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First it is necessary to define the underlying struc­
ture of the statistical population from which the
ecological sample of a cornmunity is derived. To
do this, we start with a definition of a community
for which a measure of species diversity is desired.

5.2 Sta te of the art

We \Vill refer to this as the ecoiogical sample in
what follows. Second, when collecting data on
species abundances within a specified ecosystém,
it is often not appropriate to assume that every
last individual of every species has been identified.
Hence, much field data are subsamples of a larger,
unknown cornmunity. We will call this the empiri­
cal sample below. Empirical samples are often used
to estimate quantities assumed to represent the
unmeasured parameters that describe the process
thought to have given rise to the ecological sample
(Green& Plotkin 2007).
No ecosystem remains nnchanged across space

and time. However, there may be ecological con­
ditions that are sufficiently similar that they may
give rise to similar levels of diversity. How is it
possible to determine whether multiple communi­
ties arrayed across space and/or time give rise to
an increase in diversity? In other words, given a
set of communities that can be sensibly aggregated
into a larger entity, is it possible to partition the
overall diversity of the aggregate into a component
due to within-community diversity and a compo­
nent attributable to between-cornmunity diversity?
The former has been termed 'a diversity' and the
latter 'f3 diversity' (Whittaker 1975;Chapter 6).Esti­
mating these diversity components in communities
that result from sorne combination of deterministic
and random processes provides a unique statistical
challenge.

One of the most conspicuous aspects of biodiver­
sity is the fact that individual organisms are orga­
nized into relatively discrete units referred to as
species. Although there is much variability in what
can be called a species, generally a species repre­
sents a distinct genetic lineage of organisms that
interact with the environment in similar ways and
are generally reproductively compatible. For both
theoretical and practical reasons, it is often desír­
able to know how many species are found in a
given region of space-time (Chapter 4) and to know
something about how abundant each species is rel­
ative to others in the same community (Chapter 9).
This relatively simple objective, however, becomes
greatly complicated because there are so many dif­
ferent ecological circumstances in which species
diversity is measured. Because of this there have
been a large number of quantities suggested as
appropriate measures of species diversity (Box5.1)
(Pielou 1975; Krebs 1989; Magurran 2004). This
plethora of indices makes it difficult to evaluate
which method is appropriate in what particular cir­
cumstances. The most commonly used indices are
used primarily because they have been used before,
and not necessarily because they provide useful
information.
In this chapter we consider the problem of

species diversity by focusing firstly on precise def­
initions of the termoWe then describe the neces­
sary statistical sampling theory that follows from
the definition. There are two different types of
sampling issues, both of which are important to
developing an understanding of species diversity.
First, there is the issue of how ecological circum­
stances act as a probabilistic 'filter' in determining
which specific species can be found in a region.

5.1 Introduction
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less diverse than their richness alone would indicate (should
a species with only one individual count towards diversity
the same as an abundant species?).

5hannon diversity (H' or OShannon) - Shannon's
information theory can be used to calculate the information
in a community as an estimate of diversity. There is a finite
population size version known as Brillouin's index
(equation 5.9, main text) which should probably be used
but usually isn't. DShannon= -¿Pi InPi

5impson diversity (1/0 or OSimpson) - Simpson
noted that D = ¿p/ gave the probability that two
individuals drawn at random from an infinite community
would belong to the same species. This has precedent in
population genetics of the probability of getting two alleles
the same. As such D is the inverse of diversity and some
form of inverse is needed to create a diversity índex.
Although variations íncludíng 1- D (related to the variance
within species and to Hurlbert's PIE below) and -ln(D)
(related to the Híll measure H2) have been used, the most
common way (e.g. MacArthur 1972) of converting
homogeneity into diversity is DSimpson= 1/D.

Hurlbert diversity (1 - PIEor OHurlbert) - Hurlbert
(1971) argued that a biologically meaningful measure of
diversity is the odds that a given interaction between two
species ís interspecific (PIE = 1- D = probability of
interspecific encounter). With a correction for finite sample
size we have DHur1bert= 1 - ¿(ni/N)[(ni - l)/(N - 1)].

Diversity numbers (OHill. a) - Hill (1973) proposed
using information-based criteria to obtain 'weighted'
counts of specíes, based on the degree of dominance. Also
see Chapter 6. The weighted counts, H ex, are obtained by
choosing an appropriate value of ex, with small ex
weíghtíng rare species most and large ex weightíng
common species most. Note that the Hill numbers are the
exponential of the Renyi entropies given in equation 5.6:
Hex = exp(R ex). This set of measures contains many
common measures as special cases. H-oo = 1/ps
(reciprocal of the proportional abundance of the rarest
species), Ha = S, H, = exp(H'), which some people have
argued should be used instead of H' (where H' is the
Shannon diversity or DShannonabove), H2 = 1/D(i.e. DSimpson
above), and Hoo = 1/CRel) (recíprocal of the Berger-Parker
index). Kempton (1979) found that ex between O and 0.5
provided the best discrimination in empírical data known to
come from different communíties.

