosystems. This article is protected by copyright. All rights reserved.
Article
Full-text available
Plant roots have greatly diversified in form and function since the emergence of the first land plants1,2, but the global organization of functional traits in roots remains poorly understood3,4. Here we analyse a global dataset of 10 functionally important root traits in metabolically active first-order roots, collected from 369 species distributed across the natural plant communities of 7 biomes. Our results identify a high degree of organization of root traits across species and biomes, and reveal a pattern that differs from expectations based on previous studies5,6 of leaf traits. Root diameter exerts the strongest influence on root trait variation across plant species, growth forms and biomes. Our analysis suggests that plants have evolved thinner roots since they first emerged in land ecosystems, which has enabled them to markedly improve their efficiency of soil exploration per unit of carbon invested and to reduce their dependence on symbiotic mycorrhizal fungi. We also found that diversity in root morphological traits is greatest in the tropics, where plant diversity is highest and many ancestral phylogenetic groups are preserved. Diversity in root morphology declines sharply across the sequence of tropical, temperate and desert biomes, presumably owing to changes in resource supply caused by seasonally inhospitable abiotic conditions. Our results suggest that root traits have evolved along a spectrum bounded by two contrasting strategies of root life: an ancestral ‘conservative’ strategy in which plants with thick roots depend on symbiosis with mycorrhizal fungi for soil resources and a more-derived ‘opportunistic’ strategy in which thin roots enable plants to more efficiently leverage photosynthetic carbon for soil exploration. These findings imply that innovations of belowground traits have had an important role in preparing plants to colonize new habitats, and in generating biodiversity within and across biomes.
Article
Interactions between climate and ecosystem properties that control phenological responses to climate warming and drought are poorly understood. To determine contributions from these interactions, we used space-borne remotely sensed vegetation indices to monitor leaf development across climate gradients and ecoregions in the southeastern United States. We quantified how air temperature, drought severity, and canopy thermal stress contribute to changes in leaf flushing from mountainous to coastal plain regions by developing a hierarchical state-space Bayesian model. We synthesized daily field climate data with daily vegetation indices and canopy surface temperature during spring green-up season at 59 sites in the southeastern United States between 2001 and 2012. Our results demonstrated strong interaction effects between ecosystem properties and climate variables across ecoregions. We found spring green-up is faster in the mountains, while coastal forests express a larger sensitivity to inter-annual temperature anomalies. Despite our detection of a decreasing trend in sensitivity to warming with temperature in all regions, we identified an ecosystem interaction: Deciduous dominated forests are less sensitive to warming than are those with fewer deciduous trees, likely due to the continuous presence of leaves in evergreen species throughout the season. Mountainous forest green-up is more susceptible to intensifying drought and moisture deficit, while coastal areas are relatively resilient. We found that with increasing canopy thermal stress, defined as canopy-air temperature difference, leaf development slows following dry years, and accelerates following wet years.
Article
Climate change is receiving mounting attentions from various fields and phenology is a commonly used indicator signaling vegetation responses to climate change. Previous phenology studies have mostly focused on vegetation greening-up and its climatic driving factors, while autumn phenology has been barely touched upon. In this study, vegetation phenological metrics were extracted from MODIS NDVI data and their temporal and spatial patterns were explored on the Tibetan Plateau (TP). The results showed that the start of season (SOS) has significantly earlier trend in the first decade, while the end of season (EOS) has slightly (not significant) earlier trend. In the spatial dimension, similar patterns were also identified. The SOS plays a more significant role in regulating vegetation growing season length than EOS does. The EOS and driving effects from each factor exhibited spatially heterogeneous patterns. Biological factor is the dominant factor regulating the spatial pattern of EOS, while climate factors control its inter-annual variation.
Article
Global vegetation dynamics are of critical importance for understanding changes in ecosystem structure and functioning and their responses to different natural and anthropogenic drivers. Under the background of rapid global warming, it is still unclear whether there were significant changes in the extent and intensity of global vegetation browning during the past three decades. Taking satellite-derived normalized difference vegetation index (NDVI) as the proxy of vegetation growth, we investigated spatiotemporal variances in global vegetation trends during the period 1982-2013 using the ensemble empirical mode decomposition (EEMD) method and two piecewise linear regression models. Our study suggests that increasing global vegetation browning is masked by overall vegetation greening. A > 60% increase in browning area was found during the study period, and the results consistently indicate that the expansion of browning trends has accelerated since 1994. After the late 1990s, browning trends increased in all latitudinal bands in the Northern Hemisphere. This increase was particularly pronounced in the northern mid-low latitudes, where the greening trends stalled or even reversed. Areas with browning trends increased in all land cover types, although the increase processes varied substantially. During 1982-2013, although most vegetated lands exhibited overall greening trends, greening-to-browning reversals occurred on all continents and occupied a much larger area than browning-to-greening reversals. Greening trends prevailed before the turning points, and browning trends largely expanded and enhanced thereafter. The increased browning trends resulted in a slowdown of the increase in global mean NDVI since the early 1990s. Since drought is likely the main cause of the increasing browning trends, global vegetation growth is at risk of reversal from long-term greening to long-term browning in the warmer future.
Article
Autumn phenological shifts induced by environmental change have resulted in substantial impacts on ecosystem processes. However, autumn phenology and its multiple related controlling factors have not been well studied. In this study, the spatiotemporal patterns of the end date of the vegetation growing season (EGS) and their multiple controls (climate change, summer vegetation growth and human activities) over the Qinghai-Tibetan Plateau (QTP) were investigated using the satellite-derived normalized difference vegetation index (NDVI) based on GIMMS3g datasets during 1982-2012. The results showed that there was no significant temporal trend in the EGS during the period of 1982-2012. Spatially, there was a notable advancing trend in the southwest region and a delayed trend in the other regions of the QTP during 1982-2000, and this spatial trend was reversed during 2001-2012. We found average temperature, precipitation and sunshine duration of autumn exerted positive effects on EGS on the QTP, while average temperature and sunshine duration of summer exerted negative effects. Our results indicated that vegetation growth in summer tends to induce an earlier EGS in alpine vegetation, whereas summer vegetation degradation could delay the EGS on the QTP. In contrast, moderate grazing delays vegetation browning in autumn, while overgrazing leads to advancement of grass senescence. This study improves our understanding of how multiple environmental variables jointly affect autumn phenology and highlights the importance of biotic controls for autumn phenology on the QTP.