ArticlePDF AvailableLiterature Review

Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective

Taylor & Francis
Infection and Drug Resistance
Authors:

Abstract and Figures

Purpose: Extended-spectrum beta-lactamase-producing (ESBL) Enterobacteriaceae, which includes Escherichia coli, has emerged as a global health threat. ESBL enzymes including CTX-M, TEM, and SHV are the most detected. Here, a systematic review was developed to assess the status of ESBLs in E. coli considering studies performed in the human, animal, food, and environmental realms in South America. Methods: Following PRISMA guidelines, a systematic review was performed using the PubMed database as a primary source to identify studies containing data on ESBL-producing E. coli in South America. To obtain a comprehensive sample, studies in English, Spanish, and Portuguese were included from 1990 to April 2021. Inclusion such as the reporting of sample origin and diagnostic method and exclusion criteria such as review/letter articles were established to complete data extraction steps. Results: Amongst 506 articles retrieved, 130 met the inclusion criteria. Brazil reported 65 (50%) of publications, followed by Argentina, and Ecuador with 11.5% each. According to the category of studies, human studies represented the 56%, animals the 20%, environmental the 11%, and food studies the 6%. Interestingly, studies assessing more than one category (ie, interdisciplinary) represented the 7%. Prevalence of ESBL producing E. coli in animal, food, and environmental studies was widely superior compared to human sources. In clinical studies, Brazil presented the greatest diversity in terms of ESBLs, featuring CTX-M, TEM, SHV, TOHO, OXA, and AmpC. CTX-M enzymes were the most frequent variants with 89.4% detections. Conclusion: The present One Health review of 130 studies conducted over the past 21 years found ESBLs producing E. coli distributed across human, animal, food, and environmental samples across South America. There is a need to increment studies in underrepresented countries and to strengthen multi-sectoral antimicrobial resistance research and surveillance. This information can be used as basis for subsequent implementation of monitoring programs, targeting potential critical points of transmission sources.
This content is subject to copyright. Terms and conditions apply.
REVIEW
Extended-Spectrum Beta-Lactamases Producing
Escherichia coli in South America: A Systematic
Review with a One Health Perspective
Carlos Bastidas-Caldes
1,2
, Daniel Romero-Alvarez
3,4
, Victor Valdez-Vélez
1
,
Roberto D Morales
1
, Andrés Montalvo-Hernández
1
, Cicero Gomes-Dias
5
, Manuel Calvopiña
3
1
One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador;
2
Doctoral Program in Public
and Animal Health, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain;
3
One Health Reserch Group, Faculty of Medicine,
Universidad de las Américas, Quito, Ecuador;
4
Biodiversity Institute and Department of Ecology & Evolutionary Biology, The University of Kansas,
Lawrence, KS, USA;
5
Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
Correspondence: Carlos Bastidas-Caldes, One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas,
Quito, 170124, Ecuador, Tel +593 983 174949, Email cabastidasc@gmail.com
Purpose: Extended-spectrum beta-lactamase-producing (ESBL) Enterobacteriaceae, which includes Escherichia coli, has emerged as
a global health threat. ESBL enzymes including CTX-M, TEM, and SHV are the most detected. Here, a systematic review was
developed to assess the status of ESBLs in E. coli considering studies performed in the human, animal, food, and environmental realms
in South America.
Methods: Following PRISMA guidelines, a systematic review was performed using the PubMed database as a primary source to
identify studies containing data on ESBL-producing E. coli in South America. To obtain a comprehensive sample, studies in English,
Spanish, and Portuguese were included from 1990 to April 2021. Inclusion such as the reporting of sample origin and diagnostic
method and exclusion criteria such as review/letter articles were established to complete data extraction steps.
Results: Amongst 506 articles retrieved, 130 met the inclusion criteria. Brazil reported 65 (50%) of publications, followed by
Argentina, and Ecuador with 11.5% each. According to the category of studies, human studies represented the 56%, animals the 20%,
environmental the 11%, and food studies the 6%. Interestingly, studies assessing more than one category (ie, interdisciplinary)
represented the 7%. Prevalence of ESBL producing E. coli in animal, food, and environmental studies was widely superior compared
to human sources. In clinical studies, Brazil presented the greatest diversity in terms of ESBLs, featuring CTX-M, TEM, SHV, TOHO,
OXA, and AmpC. CTX-M enzymes were the most frequent variants with 89.4% detections.
Conclusion: The present One Health review of 130 studies conducted over the past 21 years found ESBLs producing E. coli
distributed across human, animal, food, and environmental samples across South America. There is a need to increment studies in
underrepresented countries and to strengthen multi-sectoral antimicrobial resistance research and surveillance. This information can be
used as basis for subsequent implementation of monitoring programs, targeting potential critical points of transmission sources.
Keywords: extended-spectrum beta-lactamase, Escherichia coli, South America, One Health
Introduction
The antimicrobial resistance phenomena existed long time before humans were implementing antibiotics.
1
Bacteria have
several mechanisms to evade the action of antimicrobials. One of the most important in humans, animals, and the
environment is the enzyme-mediated breaking of the beta-lactam ring of penicillin and its derivatives. Penicillins are the
widest group of antibiotics.
2
Enzyme-mediated resistance is a worldwide public health problem recognized by the World Health Organization
(WHO) due to its rapid expansion and the generation of multidrug-resistant (MDR) bacteria that are increasingly difcult
to eliminate.
3,4
The current increase and dispersion of penicillin, carbapenem, and cephalosporin resistance is driven by a
group of enzymes known as beta-lactamases. These enzymes, commonly found in well-known human environments,
Infection and Drug Resistance 2022:15 5759–5779 5759
© 2022 Bastidas-Caldes et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/
terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing
the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
Infection and Drug Resistance Dovepress
open access to scientific and medical research
Open Access Full Text Article
Received: 22 April 2022
Accepted: 4 August 2022
Published: 30 September 2022
have been discovered in apparently unsuitable localities such as soils or glaciers in Antarctica, which have probably
never encountered beta-lactam antibiotics previously.
5
Beta-lactamases enzymes were rst described in 1940, England; isolated from an E. coli, which prompted antibiotic
resistance research.
6,7
In early 1980s, TEM-1, TEM-2 (isolated from a patient in Temoneira in Athens, Greece), and SHV-1
(sulfhydryl variable, active site) circulating beta-lactamases were found capable to hydrolyze the beta-lactamic ring of
cephalosporins
8
and therefore resistance was soon reported.
9
Single-point mutations in these enzymes allowed beta-lactamases
to break penicillin and its derivatives, as well as the rst, the second, and third generation cephalosporins, and even
monobactams.
10–13
In 1988 and 1989, the rst isolate of SHV-ESBL was found in clinical samples from Argentina and Chile, respectively.
14
Since then, different types of enzymes have been detected in South America with different predominating enzymes, namely,
TEM and SHV, and CTX-M, the latter currently being the most widespread ESBL group in the region.
7
Apart from human detections, beta-lactamases have been found in non-human specimens, animals, and the environ-
ment. The presence of ESBL genes in aquatic ecosystems has been studied in E. coli in different parts of the world, for
example, in Mur River in Europe (ie, Austria)
15
and in Yamato River in Asia (Japan)
16
with bla
CTX-M-1
and bla
CTX-M-14
as the most prevalent ESBL genes, respectively.
Livestock and other animals used as food sources are a well-known reservoir of antibiotic-resistant microorganisms,
despite the lack of literature exploring this topic. For example, few studies have explored veterinary sources of ESBLs, in
stark contrast with the amount of data from humans.
17
In 1988, ESBLs were detected for the rst time in a dog in Japan
with a strain of CTX-M-3-producing E. coli. ESBL types SHV-1, TEM-1, and OXA have been frequently described in E.
coli and Salmonella spp. of animals and food of animal origin in Spain, Germany, the US, and the United Kingdom (UK).
17
In South America, as in the rest of the world, human clinical studies of ESBLs in E. coli are abundant.
18
Conversely, the
current status of beta-lactam resistance in non-clinical scenarios such as their presence in healthy carriers, food matrices, animals,
and the environment is scarce.
19
Nevertheless, evidence suggests that limited access to public health services and lack of hygiene
can contribute to the spread of ESBLs within communities.
13,20
Moreover, the use of antibiotics as growth promoters in livestock
animals favors the dissemination of different types of beta-lactamases CTX-M in food matrices.
2,21
Finally, the poor management
of hospital wastewater may result in discharge of multidrug-resistant coliforms (such as E. coli ESBL+) into natural waterbodies.-
22
All this evidence demonstrates the importance of conducting studies using a One Health approach, namely, understanding the
dynamics surrounding human and animal health, and the environment, to develop strategies to monitor and control beta-lactam
resistance.
23
Due to the aforementioned arguments, in this study we have aimed to develop a systematic review of the current
status of ESBLs in one of the most relevant and ubiquitous bacteria, E. coli, in South America, considering studies
performed in the human, animal, and environmental realms to present a comprehensive summary offering updated
information for practitioners across different elds.
Methods
Protocol and Search Strategy
This systematic review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines.
24
The scientic literature was obtained from the NCBI-PubMed database on April 5th,
2021, including studies in English, Spanish, and Portuguese published since 1990 until 2021. Search terms included
“Escherichia coli” AND “ESBL” OR “beta-lactamase” OR “β-lactamase”, plus the names of countries/territories that
belong the South American region: ie, “Ecuador” OR “Peru” OR “Brazil” OR “Argentina” OR “Chile” OR “Colombia”
OR “Venezuela” OR “Uruguay” OR “Paraguay” OR “Bolivia” OR “Suriname” OR “Guyana” OR “French Guiana”. All
terms included the PubMed Title/Abstract criterion so that only studies that contained the searched keywords in their title
and/or in their abstract were considered.
Additional articles found manually in Scopus, SciELO, and latindex databases were also included in this review.
These articles were not found in the initial search because their title and/or abstract not included the search terms
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5760
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
mentioned above; however, they had other keywords such as “CTX-M”, “resistomes”, “multidrug-resistant” or “multi-
resistant”. These studies presented relevant epidemiological information related to CTX-M beta-lactamases.
Study Selection
The selection of the studies was carried out by two separate reviewers (VV and AM) using the Rayyan QCRI
bibliographic manager to review only titles and abstracts of the selected articles. The rst phase consisted in the removal
of duplicated studies and the inclusion of those related to E. coli and South America while excluding reviews/letters and
studies not focused on ESBLs.
After the rst round of selection, a detailed review of the selected articles was implemented. During this eligibility
phase, only those studies conducted in humans, animals, and/or the environment with complete information (ie, sample
origin and ESBL positive cases detected either by phenotypic or molecular tests) were included for the nal analysis. At
this stage, exclusion criteria allowed the rejection of [1] case reports, [2] studies in Enterobacteriaceae and other bacterial
families that did not report data on ESBLs in E. coli, [3] articles unavailable in full-text, and [4] studies conducted in
regions different from South America.
Data Extraction
Studies selected were tabulated and introduced in a Microsoft Excel 2016 spreadsheet with their general information (ie,
author, year, country, and URL). Data to be evaluated included (i) detection methods, (ii) type and origin of samples, (iii)
prevalence of E. coli, (iv) prevalence of E. coli with ESBL phenotype, (v) prevalence of E. coli with ESBL genotype, (vi)
ESBL types, and (vii) identication of clones by multi-locus sequence typing (MLST) of clinical importance. The three-
prevalence parameters (points iii, iv, and v) were independently reported for each South American country; these values
were obtained by dividing the number of samples found in each category (E. coli, E. coli with ESBL phenotype, and E.
coli with ESBL genotype) with the total sample size (n). Relevant data are presented in statistical graphs.
Data Analysis
Descriptive statistics were obtained for all the studied parameters (eg, sample origin and source, E. coli prevalence, etc.)
and are shown with 95% condence intervals when appropriate. ESBL types and CTX-M variants were further
categorized using descriptive statistics and their proportions were depicted per country in maps of the region using
barplots and pie charts according to each of the established categories, that is, human clinical cases, human healthy
carriers, animal, food, and environmental studies using R programming language version 3.6.3 and QGIS 2.18 “Las
Palmas”.
Results
Studies Included
The total number of articles found in PubMed from 1990 to April 2021 was 500; additionally, six articles were also
included from SciElo and Latindex databases for a total of 506 articles. During the rst screening phase, 321 studies were
excluded because they were either reviews/letters or articles that deviate from the theme of this review. During the
eligibility phase, 55 studies were discarded due to their lack of detail. A total of 130 articles were included in this review
(Figure 1).
ESBLs Detection Methods for E. coli
From the 130 articles included, 25 used phenotypic tests, the three commonest being the disc diffusion, the minimum
inhibitory concentration (MIC), and the VITEK system; the latter also used for bacterial identication. On the other hand,
14 articles used molecular tests including PCR (ie, either endpoint, multiplex, or quantitative) and sequencing to
determine the presence of beta-lactamase coding genes. Ninety-one publications (70%) used both phenotypic and
molecular tests for gene and bacteria identication.
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5761
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
Classication of Studies
The studies were classied into six categories according to the origin of the sample: two categories for human studies
(clinical cases and healthy carriers), followed by animal, food, environmental, and interdisciplinary studies, here labeled
as those analyzing more than one category at the same time. More than half of the studies corresponded to human
samples (56%; n=73/130). From them, 52% (n=68/130) corresponded to isolations from human clinical studies and 4%
(n=5/130) corresponded to studies on human healthy carriers, the smallest category on our analysis. Samples isolated
from animals and the environment corresponded to 20% (n=26/130) and 11% (n=14/130), respectively. Interdisciplinary
studies corresponded to 7% (n=9/130). Samples isolated from food corresponded to the 6% of the publications studied
(n=8/130).
Figure 1 PRISMA ow diagram for study categorization and selection of the 130 studies included in this systematic review. Data came from PubMed and additional
databases between 1990–2021.
Notes: Adapted from Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10:89.25
Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/legalcode).
Abbreviation: ESBL, extended spectrum beta-lactamases.
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5762
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
In addition, animal samples were sub-classied into birds, companion animals, livestock, and wild animals (Figure 2).
Birds were investigated in more than half of animal-oriented studies (51%; n=18/35), followed by domestic animals
(23%; n=8/35), farm animals (20%; n=7/35), and wild animals (6%; n=2/35; Figure 2A). A subcategorization of birds
showed that poultry was the most studied with 61% (n=11/18) of publications, followed by urban species such as doves
and pigeons with 28% (n=5/18), and migratory bird data in 11% of studies (n=2/18; Figure 2B). A subcategorization of
livestock showed that cattle and pigs represented 46% (n=5/11) and 36% (n=4/11) of the, respectively, farm animals
studied (Figure 2C). It is important to mention that in some publications, more than one type of farm animal was studied.