_ [~ ex],/(,-ex)
h« - "-'Pi

Diversity is traditionally taken to be a function of both
richness and evenness, with less even communities being-

Richness (5) - Species richness: the total number of
species identified in the sample. It is among the simplest
descriptors of community structure.

Margalef diversity (SMargalef) - Margalef (Clifford &
Stephenson 1975) noted that species richness increases
with N, and in particular increases non-linearly and roughly
logarithmically with N. 5Margalef= (S - 1)/ In N

Menhinick diversity (SMenhinick) - In a similar vein
(Clifford & Stephenson 1975), Menhinick proposed
adjusting species richness by the similarly shaped square
root of N. 5Menhinick= 5/ JN

Chao estimated diversity (SChao) - Another way to
make species richness S comparable between sites with
different sample sizes N is to extrapolate to the richness of
an infinite sample. Chao (1987) proposed a simple robust
estimator for this: 5chao= S + 512/(252).

Chao estimated variance - Although not an estimate
of species richness, Chao provided an analytical formula for
the variance in 5chaothat can be used to place error bars on
5chao(5chao± 1.96J5Chaovar) and is given by
5chaovar= 52[(51/52)4/4 + (5¡f52)3 + (51/52)2/2].

11.Diversity metrics (D)

l. Richness metrics (S)

There are a number of descriptors that are based on some
concept such as evenness, diversity, or dominance that are
not derived from any probability distribution. Of course
many of the parameters from probability distributions could
fit these goals as well (Box 9.2). The notation used
throughout this section is: Ni is the abundance of the ith
species after sorting (so N1 is the abundance of the most
abundant species), S is the number of species observed,

and N is the total abundance (N = ¿~=1Ni)and Pi is the
proportion of abundance for species i(Pi = Ni/N). Si is the
number of species with an abundance i, so S1 is the number
of singletons. To provide some order, we have tried to
group indices with similar goals and to use a consistent
notation.

Number of individuals (N) - Total number of
individuals. This is another easily calculated yet powerful
descriptor. Note that in neutral theory N is often denoted
by J, but we use the more traditional N here.

Box 5.1 Measures of species diversity and eveness
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Rarity- the opposite of dominance metrics - foeus
on an assessment of rare species. Sineeabundance is
bounded at 1, rarity metrics focus on the number of
specieswith specifie abundances in contrast to
eommonness metrics which focus on the abundance of
speeifie speeies.

LogSkew (RLogskew) - Skew is the third moment of a
probability distribution, measuring asymmetry. Right skew
(positive numbers) indieates more probability on the right
(abundant) side. Left skew (negative numbers) indicates
more probability on the left side. AII species abundance
distributions are strongly right skewed on an arithmetic

Continued

V. High rarity metrics (R)

IV. Dominance or common species metrics (C)

Dominanee is a measure of how much one or a few speeies
dominate the community numerically (McNaughton & Wolf"
1970). In some ways it is the inverse of evenness, but it is
speeifically focused on the right side of the SAD(very
eommon species).

Absolute dominance (CAbs) - The simplest measure
of dominanee is simply N" the abundance of the most
abundant speeies.Although it might seem that N, would
be so heavily dependent on total abundanee N as to be
useless, in some systemsN, can stay surprisingly constant
even while N varies. CAbs = N,

Relative dominance (Berger-Parker) ((Rel) - The
easiest way to correct for the effects of N is to divide byN,
produeing P, the relative abundance of the most abundant
species (Berger & Parker 1970). CRel = P,

McNaughton dominance (CMcNaught) - McNaughton
(1970) made a more robust measure that was less subject
to the vagaries of a single species by looking at the
proportional abundanee of the two most abundant speeies
(and resealing to 0-100). A similar index based on the
abundanee of the three most abundant speeieswas made
by Misra and Misra (1981).
CMcNaught = (p, + P2) x 100 = [(N, + N2)/2N] x 100

Diversity number ratios (EHiII) - Using diversity
numbers H ex (Hill 1973),one ean take ratios of different
diversity numbers Eex.f3 = Hex/H(3 to express the degree of
evennessamong speeieswithin an ecologieal sample. The
most natural case is 13 = O, then Ha = S, which is the
maximal value (i.e. on a perfeetly even community with
Pi = N/S) of H ex for all ex. For example, log(H2)/ log(Ha)
gives Shannon evenness.
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Evennessis a measure of how different the abundances of
the species in a community are from eaeh other (Smith &
Wilson 1996).A community where every species had the
same abundanee would be perfectly even. AII natural
communities are highly uneven, so evenness is a relative
statement. Most evenness indices are scaled to
approximately run from O = maximally uneven to
1 = perfectly even.

Shannon evenness (J' or EShannon) - If diversity is a
mixture of richness and evenness, then removing riehness
should produce evenness. This is the logie behind
Shannon's evennessmeasure; the highest value of DShannon
when all species are equally abundant ean readily be seen
to be In(S) so dividing by In(S) will give an index from Oto
1. EShannon = DShannon/ In(S)

Simpson evenness (1/D/5 or ESimpson) - The same
logie applies to Sirnpson's diversity, giving
ESimpson = DSimpson/S.

Camargo evenness (or Ecamargo) - The highest
possible evenness is when Pi = Pj = 1/5, so Camargo et al.
(1993) suggested a direct measurement of deviation from
this ideal. ECamargo = 1 - .E Ip¡ - pNS, where the sum is
taken overi= 1 ... S,j=i+ 1 ... 5.

Smith Wilson evenness (Evar or ESmithWilson) -

Smith and Wilson (Smith & Wilson 1996) reviewed an array
of evenness indices and assessedthem on some eore
properties. Two eore properties they identified are spanning
the whole range 0-1 and being independent of unit of
measure (evenness of biomass measured in grams should
be equal to evennessof biomass measured in kilograms).
They invented an index that performed well on these goals,
which they called Evar. The formula is based on the varianee
of log abundanees (eentered on the mean of log
abundances) then appropriately sealed to cover 0-1.
ESmithWilson = 1 - -ir arctan Ub(In(n¡) - fLln)2J where

fLln = ~bIn(n;).
RAD beta or NHCevenness (ENHd - The slope of

the rank abundance diagram (RAD) has long been
interpreted as a measure of evenness (a perfeetly horizontal
line would represent perfect evenness). Nee, Harvey, and
Cotgreave (Nee et al. 1992) proposed taking the slope of
the regression line through the points in the RAD as a
measure of evenness. This runs from (-00,0). Some
authors (e.g. Smith & Wilson 1996) rescale this to go from
Oto 1 -i.e. -2/arctan (13), but we prefer to keep the
simple geometric interpretation 13, where 13 is the OLS
slope of log abundanee vs. rescaled rank (divide by S so
rank goes from 1/5 to 1). ENHC= f3 as above.

111.Evenness metrics (E)



Lognormal ev - As discussed in the section on the
lognormal distribution (Box 9.2) (also see Limpert et al.
2001), the coefficient of variation CV = fL/(5 is not a
parameter but is perhaps the best single descriptor of shape
for the log-normal (making it analogous to the gamma and
Weibull shape parameters). A high CV indicares many rare
species (high unevenness).

Prop LN fL*, Prop LN o", Prop LN ev -In the
log-normal distribution, both fL* and (5* are in units of
abundance and scale with increasing sample size
N (i.e. fL = 109(fL*) and (5 = 10g((5*) scale as 10g(N)).
One way to adjust for this is to calculate the log-normal
parameters (mean, standard deviation, CV) on the log of
the relative abundances, log(o;). This removes the heavy
dependence on N.

Gambin a - The Poisson-gamma distribution (which
leads to the logseries distribution) is discussed in Box 9.2.
An alternative sampling distribution to the Poisson is the
binomial (Green & Plotkin 2007), where the gamma
distribution gives the probability p of the species appearing,
which is then passed through binomial sampling. This gives
the binomial gamma, which might be a good model for
SADs(Ugland et al. 2007). Since the gamma distribution
runs to 00, it is necessaryto truncate the right tail (sayat
the 99th percentile). By scaling without 1055 of generality so
that the maximum value is 1, the binomial gamma or
GamBin (Ugland et al. 2007) is well defined with only one
parameter, the gamma shape parameter. It has been
shown that the GamBin fits many datasets well and that
the parameter a may be a good proxy for the habitat
complexity from which the community is sampled (Ugland
et al. 2007).

mlogit and ilogit - As discussed in Chapter 9,
fitting a sigmoidallogistic function to the empirical
cumulative distribution function (ECDF)on a log
proportional abundance scale is tantamount to
hypothesizing a log-Iogit probability distribution (Evans
et al. 1993; Williamson & Gaston 2005). The logistic
function (and log-Iogit probability distribution) has two
parameters: i is a scale parameter and gives the location of
the inflection point on the x-axis. In this context, since the
inflection occurs at 50% of speciesaccumulated, it gives
the median relative abundance on a log scale. Since there
are many more rare species than common, this is
tantamount to a form of measurement of how many rare
species there are. Sirnilaríy,m represents the slope of the
function at the intercept, and as such is a proxy for
evenness.When m = O every species has different
abundance and when m = 00 the logit function
becomes a step function and all species are

VI.Semi-parametric metrics

Severalmetrics are not parameters from the probability
distributions listed in Box9.1, but are related to those or
other probability distributions.