ESBL Producing E. coli Studies per Country
Fifty percent of the studies (n=65/130) was carried out in Brazil, followed by Argentina, and Ecuador with 11.5% (n=15/
130) each. As it can be seen, Brazil exceeds with 50 studies to all other countries (Figure 3). It is worth noting that a
fraction of the studies identied (n=7/130) were developed in more than one country; thus, at least 5.4% of the studies
occurred as international multicenter approaches.
As expected, a further categorization of sample type per country showed the predominance of samples from human
clinical origin (Figure 3). For example, in Brazil, 46.2% (n=30/65) of the included studies corresponded to clinical
isolations; moreover, in Venezuela, 100% of their research (n=12/12) were focused on nosocomial samples. Brazil,
despite having the highest number of studies in the region, lacked studies on human healthy carriers. This pattern was
similar across the rest of the countries analyzed, namely, predominance of human clinical samples followed by either one
or two studies including any of the other studied categories (ie, healthy carriers, animal, or environmental sample types).
Exceptions included French Guiana with a unique study focused on human healthy carriers, and Ecuador (n=15 studies)
with at least one publication across each sample type category (Figure 3).
Prevalence and Distribution of ESBLs Producing E. coli
In South America, the prevalence of ESBLs at the level of the animal, food, and environment was larger than the
prevalence from human sources (ie, either clinical cases or healthy carriers) (Table 1). The same pattern was evident in
each country analyzed. Brazil presented the greatest number of samples of each category except for the healthy carriers,
where data were absent. Details of these results per country are described in Supplementary Table 1.
ESBL Types and Enzymes Variants
Human Clinical Studies
The total number of ESBLs genes in clinical samples was 3509. The South American distribution of ESBLs based on the
selected studies shows that Brazil was the country with the highest number of detections with 21.3% (n=788/3701). Also,
Brazil presented the highest diversity of ESBL types reporting CTX-M, TEM, SHV, TOHO, OXA, and AmpC enzymes.
Figure 2 Classication and sub-classication of ESBLs producing E. coli studies developed in animal samples. (A) General classication of animals identied and their
distribution in number of studies and percentages (n;%). (B) Animal studies in birds: sub-groups identied and their distribution in number of studies and percentages. (C)
Animal studies in livestock: sub-groups identied and their distribution in number of studies and percentage.
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5763
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
Surprisingly, PER-2 enzymes were only found in Uruguay. CTX-M enzymes were the most prevalent in South America
with at least 89.4% (n=3309/3701) identications. CTX-M enzymes variants recognized were usually reported as
unspecied across countries/territories with few exceptional publications. For instance, multiple Bolivian studies reported
the presence of CTX-M-1 (50.8%; n=67/132). Similarly, studies from Uruguay consistently reported the presence of
CTX-M-15 (59.5%, n=47/79). These results are shown in more detail in Figure 4 and Supplementary Table 2.
Human Healthy Carriers Studies
Epidemiological data focused on isolations from healthy carriers in South America were limited. Only Ecuador, Peru,
Bolivia, and French Guiana reported ESBLs from this category; thus, the total number of ESBLs in this context was 204.
The enzymes CTX-M (96%; n=195/204) and TEM (4%; n=9/204) were the only ESBLs found. The CTX-M-2 enzyme
variants were most prevalent in Peru (47.7%; n=31/65) and Bolivia (43.7%; n=21/48). In French Guiana, the enzyme
CTX-M-1 was the most signicant variant with a prevalence of 46.1% (n=6/13). Conversely, only CTX-M-55 enzyme
Figure 3 Categorization of 130 studies included in this systematic review from PubMed and additional databases between 1990–2021. Color bars represent the number of
studies conducted in South American countries and number of studies per country categorized by sample type examined.
Table 1 Prevalence of E. coli Isolates According to Their Sample Sourc. Comparison of Prevalence of ESBL Determination by
Phenotypic and Genotypic Methods Across Six Categories in 130 Studies from South America Between 1990 and 2021 (N=203057)
Categories of Sample Sample Size E. coli Isolates Phenotype of
ESBL-Producing E. coli
Genotype of
ESBL-Producing E. coli
(N) (n) % [95% CI] (n) (%) [95% CI] (n) (%) [95% CI]
Clinical (H) 185,203 28,348 15.3 [0.151–0.155] 3719 13.1 [0.12–0.14] 3509 1.9 [0.018–0.02]
Healthy Carriers (H) 7861 1105 14.1 [0.133–0.149] 490 6.2 [0.057–0.067] 139 1.8 [0.02–0.2]
Animal 6616 3607 54.5 [0.533–0.557] 1418 21.4 [0.204–0.224] 1195 18.1 [0.1–0.2]
Food 1860 1401 75.3 [0.733–0.773] 193 10.4 [0.09–0.118] 580 31.2 [0.3–0.333]
Environment 1517 553 36.5 [0.341–0.389] 191 12.6 [0.109–0.143] 187 12.3 [0.106–0.14]
Abbreviations: N, total samples of each category; H, human samples; 95% CI, 95% condence Intervals.
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5764
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
variants were reported in Ecuador (n=69/69). These results are depicted in more detail in Figure 5 and Supplementary
Table 2.
Animal Studies
Six South American countries reported epidemiologic data in animals. The total number of ESBLs in animal samples was
1191. ESBL types identied included CTX-M, TEM, SHV, PER-2, and AmpC. CTX-M enzymes were the most
prevalent (64.5%; n=768/1191). CTX-M enzyme variants featured included CTX-M-1 in Ecuador (28.4%; n=50/176)
and Chile (63.3%; n=124/196); CTX-M-2 in Brazil (40.2%; n=127/316); and CTX-M-8 in Brazil (23.4%; n=74/316),
Argentina (56.7%; n=17/30), and Uruguay (56.4%; n=22/39). Many CTX-M variants were recorded in Ecuador although
the higher proportion (56.2%, n=99/176) of cases was represented by unknown variants. In Peru, only CTX-M-15
enzymes were reported (n=11/11). These results can be observed in more detail in Figure 6 and Supplementary Table 2.
Figure 4 Distribution of ESBLs types (A) and CTX-M enzyme variants (B) in clinical human studies developed in South America. Unspecied = CTX-M enzyme present but
variant unreported. Pie charts are showing the maximum and minimum percentages for each country. Complete information can be found in the main text and
Supplementary Table 2.
Figure 5 Distribution of ESBLs types (A) and CTX-M enzyme variants (B) identied in the context of healthy carriers human studies developed in South America. Pie charts
are showing the maximum and minimum percentages for each country; complete information can be found in the main text and Supplementary Table 2.
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5765
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
Food Studies
Only two countries (Ecuador and Brazil) published studies about ESBL detection in food. The total number of ESBLs in
food samples was 520, among them, CTX-M, TEM, SHV, and AmpC were identied. CTX-M enzymes were the most
prevalent (73.6%; n=383/520). Considering CTX-M variants, CTX-M-1 in Ecuador with 66.1% (n=109/165) and CTX-
M-2 in Brazil with 63.3% (n=138/218) were found. These results can be observed in detail through Figure 7 and
Supplementary Table 2.
Environmental Studies
Environmental studies were found in ve South American countries. The total number of ESBLs in environmental
samples was 276. ESBL types identied included CTX-M, TEM, SHV, TOHO, OXA, and AmpC. Similar as it was
Figure 6 Distribution of ESBLs types (A) and CTX-M enzyme variants (B) identied in animals and developed in South America. Unspecied = CTX-M enzyme present but
variant unreported. **Others = Variants of CTX-M enzymes with <1% of prevalence. Pie charts are showing the maximum and minimum percentages for each country;
complete information can be found in the main text and Supplementary Table 2.
Figure 7 Distribution of ESBLs types (A) and CTX-M enzyme variants (B) identied in food and developed in South America. *Others = Variants of CTX-M enzymes with
<1% of prevalence. Pie charts are showing the maximum and minimum percentages for each country; complete information can be found in the main text and in
Supplementary Table 2.
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5766
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
obtained in results from the other categories (ie, human clinical cases, human healthy carriers, animals, and food studies),
CTX-M enzymes were the most prevalent (71.4%; n=197/276). Among CTX-M variants, CTX-M-1 in Colombia
(68.1%; n=49/72), CTX-M-2 in Peru (72.7%; n=8/11), and CTX-M-55 in Ecuador (50%; n=8/16) were reported. In
Brazil, CTX-M variants were unknown in most cases, representing 43.3% (n=42/97) of all detections. In Bolivia, CTX-
M-3 was the variant detected in their unique report (n=1/1). These results can be traced in detail in Figure 8 and
Supplementary Table 2.
Clones of Epidemiological Importance
A total of 59 different clones were described in 31 studies. The clone E. coli ST131 represented 48.4% of the total of
detected clones in the studies (n=15/31), followed by ST10 with 29% (n=9/31). The clones ST405, ST648, and ST38
accounted for 13% (n=4/31) each; ST410 and ST744 for 10% (n=3/31) each; followed by clones ST90, ST117, and
ST155 representing the 6.4% (n=2/31). All the remaining clones were represented by a single detection across the
reporting studies (3%; n=1/31 each; Supplementary Table 3). It is worth to mention that the presence of these clones was
conditioned to their detection per country; thus, Brazil was the country that reported more clones (55%; n=38/59)
followed by Peru (17.4%; n=12/59), Ecuador, Uruguay (11.6%; n=8/59 each), Chile (5.8%; n=4/59), and single reports of
clones from Colombia, Argentina, and French Guiana (1.4%; n=1/59 each).
Discussion
The present systematic review of the literature provides relevant information on the distributions of ESBLs in E. coli in
South America. To our knowledge, this is the rst attempt that addresses the presence of ESBLs across different
categories, going beyond human-derived clinical samples, to also consider samples from human healthy carriers, animals,
environmental, and food isolations, echoing calls of multidisciplinary, One Health approaches, to comprehend the
presence of antibiotic resistance mechanisms.
Of the 130 studies included in this review, Brazil contributed with more than half the research of this topic (n=65/130;
Figure 3). These results correspond with evidence showing different levels of scientic production in South America
where Brazil is recognized as a regional leader.
25–28
The other South American countries had at least one publication on
ESBLs producing E. coli,
29
which is far from ideal and should prompt efforts to understand beta-lactam resistance and
their importance in public health.
2,3
Despite the low scientic production of Ecuador compared to the rest of South
Figure 8 Distribution of ESBLs types (A) and CTX-M enzyme variants (B) identied in the environment and developed in South America. Unspecied = CTX-M enzyme
present but variant unreported. *Others = Variants of CTX-M enzymes with <1% of prevalence. Pie charts are showing the maximum and minimum percentages for each
country; complete information can be found in the main text and Supplementary Table 2.
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5767
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
American countries,
27,28
Ecuador was the country with the second highest research contribution in the region in this
review (n=15/130), together with Argentina (Figure 3).
Considering the limitations of many South American laboratories (eg, logistics, equipment, infrastructure, others),
30,31
we
expected that the inclusion of molecular tests that require higher costs and increased technical expertise
32
would have been
lower compared to phenotypic tests. Consequently, in this review, phenotypic tests (n=25/130) were implemented in 11 more
publications than molecular tests (n=14/130); however, most of the publications used both phenotypic and molecular tests
(70%; n=91/130) for identication, which allows a more precise detection and therefore improvement of ESBLs epidemio-
logical surveillance in E. coli.
33
Some human clinical or environmental studies used molecular methods directly for ESBLs
genes’ detection. Ideally, both detection methods should be implemented since neither is exempt from limitations. First,
methods such as PCR are less effective in the presence of unknown mutations of new unreported ESBL variants, especially
when these mutations appear at primer hybridization sites.
33
Second, methods based on disk diffusion can report problems
with interpretation when co-resistance events occur.
34
Thus, new techniques for identifying ESBLs are being developed and
have proven to be more sensitive, specic, efcient, and even provide other advantages such as point-of-care detections.
35
One
of the more recent options is the CRISPR-Cas9-based detection method with optical DNA mapping, which was used to
identify bla
CTX-M-15
and bla
CTX-M-14
genes in E. coli from clinical urinary tract infections in Sweden.
36
Up to 52% (n=68/130) of studies corresponded to human clinical samples, which depicts the lack of research about
antimicrobial resistance from non-human oriented sources.
19
For example, for this review, Venezuela contributed with
publications only within this category (Figure 3). Reviews such as that of Guzmán et al
37
expose the clinical situation in
Venezuela but lack an analysis of antimicrobial resistance from animals, food products, or the environment.
Among the categories established in our review, ESBL detections from human healthy carriers, at the community
level, were mostly underrepresented (n=5/130; Figure 3). Onduru et al evidenced a similar pattern in a review for African
countries
38
where human clinical studies represented the 74%, while studies performed on healthy carriers contributed
only with the 15%. It is known that healthy carriers are an important reservoir for the transmission of beta-lactamases and
therefore act as spreaders to healthy individuals or environmental settings. Further studies including surveillance at these
scales might unveil a hidden pattern for the epidemiology of bacterial resistance in human populations.
39,40
For this review, One Health studies were categorized as interdisciplinary, considering that they analyzed samples
across different interfaces: human-animal,
41–43
human-environment,
44,45
human-food,
46
animal-environment,
47
human-
animal-food,
48
and animal-food-environment.
49
The number of interdisciplinary studies included in this review was low
(7%; n=9/130; Figure 3). Similarly, O’Neal et al review for Central America
50
and Escher et al review for Africa
51
found
small numbers of One Health-related studies. Thus, apart from South America, other world regions also struggle to
incorporate One Health approaches to their experimental designs; a reality that might be tackled with international
cooperation, executing multi-sectorial action plans as proposed by the WHO.
52
Many of the clinical studies included in
the present review were “international multicenter studies”, which are characterized by promoting joint research across
several countries, albeit these alliances are usually focused on human clinical samples.
53
These types of studies might be
a good example to follow to include a cooperative approach to address questions in the ecology and veterinary elds.
Considering animal publications, those for human consumption were more studied than other groups. Of these, 61%
came from poultry in birds and 82% from bovines and swine in livestock. This can be explained due to awareness of the
impact of antibiotic use as prophylactic treatment or most commonly as growth promoters for fattening. There is
extensive evidence showing how this practice promotes the spread and therefore the risk of zoonotic antibiotic resistance
mechanism contaminations through the food chain.