Fisher's a (a or SFisher) - The log-series distribution
parameter is called e, but as discussed in Box 9.2 for the
log-series, excan be calculated as a function of N and e by
ex= N(1 - e)/c. Although typlcally smaller (sometimes by
a factor of 2-10) than S, it is strongly correlated with S. It
has been recommended as a sample-size-independent
estimator of richness (Rosenzwei~ 1995).

Box 5.1 (Continued)
seale, so the more interesting measure is skew on the log
seale. This measures asymmetry relative to the log-normal.
A negative number indicates an excessof rare species
(McGill 2003). RLogskew = [17(log(n¡) - fL)3/5 J /
[ J

3/2
17(log(n¡) - fL)2/S 5/(5 - 2)J[(S - 1)/5], where

fL is the mean of log(n¡).
% Singletons (Rsingleton) - A simple measure of rare

species is to count the number of singletons. RSingleton = 51
PctRare1% (R1%)- Like the first two dominance

measures, RSingleton focuses exclusively on one abundance
class, potentially making it a noisy metric. By focusing on
multiple abundance classes,this problem can be avoided.
The challenge is to define which species count as rare. A
simple one is to call any specieswith an abundance less
than 1% of total abundance rare. A major shortcoming of
this is that no species can have an abundance less than 1%
of N if N < 100. This measure is only useful when N is at
least several hundred. R1% = (51 + 52 + ... + ST ) /5,
where T is the largest integer less than 0.01 x N.

PctRare5% (Rs%) - An alternative, more expansive,
definition that can work with N > 20 is that a species is
rare if its abundance is < 5% of N.
Rs% = (51 + 52 + ... + Sr)/S, where T is the largest
integer less than 0.05 x N

PctRareN/S(RN/S)- Both the 5% and 1% cut-offs are
relative to N only, not S. A thousand individuals with 500
species is bound to have many rare species by these
definitions but 1000 individuals with 10 specieswill be very
different. A simple measure that attempts to correct for this
is to count a species as rare if its abundance is < N/S. N/S
gives the average abundance of a species. Becauseof the
strong right skew, the average abundance will be greater
than the median (50th percentile) abundance and thus
quite large. RN/5 = (51 + 52 + ... + S T )/5, where T is the
largest integer less than N/S
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We are now in a position to consider definitions
of species diversity. Diversity is often intended to
represent two different aspects of the species abun­
dance distribution. The first is termed 'species rich­
ness' or, simply, the number of species in the eco­
logical sample. For reasons that will become evi­
dent shortly, the number of species in the ecolog­
ical sample may not be equal to S (the number
of species that have nonzero probabilities of being
found in at least one site in the cornrnunity). In other
words, it is possible that ni might equal zero for
sorne species in a particular ecological sample, even
though the species could possibly be found in the
community. Let Se be the number of species with
non-zero abundances in a single ecological sample,
then obviously Se .::::S is the species richness of the
sample. The other component of species diversity
is the degree to which the relative abundances are
similar among species. This has been ca11ed 'even­
ness' in the ecologicalliterature, but in actuality the
underlying concept of interest is the covariance in
relative abundances among species.
There are two sources of variation in relative

abundances among species. The first is the vari­
ation within a species and the second is the

5.2.1 Species diversity as variance

where N = :EiN¡.

(5.2)p=NIN

say that the distribution of N that is most useful
is the ~quilibrium distribution of the underlying
stochastic process generating the ecological saIJl­
pIe. Here we will use the multinomial distribution
to represent this limiting distribution. Finally, it is
also useful to consider the relative species abun­
dance distribution to be represented by the random
vector

of a three-parameter sigmoidallogit-like function, the
parametersm and i can retain their meanings and a single
parameter a can describe the degree of asymmetry.
ECDF(P)= 1/{1 +a x exp[-m x (p - i)]1/a}, which can
be fitted to the ECDFby least squares.
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The vector N = [NI N2 ... Ns1 is sorne times ca11ed
the species abundance distribution (see Chapter 9)
and has been a major focus of research in ecol­
ogy for the past several decades. Because of the
underlying probabilistic definition of N, it is con­
venient to consider it as a random vector. An active
area of current investigation is the examination of
alternative stochastic processes that can model the
evolution of N in space-time (Alonso & McKane
2004; Etienne 2005). Consideration of thcse models
is beyond the scope of this chapter; suffice it to

(5.1)

Assume that a cornrnunity can be described by a
set of J individual'sites' occupied by a single indi­
vidual from one of S species. For sorne species, an
individual may not be a discrete unit, but may exist
as a distributed network of 'nodes', such as a tree
species that generates above-ground stems from a
network of roots. In such situations, it is impor­
tant to define precisely what part of the network is
being counted (e.g. stems). To model this situation,
let the random variable Xi¡be defined as fo11ows:
Xii = 1 if site j is occupied by species i and Xii = O
otherwise. Since each site can only be occupied by
a single individual, it is convenient to combine the
random variables Xij. across each species at site j
as a single random vector Xi' The limiting distri­
bution of X¡ can be genera11y considered to be a
multinomial distribution with a single observation.
Given this general structure, we can calculate the
expected value of the random vector Xi over species
as a vector of probabilities q¡ = [qi¡ 1,where qi¡ is the
probability that species i is found on site j. Collect­
ing the probability vectors from a11sites into a single
matrix gives the S x J matrix Q,which surnrnarizes
the probabilities of species distributed across a11
sites. The expected abundance (N¡) of each species is
obtained as

equally abundant. ECDF(P) = 1I {1 + exp[-m x (p - i)]),
which can be fitted to the ECDFby least squares.

mgenlogl igenlogl and agenlog - The logit function
assumesthat the ECDFis symmetric about the inflection
point, which it may not be. A generalized logit with three
parameters can allow asymmetry. By the appropriate choice



(5.7)H' = RI = -.Ei Pi log Pi

where a is an arbitrary integer (Hill 1973; Pielou
1975).These are called the Renyi entropies of order
a. Different values for a produce different weight­
ings of the information content inherent in the rel­
ative abundances of species with low values of a
« O) weighting in favour of rare species (in the
limit R-oo is a function only of the Pi of the rarest
species) and high values of a emphasizing weight­
ing in favour of common species (again Roo being
a function only of the Pi for the most cornmon
species). Three values of a are of particular interest
to ecologists. The first, Ro, is simply the logarithm
of the number of species in the ecological sample.
When a = 2, equation (5.6)yields R2 = -log D, that
is, the negative logarithm of Simpson's diversity
measure. The final value of interest is the limit of
equation (5.6)when a approaches 1,which yields

(5.6)R; = In [~i pi] /(1 - a)

In the previous section, species diversity was
defined by partitioning the total variance of abun­
dances across a11species in the ecological sample.
An alternative approach developed in the early
1960s was based on measuring the information
content of a long string of symbols developed by
information theorists (Pielou 1975 and references
therein). The basic idea of the analogy is to view
an ecological sample of species as a 'message' with
individual organisms as pieces of 'information'. The
relevant information is the taxon to which each
organism belongs, and the measurement of this
'taxonomic information' is obtained from the rel­
ative abundances of species. A general measure
of information content per symbol in an infinitely
large set of symbols for which sorne 'code' exists is
given by

5.2.2 Species diversity as information

partition the total variation in species abundances
among species into a within-species component and
a between-species component. The within-species
component represents the richness aspect of species
diversity and the between-species component rep­
resents the evenness aspect.

The total variance across a11species is obtained by
summing equations (5.3)and (5.4)across a11species
and pairs of species, which gives

V = 1- .Eipf - 2.Ei<k Pi Pk (5.5)

In the two extreme cases when a11species are
equa11yabundant or when a11species have zero
abundance except for one, V reaches its minimum
value of zero (no variability among species). Thus,
this variance itself is probably not useful as a mea­
sure of species diversity because of this. However,
equation (5.5)is useful heuristica11ybecause it illus­
trates how the two separate aspects of species diver­
sity, richness and evenness, might be related.
The two terms in equation (5.5) represent dif­

ferent aspects of species diversity. The quantity
D = .EiP; is the familiar metric of species diver­
sity first suggested by Simpson (1949).It has often
been ca11eda measure of 'dominance'. In equa­
tion (5.5),1 - D(= 1 - .Ep2) represents the total vari­
ance attributable to within-species variability. D
is we11known to be correlated with species rich­
ness, and in the context used here it could be con­
sidered to be a probabilistic measure of richness.
As a measure of species diversity, however, it is
incomplete because it does not include information
about the variability in relative abundances among
species given by the last term in equation 5.5. The
last term in equation 5.5 is particularly interest­
ing because it is a measure of the degree to which
abundances covary among species. Intuitively, the
surnmed covariances in relative abundances among
species capture the essence of the 'evenness' com­
ponent of species diversity.
To surnmarize, if species diversity is defined as

the number and relative abundances of species
within a cornmunity, one way to represent it is to

(5.4)COV(pi, Pk) = -PiPk

where Pi is the ith element of the vector of rel­
ative abundances (p). Since relative abundances
of species are necessarily correlated, a measure of
between species variability is the covariance of the
relative frequencies of species i and k, that is