54–56
Nevertheless, for this review, urban and migratory birds
contributed with the 28% and 11% of ESBLs in E. coli, respectively. Recently, studies of migratory birds have
incriminated their feces in the environment as possible contributors to the international spread of antimicrobial
resistance.
57–59
Studies focusing on this animal group should be encouraged to assess the validity of this hypothesis.
Veterinary publications have noticed a zoonotic transmission risk from pet animals, favored by their proximity to their
owners.
60–62
A similar trend can be stressed for the potential spillover of ESBLs; however, studies from pet animals were
also underrepresented in our systematic review with only a 23%. Studies focused on wild animals were even less
represented in our review (6%; n=2/35; Figure 2A). Wildlife might be an important source for the spread of resistance
mechanisms as they act as bridges between the urban and sylvatic environments, especially mammals.
63
Another
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5768
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
example is that, in Brazil, shes have been found to contribute to the spread of ESBLs in natural waterbodies and its
marine fauna.
64,65
In South America, higher values of ESBL producing E. coli prevalence were obtained from animal, food, and
environmental sources compared to human samples (Table 1). In our review, one of these results showed a prevalence of
E. coli with ESBL genotype of 18.1% in animals and 12.3% in the environment compared to 1.9% in clinical studies.
These results were analogous among the majority of South American countries and similar to observations in Tanzania,
the Netherlands, and other regions of the world where ESBLs from animal and environmental sources showed between a
10 to 20% higher prevalence than humans.
66–68
Therefore, although apparently many of the E. coli resistance mechan-
isms are acquired in the clinical setting, prevalence in animals and environmental sources predominate and should be
further studied.
CTX-M enzymes were the most prevalent, with more than 50% detections in each country and category analyzed in
this review (ie, human clinical samples, human healthy carriers, animal, food, and environment; Figures 4–8). Similar
results have been reported in the rest of the world. For example, in Africa CTX-M prevalence reaches an 81.5%.
38
In
Iran, CTX-M enzyme prevalence reached 31.2% followed by TEM with 27.6%.
69
It is worth to mention that the
prevalence analyzed here only accounted for E. coli, thus it might be an underestimation if including other bacterial
species such as K. pneumoniae, which usually harbor TEM or SHV enzymes.
70–72
Apart from the best-known enzymes (ie, TEM, SHV, and CTX-M), TOHO, reported for the rst time in Japan in
1993,
73
was also found in South America among human clinical and environmental studies (Figures 4A and 8A). Thus,
in little less than three decades, TOHO enzymes have spread to a completely different region albeit its low prevalence
(<0.1%; n=1/3701). Other types of beta-lactamases that are worth highlighting are the OXA (<0.1%; n=17/3701) and
AmpC (<0.1%; n=9/3701) enzymes. Both show a different resistance spectrum to the most common resistant enzymes.
OXA enzymes can hydrolyze more effectively antibiotics such as carbapenems,
74
while AmpC is not inhibited by
clavulanic acid.
75
The ESBL enzymes PER-2, with similar spectrum to TEM and SHV enzymes,
76
were only found in
Uruguay with a low prevalence (Figure 4A). However, Celenza et al
76
have reported PER-2 isolated from
Enterobacteriaceae in Bolivian hospitals, which suggests the existence of PER-2-carrying E. coli in this country.
Although detected, CTX-M enzyme variants were poorly reported (Figure 4B). Detection of variants is one of the
most important clinical data because each one has differences in their antibiotic response.
77–79
It is worth noting that in
other regions of the world such as Nigeria, Tunisia, and the Netherlands, CTX-M-15 variant isolated from clinical
settings is usually detected with a prevalence ranging from 67.9% to 83.3%.
80–82
Considering animal studies, the presence of CTX-M-8 enzyme variant was frequently described in countries such as
Brazil, Argentina, and Uruguay (Figure 6B). Because CTX-M-8 was rst isolated from Enterobacteriaceae in Brazil,
83
the most likely scenario involves it spread across animals from neighboring countries, despite the lack of reports of CTX-
M-8 in Chile, Peru, and Ecuador according to our review. For these countries, the variants CTX-M-1 and CTX-M-15
were detected, as has been seen in goat samples from Tunisia, pigs from Portugal, horses from the UK, and processed
beef from Germany.
84–87
From food studies, the main types of CTX-M enzymes detected included the CTX-M-1 in Ecuador and the CTX-M-2
in Brazil (Figure 7B); results were consistent with reports from Germany
88,89
and Algeria
90
where the CTX-M-1 variant
is the most prevalent. However, as only few studies address the presence of antibiotic resistant enzymes in food-related
sources, more research is granted to conrm their role as a mechanism of spread with public health consequences.
The enzymes of type TOHO, OXA, and AmpC from environmental studies were found only in Brazil (Figure 8A).
These types of ESBLs had an overall low prevalence. For CTX-M enzyme variants from environmental sources, there
was a great variability of detection across South American countries, namely, the enzyme CTX-M-1 in Colombia, CTX-
M-3 enzyme in Ecuador/Bolivia, and the CTX-M-2 enzyme in Peru/Brazil (Figure 8B). Lines of research that go beyond
the simple detection of ESBLs in the environment should be encouraged as has been done in other regions of the world.
For example, in Nigeria, Lebanon, Vietnam, and India, there are studies assessing the impact of antibiotic release on
hospital wastewater correlated with patterns on resistance acquisition in E. coli.
91–94
Research from the UK, Tanzania,
and the Dominican Republic
95–97
have revealed the importance of IncF plasmids found in natural waterbodies. Being a
conjugative plasmid, IncF is related to the dissemination of bla
CTX-M-15
by horizontal gene transfer.
98,99
Finally, other
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5769
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
exemplary studies show how activated sludge from wastewater treatment plants can be a source of high prevalence of
CTX-M as demonstrated in Japan,
100
Austria,
101
and India.
102
The E. coli clones ST131 and ST10 were found across South America (Supplementary Table 3). These results are
consistent with a study conducted in Canada in which 96/209 (46%) E. coli strains corresponded to the clonal complex
ST131
103
and with one developed in the Netherlands where from 112 strains belonging to E. coli, 21% belonged to ST131 and
17% to ST10,
82
demonstrating the worldwide high prevalence of the ST131 clone. These clones are known to be a major
reservoir of plasmids carrying resistant genes to multiple antibiotics, including bla
TEM
, bla
SHV
, and bla
CTX-M
.
104
The inuence
of international travel on the dissemination of these clones has been studied in countries such as Germany, where the ST131
clone ranges between 19% and 30%, or the Netherlands, where the ST131 clone prevalence reaches a 21.4%.
82,105
For the
purposes of this argument, it is worth to mention that Woerther et al
106
reported the international clone ST10 in healthy carriers
from a remote community at French Guiana, which begs the question on how this clone was acquired within an isolated
population.
Limitations
Our results are based on a systematic review of published academic literature. Potentially, there is relevant information
among the grey literature (eg, thesis) that might complement the results presented here; however, we rely on the quality
of peer-review publications to assess the status of E. coli ESBLs in South America with certainty. Similarly, our analysis
excluded articles in the category of “reviews” that sometimes present pieces of original research, but we believe that their
overall contribution in the presented information may be negligible. Furthermore, while we comprehensibly reviewed
each of the 130 manuscripts included in this study, data heterogeneity across different countries and publications is a
challenge that was overcome with some heuristic categorizations, which are the basis of any systematic review.
Finally, it is worth noticing that although manuscripts included in the present review were considered of high quality
by the individual assessment of their results, we are aware that potentially some of them might be published in journals
considered predatory. We believe that science should be judged by their ndings instead of the journal in which it was
published, and for this review we can trust in the reliability of the studies analyzed.
Conclusions
ESBLs producing E. coli in South America are widely distributed and show a high diversity of enzyme variants. ESBLs
in human samples are the most studied, mainly in those linked to hospital environments (inpatient and outpatient).
However, ESBLs in food and animal samples are the most prevalent. Countries such as Brazil present more studies on
ESBL surveillance involving various sample sources. CTX-M enzymes are the most common and diverse of the types of
beta-lactamases found and show a high prevalence across all the studied categories. ST131 and ST10 are the most
widespread clones in the studies included in this review.
In order to fully characterize the situation of E. coli ESBLs in South America, a greater contribution from under-
represented countries of the region should be encouraged. These contributions ideally should emphasize the role of
sources different from human clinical settings such as animals, environmental, and food matrices, together with
detections from human healthy carriers. Concerns related to transmission of resistant mechanisms among human healthy
carriers, zoonotic sources, as well as the spread of ESBLs in aquatic ecosystems, reveal the importance of developing
studies beyond the human clinical-centered view of health. Furthermore, the importance of animal and environmental
health should be explored since ESBL genes in both realms have been detected in South America and the rest of the
world.
Efforts to increase the epidemiological surveillance of the region to detect predominant types of ESBLs and the
presence of new variants, as well as the distribution of ST clones, should be a priority considering their different roles in
antibiotic resistance and their traceability to detect infection sources. At this point, the inclusion of both phenotypic and
molecular tests, as well as the development of new detection techniques, should facilitate surveillance efforts to further
the understanding of ESBL distribution in South America.
Finally, the information presented in this review can be used as basis for subsequent implementation of monitoring
programs, targeting potential critical points of transmission sources. Following the One Health concept, the development
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5770
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
of contingency plans in different areas like hospitals, broiler breeding sites, and wastewater treatment plants might
contribute to the identication of resistant enzymes and their spreading, which ideally should be controlled if not
completely halted; within this objective, a multi-sectoral and multi-disciplinary cooperation will be of utmost importance.
Acknowledgments
Our thanks to the Universidad de las Américas for nancing the APCs of this work. Special thanks to Adriana Gallegos-
Ordoñez for her help in proofreading of English language and support in the writing of this work.
Supplementary Materials
To a better description of ndings of this work, the following supporting information can be downloaded. Supplementary
Table 1: Number of samples identied (frequencies) and % prevalence of E. coli, E. coli with ESBL phenotype, and E.
coli with ESBL genotype in South America from human clinical samples, human healthy carriers, animal, food, and
environmental studies. Data from 130 studies included in systematic review between 1990 and 2021. Supplementary
Table 2: Percentages of different beta-lactamase enzymes identied across South American countries and CTX-M
variants for human clinical samples, human healthy carriers, animal, food, and environmental studies. Data from 130
studies included in systematic review between 1990 and 2021. Supplementary Table 3: E. coli ST clones found in studies
in South America per country and author. Data from 130 studies included in systematic review between 1990 and 2021.
Supplementary Table 4: Summary Data Base and list of studies included in the systematic review and general data from
130 studies included between 1990 and 2021. Supplementary Table 5: List of additional references included in the
systematic review.
107–225
Disclosure
The authors report no conicts of interest in this work.
References
1. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance
threat. Clin Micro Rev. 2001;14:933–951. doi:10.1128/CMR.14.4.933-951.2001
2. Behzadi P, García-Perdomo HA, Karpiński TM, Issakhanian L. Metallo-ß-lactamases: a review. Mol Biol Rep. 2020;47(8):6281–6294.
doi:10.1007/s11033-020-05651-9
3. Issakhanian L, Behzadi P. Antimicrobial agents and urinary tract infections. Curr Pharm Des. 2019;25(12):1409–1423. doi:10.2174/
1381612825999190619130216
4. Hozzari A, Behzadi P, Kerishchi Khiabani P, Sholeh M, Sabokroo N. Clinical cases, drug resistance, and virulence genes proling in
Uropathogenic Escherichia coli. J Appl Genet. 2020;61(2):265–273. doi:10.1007/s13353-020-00542-y
5. Hernández J, Stedt J, Bonnedahl J, et al. Human-associated extended-spectrum β-lactamase in the Antarctic. Appl Environ Microbiol. 2012;78
(6):2056–2058. doi:10.1128/AEM.07320-11
6. Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62(10). doi:10.1128/AAC.01076-18
7. Villegas MV, Kattan JN, Quinteros MG, Casellas JM. Prevalence of extended-spectrum β-lactamases in South America. Clin Micro Infect.
2008;14:154–158. doi:10.1111/j.1469-0691.2007.01869.x
8. Rada AM, Hernández-Gómez C, Restrepo E, Villegas MV. Distribution and molecular characterization of beta-lactamases in Gram-negative
bacteria in Colombia, 2001–2016. Biomédica. 2019;39:199–220. doi:10.7705/biomedica.v39i3.4351
9. Paterson D, Bonomo R. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657. doi:10.1128/CMR.18.4.657-686.2005
10. Mella MS, Zemelman MC, Bello TH, Dominguez YM, Gonzalez RG, Zemelman ZR. Microbiological properties, classication and structure-
activity relationship of cephalosporins and importance of fourth generation cephalosporins. Rev Chil Infectol. 2001;18(1):7–19.
11. Polanco-Hinostroza F, Loza-Munarriz R. Resistencia antibiótica en infecciones urinarias en niños atendidos en una institución privada, periodo
2007 – 2011 [Antibiotic resistance in urinary tract infections in children cared for in a private institution, period 2007 – 2011]. Rev Medica
Hered. 2013;24(3):210–216.
12. Oliveira C, Amador P, Prudêncio C, Tomaz C, Tavares P, Fernandes R. ESBL and AmpC β-lactamases in clinical strains of Escherichia coli
from Serra da Estrela, Portugal. Medicina. 2019;55(6):272. doi:10.3390/medicina55060272
13. Behzadi P, Behzadi E. The microbial agents of urinary tract infections at central laboratory of Dr. Shariati Hospital, Tehran, Iran. Turk Klin Tip
Bilim. 2008;28(4):445–449.
14. Paterson D, Hujer K, Hujer A, et al. Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries:
dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother. 2003;47(11):3554–3560.
doi:10.1128/AAC.47.11.3554-3560.2003
15. Zarfel G, Lipp M, Gürtl E, et al. Troubled water under the bridge: screening of River Mur water reveals dominance of CTX-M
harboringEscherichia coli and for the rst time an environmental VIM-1 producer in Austria. Sci Total Environ. 2017;593-594:399–405.
doi:10.1016/j.scitotenv.2017.03.138
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5771
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
16. Gomi R, Matsuda T, Matsumura Y, et al. Whole-genome analysis of antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in
river water. Appl Environ Microbiol. 2017;83(5). doi:10.1128/AEM.02703-16
17. Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect. 2008;14:117–123. doi:10.1111/j.1469-
0691.2007.01851.x
18. McEwen SA, Collignon PJ. Antimicrobial resistance: a one health perspective. Microbiol Spectr. 2018;6(2). doi:10.1128/microbiolspec.ARBA-
0009-2017
19. Rousham EK, Unicomb L, Islam MA. Human, animal and environmental contributors to antibiotic resistance in low-resource settings:
integrating behavioural, epidemiological and One Health approaches. Proc Biol Sci. 2018;285(1876). doi:10.1098/rspb.2018.0332
20. Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and
meta-analysis. PLoS One. 2017;12(12):e0189621. doi:10.1371/journal.pone.0189621
21. Aworh MK, Kwaga J, Okolocha E, et al. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry
environments in Abuja, Nigeria. One Health Outlook. 2020;2(8). doi:10.1186/s42522-020-00014-7
22. Alonso CA, Zarazaga M, Sallem RB, Jouini A, Slama KB, Torres C. Antibiotic resistance in Escherichia coli in husbandry animals: the African
perspective. Lett Appl Microbiol. 2017;64(5):318–334. doi:10.1111/lam.12724
23. Destoumieux-Garzón D, Mavingui P, Boetsch G, et al. The one health concept: 10 years old and a long road ahead. Front Vet Sci. 2018;5:14.
doi:10.3389/fvets.2018.00014
24. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev.
2021;10(89). doi:10.1186/s13643-021-01626-4
25. González G, Park J, Huamaní C, Ramos JM. Dominance and leadership in research activities: collaboration between countries of differing
human development is reected through authorship order and designation as corresponding authors in scientic publications. PLoS One.
2017;12(8):e0182513. doi:10.1371/journal.pone.0182513
26. Glänzel W, Leta J, Thijs B. Science in Brazil. Part 1: a macro-level comparative study. Scientometrics. 2006;67:67–86. doi:10.1007/s11192-006-
0055-7
27. Carvajal-Tapia AE, Carvajal-Rodríguez E. Status of scientic production in medicine in South America. 1996-2016. Rev Fac Med. 2018;66
(4):595–600. doi:10.15446/revfacmed.v66n4.67215
28. Carvajal-Tapia AE, Carvajal-Rodríguez E. Producción cientíca en ciencias de la salud en los países de América Latina, 2006-2015: análisis a
partir de SciELO [Scientic production in health sciences in Latin American countries, 2006–2015: analysis from SciELO]. Revista
Interamericana de Bibliotecología. 2019;42(1):15–21. Spanish.
29. Ciocca D, Delgado G. The reality of scientic research in Latin America; an insider’s perspective. Cell Stress Chaperones. 2017;22:847–852.
doi:10.1007/s12192-017-0815-8
30. Ashley E, Recht J, Chua A, et al. An inventory of supranational antimicrobial resistance surveillance networks involving low- and middle-
income countries since 2000. J Antimicrob Chemother. 2018;73(7):1737–1749. doi:10.1093/jac/dky026
31. Pfaller M, Segreti J. Overview of the epidemiological prole and laboratory detection of extended-spectrum β-lactamases. Clin Infect Dis.
2006;42(Suppl 4):S153–S163. doi:10.1086/500662
32. Thomas S. Antimicrobial Resistance: Global Challenges and Future Interventions. 1st ed. Singapore: Springer; 2020.
33. Pitout J, Hossain A, Hanson N. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella
spp. J Clin Microbiol. 2004;42(12):5715–5721. doi:10.1128/JCM.42.12.5715-5721.2004
34. Calvo J, Cantón R, Cuenca FF, Mirelis B, Navarro F. Procedimientos En Microbiología Clínica [Procedures in Clinical Microbiology]. 1st ed.
Cercenado E, Cantón R, eds. Spain: SEIMC; 2011. Spanish.
35. Jia F, Li X, Zhang C, Tang X. The expanded development and application of CRISPR system for sensitive nucleotide detection. Protein Cell.
2020;11:624–629. doi:10.1007/s13238-020-00708-8
36. Müller V, Rajer F, Frykholm K, et al. Direct identication of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in
combination with optical DNA mapping. Sci Rep. 2016;6(1). doi:10.1038/srep37938
37. Guzmán M, Labarca JA, Villegas MV, Gotuzzo E; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase
producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis. 2014;18(4):421–433. doi:10.1016/j.bjid.2013.10.005
38. Onduru G, Mkakosya R, Aboud S, Rumisha S. Genetic determinants of resistance among ESBL-producing Enterobacteriaceae in healthy
carriers and hospital settings in East, Central, and Southern Africa: a systematic review and meta-analysis of prevalence. Can J Infect Dis Med
Microbiol. 2021;2021:1–9. doi:10.1155/2021/5153237
39. Storberg V. ESBL-producing Enterobacteriaceae in Africa – a non-systematic literature review of research published 2008–2012. Infect Ecol
Epidemiol. 2014;4(1):20342.
40. Ebrahimi F, Mózes J, Mészáros J, et al. Asymptomatic faecal carriage of ESBL producing Enterobacteriaceae in Hungarian healthy individuals
and in long-term care applicants: a shift towards CTX-M producers in the healthy carriers. Infect Dis. 2016;48(7):557–559. doi:10.3109/
23744235.2016.1155734
41. Borges CA, Tarlton NJ, Riley LW. Escherichia coli from commercial broiler and backyard chickens share sequence types, antimicrobial
resistance proles, and resistance genes with human extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis. 2019;16(12):813–822.
doi:10.1089/fpd.2019.2680
42. Hernandez J, Johansson A, Stedt J, et al. Characterization and comparison of extended-spectrum β-lactamase (ESBL) resistance genotypes and
population structure of Escherichia coli isolated from Franklin’s gulls (Leucophaeus pipixcan) and humans in Chile. PLoS One. 2013;8(9):
e76150. doi:10.1371/journal.pone.0076150
43. Murray M, Salvatierra G, Dávila A, et al. Market Chickens as a Source of Antibiotic-Resistant Escherichia coli in a Peri-Urban Healthy carriers
in Lima, Peru. Front Microbiol. 2021;12:635871. doi:10.3389/fmicb.2021.635871
44. Dias-Gonçalves V, Meirelles F, Cataldo M, et al. Detection of multidrug-resistant Enterobacteriaceae isolated from river waters owing to the
Guanabara Bay and from clinical samples of hospitals in Rio de Janeiro, Brazil. Biomedica. 2019;39(Suppl 1):S135–S149. doi:10.7705/
biomedica.v39i0.4391
45. Pehrsson E, Tsukayama P, Patel S, et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature. 2016;533:212–216.
doi:10.1038/nature17672
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5772
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
46. Koga V, Maluta R, da Silveira W, et al. Characterization of CMY-2-type beta-lactamase-producing Escherichia coli isolated from chicken
carcasses and human infection in a city of South Brazil. BMC Microbiol. 2019;19:174. doi:10.1186/s12866-019-1550-3
47. Brisola MC, Crecencio RB, Bitner DS, et al. Escherichia coli used as a biomarker of antimicrobial resistance in pig farms of Southern Brazil.
Sci Total Environ. 2019;647:362–368. doi:10.1016/j.scitotenv.2018.07.438
48. Ortega D, de Janon S, Villavicencio F, et al. Broiler farms and carcasses are an important reservoir of multi-drug resistant Escherichia coli in
Ecuador. Front Vet Sci. 2020;7:547843. doi:10.3389/fvets.2020.547843
49. Gazal L, Medeiros L, Dibo M, et al. Detection of ESBL/AmpC-producing and fosfomycin-resistant Escherichia coli from different sources in
poultry production in Southern Brazil. Front Microbiol. 2021;11:604544. doi:10.3389/fmicb.2020.604544
50. O’Neal L, Alvarez D, Mendizábal R, Ramay B, Graham J. Healthy carriers-acquired antimicrobial resistant Enterobacteriaceae in Central
America: a one health systematic review. Int J Environ Res Public Health. 2020;17(20):7622. doi:10.3390/ijerph17207622
51. Escher N, Muhummed A, Hattendorf J, Vonaesch P, Zinsstag J. Systematic review and meta-analysis of integrated studies on antimicrobial
resistance genes in Africa-a one health perspective. Trop Med Int Health. 2021;26(10):1153–1163. doi:10.1111/tmi.13642
52. World Health Organization [WHO]. Global action plan on antimicrobial resistance; 2016. Available from: http://www.emro.who.int/health-
topics/drug-resistance/global-action-plan.html. Accessed May 14, 2021.
53. Bangdiwala S, De Paula C, Ramiro L, Muñoz S. Coordinación de estudios multicéntricos internacionales: estructura administrativa y
reglamentación [Coordination of international multicenter studies: administrative structure and regulations]. Salud Pública de México.
2003;45(1):58–66. Spanish. doi:10.1590/S0036-36342003000100008
54. Kumar Y. Antimicrobial Resistance: A Global Threat. London: IntechOpen; 2019.
55. Wang Y, Hu Y, Cao J, et al. Antibiotic resistance gene reservoir in live poultry markets. J Infect. 2019;78(6):445–453. doi:10.1016/j.
jinf.2019.03.012
56. Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol. 2019;125:462–466. doi:10.1016/j.fct.2019.01.033
57. Silva GG, Campana EH, Vasconcelos PC, et al. Ocorrência de Escherichia coli produtora de KPC em psitaciformes resgatados do tráco na
Paraíba, Brasil [Occurrence of KPC-Producing Escherichia coli in Psittaciformes Rescued from Trafcking in Paraíba, Brazil]. Int J Environ
Res Public Health. 2021;18(1):95. Portuguese. doi:10.3390/ijerph18010095
58. Islam MS, Nayeem MMH, Sobur MA, et al. Virulence determinants and multidrug resistance of Escherichia coli isolated from migratory birds.
Antibiot. 2021;10(2):190. doi:10.3390/antibiotics10020190
59. Wu J, Huang Y, Rao D, Zhang Y, Yang K. Evidence for environmental dissemination of antibiotic resistance mediated by wild birds. Front
Microbiol. 2018;9:745. doi:10.3389/fmicb.2018.00745
60. Pomba C, Rantala M, Greko C, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother.
2017;72(4):957–968. doi:10.1093/jac/dkw481
61. Melo LC, Oresco C, Leigue L, et al. Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased
companion animals in Brazil. Vet Microbiol. 2018;221:59–66. doi:10.1016/j.vetmic.2018.05.017
62. Riwu KHP, Effendi MH, Rantam FA. A review of extended spectrum β-lactamase (ESBL) producing Klebsiella pneumoniae and multidrug
resistant (MDR) on companion animals. Syst Rev Pharm. 2020;11(7):8.
63. Poo-Muñoz DA, Elizondo-Patrone C, Escobar LE, et al. Fleas and ticks in carnivores from a domestic-wildlife interface: implications for public
health and wildlife. J Med Entomol. 2016;53(6):1433–1443. doi:10.1093/jme/tjw124
64. Sellera FP, Fernandes MR, Moura Q, Carvalho MPN, Lincopan N. Extended-spectrum-β-lactamase (CTX-M)-producing Escherichia coli in
wild shes from a polluted area in the Atlantic Coast of South America. Mar Pollut Bull. 2018;135:183–186. doi:10.1016/j.
marpolbul.2018.07.012
65. Almeida MVA, Cangussú ÍM, Carvalho ALS, Brito ILP, Costa RA. Drug resistance, AmpC-β-lactamase and extended-spectrum β-lactamase-
producing Enterobacteriaceae isolated from sh and shrimp. Rev Inst Med Trop Sao Paulo. 2017;59. doi:10.1590/s1678-9946201759070
66. Seni J, Moremi N, Matee M, et al. Preliminary insights into the occurrence of similar clones of extended-spectrum beta-lactamase-producing
bacteria in humans, animals and the environment in Tanzania: a systematic review and meta-analysis between 2005 and 2016. Zoonoses Public
Health. 2018;65(1):1–10. doi:10.1111/zph.12387
67. Dorado A, Smid JH, van Pelt W, et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the
environment: a pooled analysis. J Antimicrob Chemother. 2018;73(2):339–347. doi:10.1093/jac/dkx397
68. Pormohammad A, Nasiri MJ, Azimi T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans,
animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist. 2019;12:1181. doi:10.2147/IDR.S201324
69. Jabalameli L, Beigverdi R, Ranjbar HH, Pouriran R, Jabalameli F, Emaneini M. Phenotypic and genotypic prevalence of extended-spectrum β-
lactamase-producing Escherichia coli: a systematic review and meta-analysis in Iran. Microb Drug Resist. 2021;27(1):73–86. doi:10.1089/
mdr.2019.0396
70. Malik T, Naim A, Saeed A. Molecular detection of TEM, SHV and CTX-M genes among gram-negative Klebsiella isolates. Curr Drug Deliv.
2018;15(3):417–423. doi:10.2174/1567201815666180101160108
71. Mondal AH, Siddiqui MT, Sultan I, Haq QMR. Prevalence and diversity of bla
TEM
, bla
SHV
and bla
CTX-M
variants among multidrug resistant
Klebsiella spp. from an urban riverine environment in India. Int J Environ Health Res. 2018;29(2):117–129. doi:10.1080/
09603123.2018.1515425
72. Ramos DA, Pulgarín JAH, Gómez GAM, et al. Geographic mapping of Enterobacteriaceae with extended-spectrum β-lactamase (ESBL)
phenotype in Pereira, Colombia. BMC Infect Dis. 2020;20(1):1–9.
73. Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ. CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes. Int J
Antimicrob Agents. 2000;14(2):137–142. doi:10.1016/S0924-8579(99)00165-X
74. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev.
2020;33(1):e00102–e00119.
75. Martinez D. Betalactamasas tipo AmpC: generalidades y métodos para detección fenotípica [AmpC-type beta-lactamases: overview and
methods for phenotypic detection]. Rev Soc Ven. 2009;29(2):78–83. Spanish.
76. Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of bla
CTX-M
-type and bla
PER-2
β-lactamase genes in clinical
isolates from Bolivian hospitals. J Antimicrob Chemother. 2006;57(5):975–978. doi:10.1093/jac/dkl055
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5773
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
77. D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol.
2013;303(6–7):305–317. doi:10.1016/j.ijmm.2013.02.008
78. He D, Chiou J, Zeng Z, Chan EWC, Liu JH, Chen S. Comparative characterization of CTX-M-64 and CTX-M-14 provides insights into the
structure and catalytic activity of the CTX-M class of enzymes. Antimicrob Agents Chemother. 2016;60(10):6084–6090. doi:10.1128/
AAC.00917-16
79. Lubna M, Shamsi K, Abid A, Khan A. Signicant role of Asn-247 and Arg-64 residues in close proximity of the active site in maintaining the
catalytic function of CTX-M-15 type β-lactamase. RSC Adv. 2019;9(10):5325–5337. doi:10.1039/C8RA10313E
80. Ogbolu DO, Alli OAT, Webber MA, Oluremi AS, Oloyede OM. CTX-M-15 is established in most multidrug-resistant uropathogenic
Enterobacteriaceae and Pseudomonaceae from hospitals in Nigeria. Eur J Microbiol Immunol. 2018;8(1):20–24. doi:10.1556/1886.2017.00012
81. Hassen B, Abbassi MS, Benlabidi S, et al. Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated
from wastewater and river water in Tunisia: predominance of CTX-M-15 and high genetic diversity. Environ Sci Pollut Res. 2020;27
(35):44368–44377. doi:10.1007/s11356-020-10326-w
82. Louka C, Ravensbergen SJ, Ott A, et al. Predominance of CTX-M-15-producing ST131 strains among ESBL-producing Escherichia coli
isolated from asylum seekers in the Netherlands. J Antimicrob Chemother. 2021;76(1):70–76. doi:10.1093/jac/dkaa395
83. Bonnet R, Sampaio JLM, Labia R, et al. A novel CTX-M β-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil.
Antimicrob Agents Chemother. 2000;44(7):1936–1942. doi:10.1128/AAC.44.7.1936-1942.2000
84. Hassen B, Saloua B, Abbassi MS, et al. mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15- producing Escherichia coli isolates of
bovine and caprine origins in Tunisia. First report of CTX-M-15-ST394/D E. coli from goats. Comp Immunol Microbiol Infect Dis.
2019;67:101366. doi:10.1016/j.cimid.2019.101366
85. Fournier C, Aires S, Nordmann P, Poirel L. Occurrence of CTX-M-15- and MCR-1-producing Enterobacterales in pigs in Portugal: evidence of
direct links with antibiotic selective pressure. Int J Antimicrob Agents. 2020;55(2):105802. doi:10.1016/j.ijantimicag.2019.09.006
86. Isgren CM, Edwards T, Pinchbeck GL, et al. Emergence of carriage of CTX-M-15 in faecal Escherichia coli in horses at an equine hospital in
the UK; increasing prevalence over a decade (2008–2017). BMC Vet Res. 2019;15(1):1–8. doi:10.1186/s12917-019-2011-9
87. Irrgang A, Falgenhauer L, Fischer J, et al. CTX-M-15-producing E. coli isolates from food products in Germany are mainly associated with an
IncF-type plasmid and belong to two predominant clonal E. coli lineages. Front Microbiol. 2017;8:2318.
88. Kaesbohrer A, Bakran-Lebl K, Irrgang A, et al. Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in
Germany. Vet Microbiol. 2019;233:52–60. doi:10.1016/j.vetmic.2019.03.025
89. Schill F, Abdulmawjood A, Klein G, Reich F. Prevalence and characterization of extended-spectrum β-lactamase (ESBL) and AmpC β-
lactamase producing Enterobacteriaceae in fresh pork meat at processing level in Germany. Int J Food Microbiol. 2017;257:58–66. doi:10.1016/
j.ijfoodmicro.2017.06.010
90. Yaici L, Haenni M, Métayer V, et al. Spread of ESBL/AmpC-producing Escherichia coli and Klebsiella pneumoniae in the healthy carriers
through ready-to-eat sandwiches in Algeria. Int J Food Microbiol. 2017;245:66–72. doi:10.1016/j.ijfoodmicro.2017.01.011
91. Adelowo OO, Caucci S, Banjo OA, et al. Extended Spectrum Beta-Lactamase (ESBL)-producing bacteria isolated from hospital wastewaters,
rivers and aquaculture sources in Nigeria. Environ Sci Pollut Res. 2017;25(3):2744–2755. doi:10.1007/s11356-017-0686-7
92. Daoud Z, Farah J, Sokhn S, et al. Multidrug-resistant Enterobacteriaceae in Lebanese hospital wastewater: implication in the one health concept.
Microb Drug Resist. 2018;24(2):166–174. doi:10.1089/mdr.2017.0090
93. Lien LTQ, Lan PT, Chuc NTK, et al. Antibiotic resistance and antibiotic resistance genes in Escherichia coli isolates from hospital wastewater
in Vietnam. Int J Environ Res Public Health. 2017;14(7):699. doi:10.3390/ijerph14070699
94. Lamba M, Graham DW, Ahammad SZ. Hospital wastewater releases of carbapenem-resistance pathogens and genes in Urban India. Environ Sci
Technol. 2017;51(23):13906–13912. doi:10.1021/acs.est.7b03380
95. Dinatale A. Prevalence of Plasmid Genetic Elements Among ESBL-Producing E. coli Isolated from a UK River and the Effects of Waste Water
Efuent Release [dissertation]. UK: University of Lincoln; 2017.
96. Baniga Z, Hounmanou YMG, Kudirkiene E, Kusiluka LJM, Mdegela RH, Dalsgaard A. Genome-based analysis of extended-spectrum β-
lactamase-producing Escherichia coli in the aquatic environment and Nile Perch (Lates niloticus) of Lake Victoria, Tanzania. Front Microbiol.
2020;11:108. doi:10.3389/fmicb.2020.00108
97. Calderón V, Bonnelly R, Del Rosario C, et al. Distribution of beta-lactamase producing gram-negative bacterial isolates in isabela river of Santo
Domingo, Dominican Republic. Front Microbiol. 2021;11. doi:10.3389/fmicb.2020.519169
98. Mattila S, Ruotsalainen P, Ojala V, Tuononen T, Hiltunen T, Jalasvuori M. Conjugative ESBL plasmids differ in their potential to rescue
susceptible bacteria via horizontal gene transfer in lethal antibiotic concentrations. J Antibiot. 2017;70(6):805–808. doi:10.1038/ja.2017.41
99. Cortés G, Kim J, Mira P, Mota L, Barlow M, Camps M. Conjugative transfer of ESBL and aminoglycoside antibiotic resistance genes in
Extraintestinal E. coli: implications for multidrug resistance evolution: in proceedings of the 1st International Electronic Conference on
Antibiotics—the equal power of antibiotics and antimicrobial resistance. Sci Forum. 2021;2021:9747.
100. Urano N, Okai M, Tashiro Y, et al. Behavior of antibiotic-resistant fecal coliforms in the stream of a sewage treatment plant in Tokyo. Adv
Microbiol. 2020;10(7):318–330. doi:10.4236/aim.2020.107023
101. Galler H, Feierl G, Petternel C, et al. Multiresistant bacteria isolated from activated sludge in Austria. Int J Environ Res Public Health. 2018;15
(3):479. doi:10.3390/ijerph15030479
102. Ali A, Sultan I, Mondal AH, Siddiqui MT, Gogry FA, Haq QMR. Lentic and efuent water of Delhi-NCR: a reservoir of multidrug-resistant
bacteria harbouring bla
CTX-M
, bla
TEM
and bla
SHV
type ESBL genes. J Water Health. 2021;19(4):592–603. doi:10.2166/wh.2021.085
103. Peirano G, Richardson D, Nigrin J, et al. High prevalence of ST131 isolates producing CTX-M-15 and CTX-M-14 among extended-spectrum-β-
lactamase-producing Escherichia coli isolates from Canada. Antimicrob Agents Chemother. 2010;54(3):1327–1330. doi:10.1128/AAC.01338-09
104. Jouini A, Klibi A, Elarbi I, et al. First detection of human ST131-CTX-M-15-O25-B2 clone and high-risk clonal lineages of ESBL/pAmpC-
producing E. coli isolates from diarrheic poultry in Tunisia. Antibiot. 2021;10(6):670. doi:10.3390/antibiotics10060670
105. Ehlkes L, Pfeifer Y, Werner G, et al. No evidence of carbapenemase-producing Enterobacteriaceae in stool samples of 1544 asylum seekers
arriving in Rhineland-Palatinate, Germany, April 2016 to March 2017. Eurosurveillance. 2019;24(8):1800030. doi:10.2807/1560-7917.
ES.2019.24.8.1800030
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5774
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
106. Woerther PL, Angebault C, Jacquier H, et al. Characterization of fecal extended-spectrum-β-lactamase-producing Escherichia coli in a remote
healthy carriers during a long time period. Antimicrob Agents Chemother. 2013;57(10):5060–5066. doi:10.1128/AAC.00848-13
107. Daga AP, Koga VL, Soncini JGM, et al. Escherichia coli bloodstream infections in patients at a university hospital: virulence factors and
clinical characteristics. Front Cell Infect Microbiol. 2019;9:191. doi:10.3389/fcimb.2019.00191
108. Palmeira JD, Haenni M, Metayer V, Madec JY, Ferreira HMN. Epidemic spread of IncI1/pST113 plasmid carrying the Extended-Spectrum
Beta-Lactamase (ESBL) blaCTX-M-8 gene in Escherichia coli of Brazilian cattle. Vet Microbiol. 2020;243:108629. doi:10.1016/j.
vetmic.2020.108629
109. Ortega-Paredes D, Haro M, Leoro-Garzón P, et al. Multidrug-resistant Escherichia coli isolated from canine faeces in a public park in Quito,
Ecuador. J Glob Antimicrob Resist. 2019;18:263–268. doi:10.1016/j.jgar.2019.04.002
110. Faccone D, Moredo FA, Giacoboni GI, et al. Multidrug-resistant Escherichia coli harbouring mcr-1 and blaCTX-M genes isolated from swine in
Argentina. J Glob Antimicrob Resist. 2019;18:160–162. doi:10.1016/j.jgar.2019.03.011
111. Vinueza-Burgos C, Ortega-Paredes D, Narváez C, De Zutter L, Zurita J. Characterization of cefotaxime resistant Escherichia coli isolated from
broiler farms in Ecuador. PLoS One. 2019;14(4):e0207567. doi:10.1371/journal.pone.0207567
112. Cunha MPV, Oliveira MCV, Oliveira MGX, Menão MC, Knöbl T. CTX-M-producing Escherichia coli Isolated from urban pigeons (Columba
livia domestica) in Brazil. J Infect Dev Ctries. 2019;13:1052–1056. doi:10.3855/jidc.11441
113. Aristizábal-Hoyos AM, Rodríguez EA, Arias L, Jiménez JN. High clonal diversity of multidrug-resistant and extended spectrum beta-
lactamase-producing Escherichia coli in a wastewater treatment plant. J Environ Manage. 2019;245:37–47. doi:10.1016/j.jenvman.2019.05.073
114. Rumi MV, Mas J, Elena A, et al. Co-occurrence of clinically relevant β-lactamases and MCR-1 encoding genes in Escherichia coli from
companion animals in Argentina. Vet Microbiol. 2019;230:228–234. doi:10.1016/j.vetmic.2019.02.006
115. Hoepers PG, Silva PL, Rossi DA, et al. The association between extended spectrum beta-lactamase (ESBL) and ampicillin C (AmpC) beta-
lactamase genes with multidrug resistance in Escherichia coli isolates recovered from turkeys in Brazil. Br Poult Sci. 2018;59(4):396–401.
doi:10.1080/00071668.2018.1468070
116. Chavez MV, Caicedo LD, Castillo JE. Occurrence of β-lactamase-producing gram-negative bacterial isolates in water sources in Cali City,
Colombia. Int J Microbiol. 2019;2019:1375060. doi:10.1155/2019/1375060
117. De carvalho MPN, Fernandes MR, Sellera FP, et al. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia
coli in peri-urban wild animals, Brazil. Transbound Emerg Dis. 2020;67(5):1804–1815.
118. Benavides JA, Shiva C, Virhuez M, et al. Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus
rotundus and livestock in Peru. Zoonoses Public Health. 2018;65(4):454–458. doi:10.1111/zph.12456
119. Guzmán M, Salazar E, Cordero V, et al. Multirresistencia a medicamentos y factores de riesgo asociados con infecciones urinarias por
Escherichia coli adquiridas en la comunidad, Venezuela [Multidrug resistance and risk factors associated with healthy carriers-acquired urinary
tract infections caused by Escherichia coli in Venezuela]. Biomedica. 2019;39(Suppl1):S96–S107. Spanish.
120. Zurita J, Solís MB, Ortega-Paredes D, et al. High prevalence of B2-ST131 clonal group among extended-spectrum β-lactamase-producing
Escherichia coli isolated from bloodstream infections in Quito, Ecuador. J Glob Antimicrob Resist. 2019;19:216–221. doi:10.1016/j.
jgar.2019.04.019
121. Sfaciotte RAP, Parussolo L, Melo FD, et al. Identication and characterization of multidrug-resistant extended-spectrum beta-lactamase-
producing bacteria from healthy and diseased dogs and cats admitted to a veterinary hospital in Brazil. Microb Drug Resist. 2021;27(6):855–
864. doi:10.1089/mdr.2020.0043
122. Crecencio RB, Brisola MC, Bitner D, et al. Antimicrobial susceptibility, biolm formation and genetic proles of Escherichia coli isolated from
retail chicken meat. Infect Genet Evol. 2020;84:104355. doi:10.1016/j.meegid.2020.104355
123. Fernandes MR, Sellera FP, Moura Q, Esposito F, Sabino CP, Lincopan N. Identication and genomic features of halotolerant extended-
spectrum-β-lactamase (CTX-M)-producing Escherichia coli in urban-impacted coastal waters, Southeast Brazil. Mar Pollut Bull.