(5.3)var (Pi) = Pi (1 - Pi)

variability among species. The variance within a
species is
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We have classified species diversity measure­
ments into six categories based on how researchers
have proposed to use them (Box 5.1). The first set
of metrics contains those that attempt to express
sorne basic aspect of 'richness'. The idea behind
these metrics is to express sorne aspect of the
number of species in the ecological sample. Sorne,
sueh as Chaos estimators (Chao 1987), attempt to
use information from an empirical sample to infer
the species richness of the underlying ecological
sample. ...
A second set of metrics used widely in the liter­

ature we refer to as 'diversity' metrics and include
the most widely used metrics. Inthis context, diver­
sity is used to mean a combination of both rich­
ness and evenness. Simpson's diversity metric is
the within-species component of variance discussed
aboye, but also is related to the information concept
of diversity. Shannon's diversity metric (H' or RI)
is probably the most commonly used expression of
species diversity.
Evenness metrics all attempt to examine how

abundance is apportioned among species within
a community. The basic concept underlying all of
these measurements is that evenness is highest
when a community is not dominated by a few
species of very high abundance or equivalently that
all species have an equal abundance. Low evenness
implies that most species in the community are very
rare, and consequently may contribute very little to
the underlying ecological role the community plays
within the ecosystem that contains it.
Dominance metrics are in many ways the con­

verse of evenness. If the scientific objectives of a
study focus on the most cornmon species in a com­
munity, then dominance measures may be the most
appropriate descriptors of species diversity. Like­
wise, in sorne studies it may be more important to
focus on the rarest species. This might be particu­
larly true in conservation studies where rare species
may be of particular interest in determining the
value of locations for the conservation of biological
diversity. For such studies there are a variety of met­
rics that focus on the number of rare species found
in a community.
Finally, a variety of metrics are based on var­

ious parametric or non-parametric descriptions
of the probability distribution underlying the
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Given that species diversity has at least two differ­
ent general formulations, that is, it can represent
a partitioning of abundance in a community into
between- and within-species variance components
or it can represent shared or mutual information
among species, a large number of measurements
have been suggested to represent these different
aspects of species diversity. Here we survey these
measurements and indica te how they relate to our
distinction between species diversity as variance
and species diversity as information.

5.2.3 Traditional measures of various types
of diversity

This form of information diversity is related to
H' = R; because as the values of the abundances
of species become very large, HB converges on
the Shannon diversity, H' = Rl (Pielou 1975).How­
ever, for small collections of individuals (i.e. small,
fully censused communities), equation (5.9) is the
appropriate measure of information. It has become
known as the Brillouin index and takes on values
slightly less than Shannon values (HB < H = R1).

HB = (l/N) lag [(N!)/l1¡ N!] (5.9)

R; (also denoted J') has been widely used as mea­
sure of evenness in the ecologicalliterature.
Pielou (1975) points out that if there is a finite

number of individuals in an ecological sample, then
the information content per species for that particu­
lar sample is

(5.8)

This is the well-known Shannon measure of species
diversity (Pielou 1975),which is widely used. Hill
numbers, which are simply the exponent of Renyi
entropy iH¿ = exp(Rcx)), are also commonly used
in ecology (Box 5.1 and Hill, 1973) and Chapter 6,
where Hill number Ha is denoted q D.
The appeal of equation (5.6) as a measure of

diversity is that it is convenient to define even­
ness quantitatively. Intuitively, evenness should be
greatest if all species are equally common. If this
is the case, equation (5.6) yields a value of log
Se regardless of what particular value a takes on.
Hence, it is sornetimes useful to rescale R; by divid­
ing it by its theoretical maximum, yielding



size of the empirical sample approaches the size of
the ecological sample), the total number of species
identified begins to asymptote, reaching a theoret­
ical maximum of Se. Se is commonly denoted just
S, but it is expected in practice to recognize the
distinction between the empirical sample and the
ecological sample, and use one of the techniques
below to estimate this value despite the notational
imprecision.
There are two basic approaches to estimating Se'