2020;150:110689. doi:10.1016/j.marpolbul.2019.110689
124. Freitas DY, Araújo S, Folador ARC, et al. Extended spectrum beta-lactamase-producing gram-negative bacteria recovered from an Amazonian
lake near the City of Belém, Brazil. Front Microbiol. 2019;10:364. doi:10.3389/fmicb.2019.00364
125. Fuentes-Castillo D, Farfán-López M, Esposito F, et al. Wild owls colonized by international clones of extended-spectrum β-lactamase (CTX-
M)-producing Escherichia coli and Salmonella infantis in the Southern Cone of America. Sci Total Environ. 2019;674:554–562. doi:10.1016/j.
scitotenv.2019.04.149
126. Larson A, Hartinger SM, Riveros M, et al. Antibiotic-resistant Escherichia coli in drinking water samples from rural Andean households in
Cajamarca, Peru. Am J Trop Med Hyg. 2019;100(6):1363–1368. doi:10.4269/ajtmh.18-0776
127. Batalha de Jesus AA, Freitas AAR, de Souza JC, et al. High-level multidrug-resistant Escherichia coli isolates from wild birds in a large urban
environment. Microb Drug Resist. 2019;25(2):167–172. doi:10.1089/mdr.2018.0180
128. Lentz SAM, Adam FC, Rivas PM, et al. High levels of resistance to cephalosporins associated with the presence of extended-spectrum and
AmpC β-lactamases in Escherichia coli from broilers in Southern Brazil. Microb Drug Resist. 2020;26(5):531–535. doi:10.1089/mdr.2019.0050
129. Zurita J, Yánez F, Sevillano G, Ortega-Paredes D, Paz Y, Miño A. Ready-to-eat street food: a potential source for dissemination of multidrug-
resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett Appl Microbiol. 2020;70(3):203–209. doi:10.1111/lam.13263
130. Miranda J, Pinto J, Faustino M, Sánchez-Jacinto B, Ramirez F. Resistencia antimicrobiana de uropatógenos en adultos mayores de una clínica
privada de Lima, Perú [Antimicrobial resistance of uropathogens in older adults in a private clinic in Lima, Peru]. Rev Peru Med Exp Salud
Publica. 2019;36(1):87–92. Spanish. doi:10.17843/rpmesp.2019.361.3765
131. Ortega-Paredes D, Barba P, Mena-López S, Espinel N, Zurita J. Escherichia coli hyperepidemic clone ST410-A harboring bla
CTX-M-15
isolated
from fresh vegetables in a municipal market in Quito-Ecuador. Int J Food Microbiol. 2018;280:41–45. doi:10.1016/j.ijfoodmicro.2018.04.037
132. Pavez M, Troncoso C, Osses I, et al. High prevalence of CTX-M-1 group in ESBL-producing Enterobacteriaceae infection in intensive care
units in southern Chile. Braz J Infect Dis. 2019;23(2):102–110. doi:10.1016/j.bjid.2019.03.002
133. Umpiérrez A, Bado I, Oliver M, et al. Zoonotic potential and antibiotic resistance of Escherichia coli in neonatal calves in Uruguay. Microbes
Environ. 2017;32(3):275–282. doi:10.1264/jsme2.ME17046
134. Coppola N, Freire B, Umpiérrez A, et al. Transferable resistance to highest priority critically important antibiotics for human health in
Escherichia coli strains obtained from livestock feces in Uruguay. Front Vet Sci. 2020;7:588919. doi:10.3389/fvets.2020.588919
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5775
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
135. Cyoia PS, Koga VL, Nishio EK, et al. Distribution of ExPEC virulence factors, bla
CTX-M
, fosA3, and mcr-1 in Escherichia coli isolated from
commercialized chicken carcasses. Front Microbiol. 2019;9:3254. doi:10.3389/fmicb.2018.03254
136. Nogueira S, Conte D, Maia FV, Dalla-Costa LM. Distribution of extended-spectrum β-lactamase types in a Brazilian tertiary hospital. Rev Soc
Bras Med Trop. 2015;48(2):162–169. doi:10.1590/0037-8682-0009-2015
137. Bartley PS, Domitrovic TN, Moretto VT, et al. Antibiotic resistance in Enterobacteriaceae from surface waters in Urban Brazil highlights the
risks of poor sanitation. Am J Trop Med Hyg. 2019;100(6):1369–1377. doi:10.4269/ajtmh.18-0726
138. Araque M, Labrador I. Prevalence of fecal carriage of CTX-M-15 beta-lactamase-producing Escherichia coli in healthy children from a Rural
Andean Village in Venezuela. Osong Public Health Res Perspect. 2018;9(1):9–15. doi:10.24171/j.phrp.2018.9.1.03
139. Pereira JL, Volcão LM, Klafke GB, et al. Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamases of
Escherichia coli and Klebsiella spp. isolates from urinary tract infections in Southern Brazil. Microb Drug Resist. 2019;25(2):173–181.
doi:10.1089/mdr.2018.0046
140. Palma N, Pons MJ, Gomes C, et al. Resistance to quinolones, cephalosporins and macrolides in Escherichia coli causing bacteraemia in
Peruvian children. J Glob Antimicrob Resist. 2017;11:28–33. doi:10.1016/j.jgar.2017.06.011
141. Botelho LAB, Kraychete GB, Rocha PB, et al. CTX-M- and pAmpC-encoding genes are associated with similar mobile genetic elements in
Escherichia coli isolated from different brands of Brazilian chicken meat. Microb Drug Resist. 2020;26(1):14–20. doi:10.1089/mdr.2019.0043
142. Faccone D, Rapoport M, Albornoz E, et al. Plasmidic resistance to colistin mediated by mcr-1 gene in Escherichia coli clinical isolates in
Argentina: a retrospective study, 2012–2018. Rev Panam Salud Publica. 2020;44:e55. doi:10.26633/RPSP.2020.55
143. Beirão EM, Rodrigues SDS, Andrade TK, et al. Activity of ceftolozane-tazobactam and comparators against gram-negative bacilli: results from
the study for monitoring antimicrobial resistance trends (SMART - Brazil; 2016–2017). Braz J Infect Dis. 2020;24(4):310–321. doi:10.1016/j.
bjid.2020.05.010
144. Villar HE, Aubert V, Baserni MN, Jugo MB. Maternal carriage of extended-spectrum beta-lactamase-producing Escherichia coli isolates in
Argentina. J Chemother. 2013;25(6):324–327. doi:10.1179/1973947813Y.0000000081
145. Colquechagua-Aliaga F, Sevilla-Andrade C, Gonzales-Escalante E. Enterobacterias productoras de betalactamasas de espectro extendido en
muestras fecales en el Instituto Nacional de Salud del Niño, Perú [Extended-spectrum beta-lactamase (esbl)-producing Enterobacteriaceae in
fecal samples at the National Institute of Child Health, Peru]. Rev Peru Med Exp Salud Publica. 2015;32(1):26–32. Spanish.
146. Chiluisa-Guacho C, Escobar-Perez J, Dutra-Asensi M. First detection of the CTXM-15 producing Escherichia coli O25-ST131 pandemic clone
in Ecuador. Pathogens. 2018;7(2):42. doi:10.3390/pathogens7020042
147. Palma N, Gomes C, Riveros M, et al. Virulence factors proles and ESBL production in Escherichia coli causing bacteremia in Peruvian
children. Diagn Microbiol Infect Dis. 2016;86(1):70–75. doi:10.1016/j.diagmicrobio.2016.05.017
148. Sarmiento AF, Mejia MN, Rozas AB, Giraldo CA, Málaga G. Frecuencia y factores de riesgo para bacteriemia por enterobacterias productoras
de betalactamasa de espectro extendido en pacientes de un hospital público de Lima, Perú [Frequency and risk factors for bacteremia caused by
extended spectrum beta-lactamase-producing Enterobacteriaceae in patients of a public hospital in Lima, Peru]. Rev Peru Med Exp Salud
Publica. 2018;35(1):62–67. Spanish. doi:10.17843/rpmesp.2018.351.3601
149. Blanco VM, Maya JJ, Correa A, et al. Prevalencia y factores de riesgo para infecciones del tracto urinario de inicio en la comunidad causadas
por Escherichia coli productor de betalactamasas de espectro extendido en Colombia [Prevalence and risk factors for extended-spectrum β-
lactamase-producing Escherichia coli causing healthy carriers-onset urinary tract infections in Colombia]. Enferm Infecc Microbiol Clin.
2016;34(9):559–565. Spanish. doi:10.1016/j.eimc.2015.11.017
150. Chagas TP, Seki LM, Cury JC, et al. Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de
Janeiro, Brazil. J Appl Microbiol. 2011;111(3):572–581. doi:10.1111/j.1365-2672.2011.05072.x
151. Vignoli R, García-Fulgueiras V, Cordeiro NF, et al. Extended-spectrum β-lactamases, transferable quinolone resistance, and virulotyping in
extra-intestinal E. coli in Uruguay. J Infect Dev Ctries. 2016;10(1):43–52. doi:10.3855/jidc.6918
152. Campos ACC, Andrade NL, Ferdous M, et al. Corrigendum: comprehensive molecular characterization of Escherichia coli isolates from urine
samples of hospitalized patients in Rio de Janeiro, Brazil. Front Microbiol. 2020;11:599031. doi:10.3389/fmicb.2020.599031
153. Gonçalves LF, De oliveira P, de Melo ABF, et al. Multidrug resistance dissemination by extended-spectrum β-lactamase-producing Escherichia
coli causing healthy carriers-acquired urinary tract infection in the Central-Western Region, Brazil. J Glob Antimicrob Resist. 2016;6:1–4.
doi:10.1016/j.jgar.2016.02.003
154. Martinez P, Garzón D, Mattar S. CTX-M-producing Escherichia coli and Klebsiella pneumoniae isolated from healthy carriers-acquired urinary
tract infections in Valledupar, Colombia. Braz J Infect Dis. 2012;16(5):420–425. doi:10.1016/j.bjid.2012.05.001
155. Peirano G, Asensi MD, Pitondo-Silva A, Pitout JD. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli
from Rio de Janeiro, Brazil. Clin Microbiol Infect. 2011;17(7):1039–1043. doi:10.1111/j.1469-0691.2010.03440.x
156. Andrade LN, Minarini LA, Pitondo-Silva A, et al. Determinants of beta-lactam resistance in meningitis-causing Enterobacteriaceae in Brazil.
Can J Microbiol. 2010;56(5):399–407. doi:10.1139/W10-020
157. Abreu AG, Marques SG, Monteiro-Neto V, Carvalho RM, Gonçalves AG. Infecção hospitalar e caracterização de Enterobactérias produtoras de
β-lactamases de espectro ampliado no Nordeste do Brasil [Nosocomial infection and characterization of extended-spectrum β-lactamases-
producing Enterobacteriaceae in Northeast Brazil]. Rev Soc Bras Med Trop. 2011;44(4):441–446. Portuguese. doi:10.1590/S0037-
86822011000400008
158. Villar HE, Baserni MN, Jugo MB. Faecal carriage of ESBL-producing Enterobacteriaceae and carbapenem-resistant Gram-negative bacilli in
healthy carriers settings. J Infect Dev Ctries. 2013;7(8):630–634. doi:10.3855/jidc.2900
159. Garrido D, Garrido S, Gutiérrez M, et al. Clinical characterization and antimicrobial resistance of Escherichia coli in pediatric patients with
urinary tract infection at a third level hospital of Quito, Ecuador. Bol Med Hosp Infant Mex. 2017;74(4):265–271. doi:10.1016/j.
bmhimx.2017.02.004
160. Koga VL, Rodrigues GR, Scandorieiro S, et al. Evaluation of the antibiotic resistance and virulence of Escherichia coli strains isolated from
chicken carcasses in 2007 and 2013 from Paraná, Brazil. Foodborne Pathog Dis. 2015;12(6):479–485. doi:10.1089/fpd.2014.1888
161. Wollheim C, Guerra IM, Conte VD, et al. Nosocomial and healthy carriers infections due to class A extended-spectrum β-lactamase (ESBLA)-
producing Escherichia coli and Klebsiella spp. in southern Brazil. Braz J Infect Dis. 2011;15(2):138–143.
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5776
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
162. Borges CA, Maluta RP, Beraldo LG, et al. Captive and free-living urban pigeons (Columba livia) from Brazil as carriers of multidrug-resistant
pathogenic Escherichia coli. Vet J. 2017;219:65–67. doi:10.1016/j.tvjl.2016.12.015
163. Soria-Segarra C, Soria-Baquero E, Cartelle-Gestal M. High prevalence of CTX-M-1-like enzymes in urinary isolates of Escherichia coli in
Guayaquil, Ecuador. Microb Drug Resist. 2018;24(4):393–402. doi:10.1089/mdr.2017.0325
164. Viana ALM, Cayô R, Avelino CC, Gales AC, Franco MC, Minarini LAR. Extended-spectrum β-lactamases in Enterobacteriaceae isolated in Brazil carry
distinct types of plasmid-mediated quinolone resistance genes. J Med Microbiol. 2013;62(Pt 9):1326–1331. doi:10.1099/jmm.0.055970-0
165. Bado I, Gutiérrez C, García-Fulgueiras V, et al. CTX-M-15 in combination with aac(6’)-Ib-cr is the most prevalent mechanism of resistance
both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay. J Glob Antimicrob Resist.
2016;6:5–9. doi:10.1016/j.jgar.2016.02.001
166. Botelho LA, Kraychete GB, Costa JL, et al. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli
from Brazilian chicken meat. Mem Inst Oswaldo Cruz. 2015;110(2):249–254. doi:10.1590/0074-02760140389
167. Dropa M, Lincopan N, Balsalobre LC, et al. Genetic background of novel sequence types of CTX-M-8- and CTX-M-15-producing Escherichia
coli and Klebsiella pneumoniae from public wastewater treatment plants in São Paulo, Brazil. Environ Sci Pollut Res Int. 2016;23(5):4953–
4958. doi:10.1007/s11356-016-6079-5
168. García-Fulgueiras V, Bado I, Mota MI, et al. Extended-spectrum β-lactamases and plasmid-mediated quinolone resistance in enterobacterial
clinical isolates in the paediatric hospital of Uruguay. J Antimicrob Chemother. 2011;66(8):1725–1729. doi:10.1093/jac/dkr222
169. Pallecchi L, Malossi M, Mantella A, et al. Detection of CTX-M-type beta-lactamase genes in fecal Escherichia coli isolates from healthy
children in Bolivia and Peru. Antimicrob Agents Chemother. 2004;48(12):4556–4561. doi:10.1128/AAC.48.12.4556-4561.2004
170. Quijada-Martínez P, Flores-Carrero A, Labrador I, Araque M. Estudio clínico y microbiológico de la infección urinaria asociada a catéter, en los
servicios de medicina interna de un hospital universitario venezolano [Clinical and microbiological study of catheter-associated urinary tract
infections in internal medicine services of a Venezuelan university hospital]. Rev Peru Med Exp Salud Publica. 2017;34(1):52–61. Spanish.
doi:10.17843/rpmesp.2017.341.2766
171. Minarini LA, Gales AC, Palazzo IC, Darini AL. Prevalence of healthy carriers-occurring extended spectrum beta-lactamase-producing
Enterobacteriaceae in Brazil. Curr Microbiol. 2007;54(5):335–341. doi:10.1007/s00284-006-0307-z
172. Sartori L, Fernandes MR, Ienne S, et al. Draft genome sequences of two uoroquinolone-resistant CTX-M-15-producing Escherichia coli ST90
(ST23 complex) isolated from a calf and a dairy cow in South America. J Glob Antimicrob Resist. 2017;11:145–147. doi:10.1016/j.
jgar.2017.10.009
173. Marusinec R, Kurowski KM, Amato HK, et al. Caretaker knowledge, attitudes, and practices (KAP) and carriage of extended-spectrum beta-lactamase-
producing E. coli (ESBL-EC) in children in Quito, Ecuador. Antimicrob Resist Infect Control. 2021;10(1):2. doi:10.1186/s13756-020-00867-7
174. Jones RN, Guzman-Blanco M, Gales AC, et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance
program (2011). Braz J Infect Dis. 2013;17(6):672–681. doi:10.1016/j.bjid.2013.07.002
175. Adrianzén D, Arbizu A, Ortiz J, Samalvides F. Mortalidad por bacteriemia causada por Escherichia coli y Klebsiella spp. productoras de beta
lactamasas de espectro extendido: cohorte retrospectiva en un hospital de Lima, Perú [Mortality caused by bacteremia Escherichia coli and
Klebsiella spp. extended-spectrum beta-lactamase- producers: a retrospective cohort from a hospital in Lima, Peru]. Rev Peru Med Exp Salud
Publica. 2013;30(1):18–25. Spanish. doi:10.1590/s1726-46342013000100004
176. Tedesco-Maiullari RM, Guevara A. Enterobatteri produttori di beta-lattamasi a spettro esteso in un ospedale in Venezuela [Enterobacteria
producers of extended-spectrum beta-lactamase in a hospital from Venezuela]. Infez Med. 2012;20(2):93–99. Italian.