First, it is possible to assume that sorne parameter­
ized distribution function can be used as a model
for a given species abundance distribution. If this
is true, then at least for sorne statistical distribu­
tions, Se is a parameter (or function of parame­
ters) of the distribution that can be estimated using
a sufficiently large empirical sample (Pielou 1975;
Magurran 2004). The second general approach is
to observe and extrapolate the empirical pattern
of accumulation of species as the number of indi­
viduals in the empirical sampIe accumulates. The
problem with this approach is that there is no log­
ical way of choosing the sequences with which
individuals in the empirical sample are accumu­
lated. If there are n individuals in an empirical
sample, there are n! possible ways of accumulating
individuals. Estimates of accumulation curves can
be constructed either by random sampling (with­
out replacement) samples of various sizes from the
empirical sample or by examining the average rate
of accumulation using rarefaction (Simberloff1972).
More details on estimating species richness are dis­
cussed in Chapters 4 and 20.
Estimating the diversity and richness of ecologi­

cal samples is limited by the amount of information
available on the ecological sample being studied.
Generally, both the total number of organisms, N,
and the number of species, Se, in the ecological
sample are unknown. If both of these quantities
are large, then any single empirical sample may be
inadequate to fully characterize the entire ecologi­
cal sample (Pielou 1975;Peet 1974;Magurran 2004).
Empirical samples that are much smaller than the
ecological sample are unlikely to contain all species
found in the ecological sample. In particular, rare
species may show up in relatively few empirical
samples .

5.2.4 Addressing the difference between the
empirical and ecological samples: estimating
species diversíty components usíng empírical
samples

A fundamental difficulty that has not been
addressed up to this point is the nature of the
'object' being measured when ecologists collect
information on the abundances of species at a spe­
cific location. This 'object' is typically called a 'com­
munity', and is defined as all the organisms belong­
ing to a set of species found at a given point in space
and time. The existence of such an object in any real
sense might be questioned on many grounds (Mau­
rer 1999;Ricklefs 2008), yet there is enough accu­
mulated evidence to suggest that counting organ­
isms of different kinds of species in local regions
of space-time is of enormous practical value (Chap­
ters 17,18,and 20).Here we focus on how to analyse
and interpret the data obtained from such counts
given that not all individuals can be counted and
sorne species that have appreciable populations in
the region may in fact not show up in these empir­
ically derived counts. In practice, nearly all data
obtained by ecologists form an empirical sample
rather than an ecological sample. It is therefore tech­
nically incorrect to calculate a diversity measure
(previous section and Box5.1)on an empirical sam­
pIe and claim it is the correct value for the ecological
sample.
Estimating the number of species, Se, in an eco­

logical sample from empirical samples assumes that
in a local community conditions remain constant
enough over the sample period to assume that there
are no changes in the relative abundances and inci­
dence of species. If this is the case, then one can
assume a 'collector's curve' exists, so that as the
total number of individuals sampled increases (the....,...

apportionment of diversity among species. Sorne
of these metrics are related to probability distri­
butions that arise from assuming a certain type
of mechanism underlying the dynamics of abun­
dances among species over time (see Box 9.2 and
Chapter 9).Generally, these metrics should be used
to fit parameters in specific modeIs that might
underlie the structure of a community.
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(5.12)

Here we assume that each of the abundance dis­
tributions can be approximated by a multinomial
distribution. If this is the case, then we have two
candidate models to describe the data. The first
model assumes the two samples come from the
same community, hence there is a single multino­
mial distribution that describes both samples and
there are Se parameters (the actual relative abun­
dances in the single ecological sample). Note that
we here assume that Se = Se, that is, all the species
in the ecological sample are found in at least one
of the two empirical samples. The second model
assumes that each empirical sample comes from
a different ecological sample, which means that
we would have two different multinomial distri­
butions, each with Se parameters (the relative fre­
quencies of each species in each of the two different
communities). The second model requires twice as
many parameters to describe the data as the first
model.
To compare such models, we suggest using the

information theoretic approach described by Burn­
ham (2002).The approach is based on estimating
the log likelihood of each model given the data and
substituting the empirical estima tes of the parame­
ters into the likelihood function. Interestingly, for
the multinomial distribution, the negative log like­
lihood function for a given data set is simply the
Shannon information measure times the number of
individuals in the sample. Letting HIc be the Shan­
non diversity for the combined data, the negative
log likelihood for the model assuming only a single
ecological sample is

(5.11)

The index i goes from 1 to Se, which is the number
of species found in at least one of the samples. Note
that sorne of the relative abundances may be zero.
Writing the relative abundances as a vector gives
two relative abundance vectors PI and P2. Finally,
we can calculate the relative abundance vector for
the combined two samples as
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(5.10)

In the simplest case, suppose two empirical sam­
pIes have been obtained from a specified location.
The question to be answered is whether these two
samples can be considered to be samples of a sin­
gle larger community or whether they are different.
The species abundance distribution for each loca­
tion can written as a vector where j = 1,2 indexes
locations. The abundance for species i at location
j is given by nij' The relative abundances are
then

5.2.5 Testing for heterogeneity among
ecological samples

The solution to the dilemma posed in the pre­
vious paragraph is to examine the behaviour
of species diversity measurements among many
empirical samples taken of the same ecological sam­
pIe (also see Chapter 9). By taking multiple empir­
ical samples from a single empirical sample, we
gain information about the variance involved in
the empirical sampling process. If a certain num­
ber of sampling units are drawn from the larger
ecological sample, then it is possible to calculate
measures of species diversity as a function of the
number of sample units aggregated (Pielou 1975;
Magurran 2004).This assumes, of course, that each
sampling unit is drawn from the same ecological
sample. On the other hand, if conditions change
across space and time, then aggregating sampling
units may not be appropriate. This assumption may
be problematic if most ecological communities are
open systems (Maurer 1999).In the next section we
consider how to evaluate whether several empirical
samples are drawn from the same empirical sample.
It is still common in practice to ignore the distinc­
tion between the empirical sample and the ecologi­
cal sample, and simply calculate diversity statistics
(other than richness discussed aboye) simply on the
empirical sample and report them as if they were
the true value for the ecological sample. Despite
being common practice, this is incorrect (especially
for small samples) and the approach just outlined is
superior.



1. To properIy measure diversity requires recog­
nition that the data usually collected represent
just samples (empirical samples) from the actual
community (ecological sarnple), which is in turn
a probabilistic, imperfect representation of the
potential community.

2. There are a great many approaches proposed
in the literature to measure aspects of diversity,
including richness, evenness, and the combina­
tion (diversity). Most of these approaches have
been fairly ad hoc. There are probably at least
two or three times as many measures proposed
as the ones we cover in Box5.1.Wehave tried to
highlight the most cornmonly used and success­
ful measures.

3. We present a uniform framework for building
diversity measures. Two of the oldest measures
of diversity, Simpson and Shannon, and their
corresponding evenness measures, turn out to
be directly related to two fairly deep concepts of
diversity: variance and information.

4. The best way to use empirical samples to get
at the ecological sample is to take multiple
empirical samples of the same ecological sample.
This provides information about the variability

5.4 Key points

While easy to conceptualize, diversity (and even­
ness) are hard to measure. We present a basic
framework here. Several developments are needed
to provide a truly firm foundation to the measure­
ment of diversity. First, more attention to and devel­
opment of methods to account for the fact that col­
lected data are sampled data are needed (Le. the
distinction between the empirical sample and the
ecological sample). Second, rather than developing
new measures of diversity by ad hoc processes we
hope to see a further focus on fundamental ideas
like variance and information.

5.3 Prospectus

is also possible to partition diversity into between­
site (f.» and within-site (oc)diversity components
(Chapter 6) (Whittaker 1975;Lande 1996;Crist et al.
2003;Crist & Veech2006).

The best model is the one which has the lowest Ale.
Generally, a difference between AICs of 2.0 or more
indicates that the model with the lowest AIC has
'significantly' more support from the data (Burn­
ham & Anderson 1998).Furthermore, it is possible
to calculate model weights using AIC differences.
The interested reader is referred to Burnham (1998)
for further details.
This procedure can be generalized to evaluate

whether several different empirical samples come
from the same ecological sample. As the number
of empirical samples being compared increases, the
number of possible models increases rapidly, mak­
ing it impractical to compute all possible compar­
isons. In such cases it may be best to use sorne
independent criterion (such as distance between
samples) to group empirical samples into a small
number of aggregate samples that can be examined
using AICs.
The model selection procedure provides a basis

for asking questions about so-called 'f3 diversity'. In
the example described aboye, the first model, which
assumes that the two empirical samples are drawn
from the same ecological sample, there is no f3
diversity. The two samples are describing the same
relative abundance distribution. The second model
assumes that the two empirical samples are drawn
from different ecological samples, which implies
that there is f3 diversity (i.e. a turno ver in abun­
dances among communities). The degree to which
the second model is supported by the data is related
to how much f3 diversity exists between the two
samples (Chapter 6).With several sites sarnpled, it

..r

(5.14)

(5.15)

AlCe = 2(Lc + Sc)

AIC2 = 2(L2 + 2Sc)

where H11 and H12 are the Shannon diversities for
each of the separate empirical samples. The log like­
lihoods for the two models are then compared by
calculating the respective Akaike Information Cri­
terion (AIC) for each model:

(5.13)

For the second model, which assumes two different
ecological samples, the negative log likelihood (L2)

is obtained as
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5. We present a method for testing whether two
(or any combination of more than two) empir­
ical samples are drawn from a single ecologi­
cal sample using the multinomial distribution
and likelihoodj Ale methods. It turns out that
the likelihood is directly related to Shannon's
diversity.
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induced by the empirical sampling process and
allows for the development of an asymptotic
approach that can then be extrapolated to the
properties of the ecological sample. One com­
mon method is to plot the measure of ínter­
est vs the number of empirical samples and
extrapolate.