177. Di Conza JA, Badaracco A, Ayala J, Rodríguez C, Famiglietti A, Gutkind GO. β-lactamases produced by amoxicillin-clavulanate-resistant
enterobacteria isolated in Buenos Aires, Argentina: a new blaTEM gene. Rev Argent Microbiol. 2014;46(3):210–217. doi:10.1016/S0325-7541
(14)70075-6
178. Da Silva KC, Cunha MP, Cerdeira L, et al. High-virulence CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated
from commercial turkeys. Diagn Microbiol Infect Dis. 2017;87(1):64–67. doi:10.1016/j.diagmicrobio.2016.10.001
179. Fernandes MR, Sellera FP, Moura Q, Gaspar VC, Cerdeira L, Lincopan N. International high-risk clonal lineages of CTX-M-producing
Escherichia coli F-ST648 in free-roaming cats, South America. Infect Genet Evol. 2018;66:48–51. doi:10.1016/j.meegid.2018.09.009
180. Da Silva-dias RC, Borges-Neto AA, D’Almeida-Ferraiuoli GI, De-oliveira MP, Riley LW, Moreira BM. Prevalence of AmpC and other beta-
lactamases in enterobacteria at a large urban university hospital in Brazil. Diagn Microbiol Infect Dis. 2008;60(1):79–87. doi:10.1016/j.
diagmicrobio.2007.07.018
181. Ferreira JC, Penha Filho RA, Andrade LN, Berchieri A, Darini AL. Detection of chromosomal bla(CTX-M-2) in diverse Escherichia coli
isolates from healthy broiler chickens. Clin Microbiol Infect. 2014;20(10):623–626. doi:10.1111/1469-0691.12531
182. Quiles MG, Menezes LC, Bauab C, et al. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR. BMC Infect Dis.
2015;15:283. doi:10.1186/s12879-015-1033-6
183. Dias RCB, Vieira MA, Moro AC, et al. Characterization of Escherichia coli obtained from patients undergoing peritoneal dialysis and
diagnosed with peritonitis in a Brazilian centre. J Med Microbiol. 2019;68(9):1330–1340. doi:10.1099/jmm.0.001043
184. Ferreira CM, Ferreira WA, Almeida NC, Naveca FG, Barbosa M. Extended-spectrum beta-lactamase-producing bacteria isolated from
hematologic patients in Manaus, State of Amazonas, Brazil. Braz J Microbiol. 2011;42(3):1076–1084. doi:10.1590/S1517-83822011000300028
185. Rugini CL, Sobottka AM, Fuentefria DB. Occurrence and sensitivity prole of extended spectrum beta-lactamase-producing Enterobacteriaceae
at a tertiary hospital in Southern Brazil. Rev Soc Bras Med Trop. 2015;48(6):692–698. doi:10.1590/0037-8682-0211-2015
186. Oplustil CP, Nunes R, Mendes C; RESISTNET Group. Multicenter evaluation of resistance patterns of Klebsiella pneumoniae, Escherichia coli,
Salmonella spp and Shigella spp isolated from clinical specimens in Brazil: RESISTNET Surveillance Program. Braz J Infect Dis. 2001;5(1):8–12.
doi:10.1590/S1413-86702001000100002
187. Tosin I, Silbert S, Sader HS. The use of molecular typing to evaluate the dissemination of antimicrobial resistance among Gram-negative rods in
Brazilian hospitals. Braz J Infect Dis. 2003;7(6):360–369. doi:10.1590/S1413-86702003000600002
188. Guevara N, Guzmán M, Merentes A, et al. Patrones de susceptibilidad antimicrobiana de bacterias gramnegativas aisladas de infecciones del
tracto urinario en Venezuela: resultados del estudio SMART 2009-2012 [Antimicrobial susceptibility patterns of Gram-negative bacteria
isolated in urinary tract infections in Venezuela: results of the SMART study 2009-2012]. Rev Chilena Infectol. 2015;32(6):639–648.
Spanish. doi:10.4067/S0716-10182015000700005
Infection and Drug Resistance 2022:15 https://doi.org/10.2147/IDR.S371845
DovePress
5777
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
189. Casellas JM, Tomé G, Bantar C, et al. Argentinean collaborative multicenter study on the in vitro comparative activity of piperacillin-
tazobactam against selected bacterial isolates recovered from hospitalized patients. Diagn Microbiol Infect Dis. 2003;47(3):527–537.
doi:10.1016/S0732-8893(03)00131-7
190. Motta RN, Oliveira MM, Magalhães PS, et al. Plasmid-mediated extended-spectrum beta-lactamase-producing strains of Enterobacteriaceae
isolated from diabetes foot infections in a Brazilian diabetic center. Braz J Infect Dis. 2003;7(2):129–134. doi:10.1590/S1413-
86702003000200006
191. Rossi F, García P, Ronzon B, Curcio D, Dowzicky MJ. Rates of antimicrobial resistance in Latin America (2004-2007) and in vitro activity of
the glycylcycline tigecycline and of other antibiotics. Braz J Infect Dis. 2008;12(5):405–415. doi:10.1590/S1413-86702008000500012
192. Casella T, Rodríguez MM, Takahashi JT, et al. Detection of blaCTX-M-type genes in complex class 1 integrons carried by Enterobacteriaceae
isolated from retail chicken meat in Brazil. Int J Food Microbiol. 2015;197:88–91. doi:10.1016/j.ijfoodmicro.2014.12.001
193. De Oliveira CF, Salla A, Lara VM, Rieger A, Horta JA, Alves SH. Prevalence of extended-spectrum beta-lactamases-producing microorganisms
in nosocomial patients and molecular characterization of the SHV-type isolates. Braz J Microbiol. 2010;41(2):278–282. doi:10.1590/S1517-
83822010000200002
194. Seki LM, Pereira PS, de Souza-conceição M, et al. Molecular epidemiology of CTX-M producing Enterobacteriaceae isolated from bloodstream
infections in Rio de Janeiro, Brazil: emergence of CTX-M-15. Braz J Infect Dis. 2013;17(6):640–646. doi:10.1016/j.bjid.2013.03.012
195. Salgado-Caxito M, Benavides JA, Munita JM, et al. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant
Escherichia coli among dogs in Southeast Brazil. Prev Vet Med. 2021;190:105316. doi:10.1016/j.prevetmed.2021.105316
196. Vignoli R, Varela G, Mota MI, et al. Enteropathogenic Escherichia coli strains carrying genes encoding the PER-2 and TEM-116 extended-
spectrum beta-lactamases isolated from children with diarrhea in Uruguay. J Clin Microbiol. 2005;43(6):2940–2943. doi:10.1128/
JCM.43.6.2940-2943.2005
197. Hernández E, Araque M, Millán Y, Millán B, Vielma S. Prevalencia de beta-lactamasa CTX-M-15 en grupos logenéticos de Escherichia coli
uropatógena aisladas en pacientes de la comunidad en Mérida, Venezuela [Prevalence of beta-lactamase CTX-M-15 in phylogenetic groups of
uropathogenic Escherichia coli isolated from patients in the healthy carriers of Merida, Venezuela]. Invest Clin. 2014;55(1):32–43. Spanish.
198. Saba-Villarroel PM, Gutkind GO, Di Conza JA, Radice MA. First survey on antibiotic resistance markers in Enterobacteriaceae in
Cochabamba, Bolivia. Rev Argent Microbiol. 2017;49(1):50–54. doi:10.1016/j.ram.2016.10.002
199. Lago A, Fuentefria SR, Fuentefria DB. Enterobactérias produtoras de ESBL em Passo Fundo, estado do Rio Grande do Sul, Brasil [ESBL-
producing enterobacteria in Passo Fundo, state of Rio Grande do Sul, Brazil]. Rev Soc Bras Med Trop. 2010;43(4):430–434. Portuguese.
doi:10.1590/S0037-86822010000400019
200. Marchetti L, Buldain D, Gortari-Castillo L, Buchamer A, Chirino-Trejo M, Mestorino N. Pet and stray dogs as reservoirs of antimicrobial-
resistant Escherichia coli. Int J Microbiol. 2021;2021:6664557. doi:10.1155/2021/6664557
201. Wozniak A, Villagra NA, Undabarrena A, et al. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and
intermediate levels of carbapenem resistance in Chile. J Med Microbiol. 2012;61(Pt 9):1270–1279. doi:10.1099/jmm.0.045799-0
202. Queiroz ML, Antunes P, Mourão J, Merquior VL, Machado E, Peixe LV. Characterization of extended-spectrum beta-lactamases, antimicrobial
resistance genes, and plasmid content in Escherichia coli isolates from different sources in Rio de Janeiro, Brazil. Diagn Microbiol Infect Dis.
2012;74(1):91–94. doi:10.1016/j.diagmicrobio.2012.05.019
203. Salinas L, Loayza F, Cárdenas P, et al. Environmental spread of Extended Spectrum Beta-Lactamase (ESBL) producing Escherichia coli and
ESBL genes among children and domestic animals in Ecuador. Environ Health Perspect. 2021;129(2):27007. doi:10.1289/EHP7729
204. Bartoloni A, Sennati S, Di Maggio T, et al. Antimicrobial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, fosA3) in
clinical isolates from urinary tract infections in the Bolivian Chaco. Int J Infect Dis. 2016;43:1–6. doi:10.1016/j.ijid.2015.12.008
205. Vasques MR, Bello AR, Lamas C, Correa J, Pereira JA. β-lactamase producing enterobacteria isolated from surveillance swabs of patients in a
cardiac intensive care unit in Rio de Janeiro, Brazil. Braz J Infect Dis. 2011;15(1):28–33.
206. Mendo-Lopez R, Jasso L, Guevara X, et al. Multidrug-resistant microorganisms colonizing lower extremity wounds in patients in a tertiary care
hospital, Lima, Peru. Am J Trop Med Hyg. 2017;97(4):1045–1048. doi:10.4269/ajtmh.17-0235
207. Gaitán CSL, Espinal MPA. Caracterización molecular de Escherichia coli y Klebsiella pneumoniae productores de beta-lactamasas de espectro
extendido en hospitales de la Región Caribe, Colombia [Molecular characterization of extended-spectrum beta-lactamases-producing
Escherichia coli and Klebsiella pneumoniae in hospitals of the Caribean Region, Colombia]. Rev Chilena Infectol. 2009;26(3):239–246.
Spanish.
208. Sennati S, Santella G, Di Conza J, et al. Changing epidemiology of extended-spectrum β-lactamases in Argentina: emergence of CTX-M-15.
Antimicrob Agents Chemother. 2012;56(11):6003–6005. doi:10.1128/AAC.00745-12
209. Ferreira JC, Penha-Filho RA, Andrade LN, Berchieri Junior A, Darini AL. Evaluation and characterization of plasmids carrying CTX-M genes
in a non-clonal population of multidrug-resistant Enterobacteriaceae isolated from poultry in Brazil. Diagn Microbiol Infect Dis. 2016;85
(4):444–448. doi:10.1016/j.diagmicrobio.2016.05.011
210. Abreu AG, Marques SG, Monteiro-Neto V, Gonçalves AG. Extended-spectrum β-lactamase-producing Enterobacteriaceae in healthy carriers-
acquired urinary tract infections in São Luís, Brazil. Braz J Microbiol. 2013;44(2):469–471. doi:10.1590/S1517-83822013005000038
211. Hawser SP, Bouchillon SK, Hoban DJ, et al. Low frequency of ertapenem-resistant intra-abdominal isolates of Escherichia coli from Latin
America: susceptibility, ESBL-occurrence, and molecular characterisation (SMART 2008–2009). J Chemother. 2012;24(1):6–11. doi:10.1179/
1120009X12Z.0000000003
212. Quinteros M, Radice M, Gardella N, et al. Extended-spectrum beta-lactamases in Enterobacteriaceae in Buenos Aires, Argentina, public
hospitals. Antimicrob Agents Chemother. 2003;47(9):2864–2867. doi:10.1128/AAC.47.9.2864-2867.2003
213. Flamm RK, Sader HS, Jones RN. Ceftaroline activity tested against contemporary Latin American bacterial pathogens (2011). Braz J Infect Dis.
2014;18(2):187–195. doi:10.1016/j.bjid.2013.11.005
214. Nordberg V, Quizhpe-Peralta A, Galindo T, et al. High proportion of intestinal colonization with successful epidemic clones of ESBL-producing
Enterobacteriaceae in a neonatal intensive care unit in Ecuador. PLoS One. 2013;8(10):e76597. doi:10.1371/journal.pone.0076597
215. Fernandes MR, Sellera FP, Esposito F, Sabino CP, Cerdeira L, Lincopan N. Colistin-resistant mcr-1-positive Escherichia coli on public beaches,
an infectious threat emerging in recreational waters. Antimicrob Agents Chemother. 2017;61(7):e00234–17. doi:10.1128/AAC.00234-17
https://doi.org/10.2147/IDR.S371845
DovePress
Infection and Drug Resistance 2022:15
5778
Bastidas-Caldes et al Dovepress
Powered by TCPDF (www.tcpdf.org)
216. Redondo C, Chalbaud A, Alonso G. Frequency and diversity of CTX-M enzymes among extended-spectrum beta-lactamase-producing
Enterobacteriaceae isolates from Caracas, Venezuela. Microb Drug Resist. 2013;19(1):42–47. doi:10.1089/mdr.2012.0079
217. Villar HE, Jugo MB, Macan A, Visser M, Hidalgo M, Maccallini GC. Frequency and antibiotic susceptibility patterns of urinary pathogens in
male outpatients in Argentina. J Infect Dev Ctries. 2014;8(6):699–704. doi:10.3855/jidc.3766
218. Moreno A, Bello H, Guggiana D, Domínguez M, González G. Extended-spectrum beta-lactamases belonging to CTX-M group produced by
Escherichia coli strains isolated from companion animals treated with enrooxacin. Vet Microbiol. 2008;129(1–2):203–208. doi:10.1016/j.
vetmic.2007.11.011
219. Pallecchi L, Bartoloni A, Fiorelli C, et al. Rapid dissemination and diversity of CTX-M extended-spectrum beta-lactamase genes in commensal
Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob Agents Chemother. 2007;51(8):2720–
2725. doi:10.1128/AAC.00026-07
220. Báez J, Hernández-García M, Guamparito C, et al. Molecular characterization and genetic diversity of ESBL-producing Escherichia coli
colonizing the migratory Franklin’s gulls (Leucophaeus pipixcan) in Antofagasta, North of Chile. Microb Drug Resist. 2015;21(1):111–116.
doi:10.1089/mdr.2014.0158
221. Conte D, Palmeiro JK, da Silva Nogueira K, et al. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial
residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf. 2017;136:62–69. doi:10.1016/j.
ecoenv.2016.10.031
222. Nascimento T, Cantamessa R, Melo L, et al. International high-risk clones of Klebsiella pneumoniae KPC-2/CC258 and Escherichia coli CTX-
M-15/CC10 in urban lake waters. Sci Total Environ. 2017;598:910–915. doi:10.1016/j.scitotenv.2017.03.207
223. Flores R, Albornoz C, Hurtado J, Montaño V, Santa-Cruz A. Enterobacterias productoras de B-lactamasas de espectro-extendido y plásmido-
AmpC en aguas de riego, zona Maica, Cochabamba [Extended-spectrum B-lactamase and plasmid ampc B-lactamase-producing
Enterobacteriaceae in water sources for irrigation in Maica’s zone, Cochabamba]. Rev Cient Cienc Med. 2019;22(2):15–21. Spanish.
224. Guzman-Otazo J, Gonzales-Siles L, Poma V, et al. Diarrheal bacterial pathogens and multi-resistant Enterobacteria in the Choqueyapu River in
La Paz, Bolivia. PLoS One. 2019;14(1):e0210735. doi:10.1371/journal.pone.0210735
225. Ortega-Paredes D, Barba P, Mena-López S, Espinel N, Crespo V, Zurita J. High quantities of multidrug-resistant Escherichia coli are present in
the Machángara urban river in Quito, Ecuador. J Water Health. 2020;18(1):67–76. doi:10.2166/wh.2019.195
Infection and Drug Resistance Dovepress
Publish your work in this journal
Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infection (bacterial,
fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is
specically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and
the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use.
Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.
Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journal
Infection and Drug Resistance 2022:15 DovePress
5779
Dovepress Bastidas-Caldes et al
Powered by TCPDF (www.tcpdf.org)
... In addition, it is crucial to maintain current data on ESBL-producing E. coli and K. pneumoniae in health systems to minimize the consequences of ESBL-producing bacteria. A few systematic reviews have been published on ESBL-producing E. coli in animals, humans, and the environment in Bangladesh and South America [15,16], as well as ESBL-producing E. coli and K. pneumoniae in the United States of America [17]. However, there is limited information on comprehensive data available to estimate the global prevalence of co-existing ESBL-producing E. coli and K. pneumoniae in animals, humans, and the environment. ...
... The PPE based on 17,513 ESBL positive E. coli and 8165 ESBL positive K. pneumoniae was 33% and 32.7% respectively, from 101 studies in humans. This is comparatively higher than similarly reported PPE from a review conducted in Bangladesh, where PPE of ESBL-producing E. coli was 17% [16], and in South America, where PPE was 2.2% [15]. The study conducted in Nepal on ESBL-producing K. pneumoniae had a lower PPE of 5% for ESBLproducing K. pneumoniae [24]. ...
Article
Full-text available
Background The Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) bacterial isolates that produce extended-spectrum β-lactamases (ESBLs) contribute to global life-threatening infections. This study conducted a systematic review and meta-analysis on the global prevalence of ESBLs in co-existing E. coli and K. pneumoniae isolated from humans, animals and the environment. Methods The systematic review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) [ID no: CRD42023394360]. This study was carried out following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. One hundred and twenty-six eligible studies published on co-existing antibiotic resistance in E. coli and K. pneumoniae between 1990 and 2022 were included. Results The pooled prevalence of ESBL-producing E. coli and K. pneumoniae was 33.0% and 32.7% for humans, 33.5% and 19.4% for animals, 56.9% and 24.2% for environment, 26.8% and 6.7% for animals/environment, respectively. Furthermore, the three types of resistance genes that encode ESBLs, namely blaSHVblaCTX−M,blaOXA, and blaTEM, were all detected in humans, animals and the environment. Conclusions The concept of “One-Health” surveillance is critical to tracking the source of antimicrobial resistance and preventing its spread. The emerging state and national surveillance systems should include bacteria containing ESBLs. A well-planned, -implemented, and -researched alternative treatment for antimicrobial drug resistance needs to be formulated.
... In 2013, the first plasmid carrying a mobile colistin resistance gene (mcr-1), was recovered from E. coli isolated from a pig in China, and since then mcr-1 and its variants have been widely identified in animal breeding. Right now, mcr-1 has been identified in humans, chickens, and pigs in 54 countries and on five continents [66]. In the 1990s, fluoroquinolones were developed as veterinary drugs for treating bacterial infection in animals, followed by rapidly increasing resistance over the next several decades. ...
Article
Full-text available
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
... To our knowledge, this is the first report of ESBL-Ec and ESBL-KEC gut colonization rates among children living in a peri-urban setting in South America. 41 Like other studies conducted in LMICs, we find that ESBL-Ec and ESBL-KEC colonization rates were substantially higher than reported among children in Western settings. 42,43 The prevalence of ESBL-Ec gut colonization among children in this setting was similar to rates recently described among infants in Bangladesh. 4 Notably, prevalence of ESBL-Ec gut colonization nearly doubled from age 1-16 months. ...
Article
Full-text available
Children living in low-resource settings are frequently gut-colonized with multidrug-resistant bacteria. We explored whether breastfeeding may protect against children’s incident gut colonization with extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-Ec) and Klebsiella, Enterobacter, or Citrobacter spp. (ESBL-KEC). We screened 937 monthly stool samples collected from 112 children aged 1–16 months during a 2016–19 prospective cohort study of enteric infections in peri-urban Lima. We used 52,816 daily surveys to examine how exposures to breastfeeding in the 30 days prior to a stool sample were associated with children’s risks of incident gut-colonization, controlling for antibiotic use and other covariates. We sequenced 78 ESBL-Ec from 47 children to explore their diversity. Gut-colonization with ESBL-Ec was increasingly prevalent as children aged, approaching 75% by 16 months, while ESBL-KEC prevalence fluctuated between 18% and 36%. Through 6 months of age, exclusively providing human milk in the 30 days prior to a stool sample did not reduce children’s risk of incident gut-colonization with ESBL-Ec or ESBL-KEC. From 6 to 16 months of age, every 3 additional days of breastfeeding in the prior 30 days was associated with 6% lower risk of incident ESBL-Ec gut-colonization (95% CI: 0.90, 0.98, p = .003). No effects were observed on incident ESBL-KEC colonization. We detected highly diverse ESBL-Ec among children and few differences between children who were predominantly breastfed (mean age: 4.1 months) versus older children (10.8 months). Continued breastfeeding after 6 months conferred protection against children’s incident gut colonization with ESBL-Ec in this setting. Policies supporting continued breastfeeding should be considered in efforts to combat antibiotic resistance.
... Currently, E. coli strains carrying ß-lactamase-encoding genes including bla CTX-M , bla SHV , and bla TEM are distributed in human, animal, food and the environment. 56 These common ß-lactamase-encoding genes have also been reported from E. coli isolates in sepsis patients in Ethiopia. 27,28 In agreement with these reports, the present study also found βlactamase-encoding genes (bla CTX-M , bla SHV , and bla TEM ) in DEC pathotypes. ...
Article
Full-text available
Purpose Escherichia coli strains that produce extended-spectrum ß-lactamase (ESBL) and carbapenemase are among the major threats to global health. The objective of the present study was to determine the distribution of ß-lactamase genes among multidrug-resistant (MDR) and ESBL-producing Diarrheagenic E. coli (DEC) pathotypes isolated from under-five children in Ethiopia. Patients and Methods A cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia. It was a health-facility-based study and conducted between December 2020 and August 2021. A total of 476 under-five children participated in the study. DEC pathotypes were detected by conventional Polymerase Chain Reaction (PCR) assay. After evaluating the antimicrobial susceptibility profile of the DEC strains by disk diffusion method, confirmation test was done for ESBL and carbapenemase production. ß-lactamase encoding genes were identified from phenotypically ESBLs and carbapenemase positive DEC strains using PCR assay. Results In total, 183 DEC pathotypes were isolated from the 476 under-five children. Seventy-nine (43%, 79/183) MDR-DEC pathotypes were identified. MDR was common among enteroaggregative E. coli (EAEC) (58%, 44/76), followed by enterotoxigenic E. coli (ETEC) (44%, 17/39)) and enteroinvasive E. coli (EIEC) (30%, 7/23). Phenotypically, a total of 30 MDR-DEC pathotypes (16.4%, 30/183) were tested positive for ESBLs. Few ETEC (5.1%, 2/39) and EAEC (2.6%, 2/76) were carbapenemase producers. The predominant β-lactamase genes identified was blaTEM (80%, 24/30) followed by blaCTX-M (73%, 22/30), blaSHV (60%, 18/30), blaNDM (13%, 4/30), and blaOXA-48 (13%, 4/30). Majority of the ß-lactamase encoding genes were detected in EAEC (50%) and ETEC (20%). Co-existence of different β-lactamase genes was found in the present study. Conclusion The blaTEM, blaCTX-M, blaSHV, blaNDM, and blaOXA-48, that are associated with serious and urgent threats globally, were detected in diarrheagenic E. coli isolates from under-five children in Ethiopia. This study also revealed the coexistence of the β-lactamase genes.
... In addition to people, ESBL-producing bacteria are also present in animals and the environment (Salgado-Caxito et al., 2021). TEM and CTX-M are the two primary ESBL coding genes (Bastidas-Caldes et al., 2022). The two genes together are in charge of creating ESBLs, which break down β-lactam antibiotics (Li et al., 2015). ...
Article
Full-text available
This research aimed to focus on the presence of ESBL-producing E. coli isolated from the small intestine of ducks in several traditional markets in Surabaya as there is still little information regarding cases of ESBL-producing E. coli in ducks in Indonesia. Samples from the small intestine of ducks were kept on Buffer Peptone Water (BPW) media and then streaked on Eosin Methylene Blue Agar (EMBA) media for isolation testing, while Gram staining and IMViC tests were used to continue the identification test. Kirby-bauer diffusion test for determining antibiotic sensitivity and confirmation of ESBL producing E. coli using the double disc syn-ergy test (DDST). Molecular detection of TEM and CTX-M genes was carried out using Polymerase Chain Reaction (PCR). Based on morphological culture characteristics, Gram staining, and biochemical testing, the sample analysis results revealed that 32 samples (32%) of the 100 samples that were isolated were confirmed to be positive for E. coli. 10 from 32 E. coli isolates (31.25%) were confirmed to be multidrug resistance (MDR) because they were resistant to 3 to 4 antibiotic classes. Two out of ten E. coli isolates reported to be multidrug resistant were discovered to have positive DDST test findings after the ESBL identification of those isolates. Based on molecular examination, one isolate of E. coli was found containing TEM and CTX-M genes. Giving antibiotics to ducks must be considered in the dose or level so as not to cause antibiotic residues in the digestive tract of ducks. More farmer awareness of and public concern for the safety of food of animal origin is required, as is the use of antibiotics in poultry under the supervision of a veterinarian.
Article
Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.
Article
Full-text available
Aim This study aimed to compare and characterize the resistance profile and the presence of ESBL-related genes in E. coli isolated from healthy finishing pigs fed with or without antibiotics in their diets. Methods and results A total of 27 ceftiofur-resistant E. coli isolates were obtained from 96 healthy pigs. The antibiotic resistance profile was tested, and all 27 isolates were classified as multidrug resistant (MDR). A high proportion of isolates were resistant to cephalosporins, ampicillin, ciprofloxacin, and tetracyclines. The ESBL production was observed in 85% of isolates by double-disc synergy test. The MDR-E. coli isolates harbored ESBL genes, such as blaTEM, blaCTX-M-1, blaCTX-M-2, and blaCTX-M-8,25. In addition, other ARGs were also detected, such as sul2, ant(3”)-I, tetA, and mcr-1. The mobilization of the blaCTX-M gene was confirmed for nine E. coli isolates by conjugation assays. The presence of blaCTX-M on mobile genetic elements in these isolates was demonstrated by Southern blot hybridization and the resistance to cephalosporins was confirmed in the transconjugants. Our results indicate the prevalence of CTX-M-producing E. coli strains harboring mobile genetic elements in the normal microbiota of healthy pigs. Conclusions These findings highlight the significance of ESBL genes as a global health concern in livestock and the potential spread of resistance to other members of the gastrointestinal tract microbiota.
Article
Full-text available
Antimicrobial resistance is a major public health concern worldwide. This study aims to determine the prevalence of Enterobacterales producing beta-lactamase (TEM, SHV, OXA) or extended-spectrum beta-lactamases (ESBL), as well as plasmid-mediated resistance to quinolones (PMQR) (qnrA, qnrB, qnrS) in companion animals from the northeast region of Romania. A total of 124 faecal samples were collected aseptically from healthy dogs attending the veterinary practice for vaccination and cultivated on Brilliance ESBL medium (Oxoid, UK). The ESBL production testing was performed using the combination disc test. The identification of Enterobacterales strains was achieved using molecular identification and based on biochemical tests. Antimicrobial susceptibility testing was performed using the disk diffusion method. Identification of genes encoding for beta-lactamase enzymes and genes encoding plasmid-mediated resistance to quinolones was performed by PCR according to the protocols previously described. After ESBL screening, 31 (31/124; 25%) extended-spectrum cephalosporin (ESC)-resistant Enterobacterales were obtained, and 67.74% (21/31) of them were confirmed as ESBL-producers. Regarding the Enterobacterales species, 27 (27/31; 87.1%) were Escherichia coli and 4 (4/31; 12.9%) strains were Klebsiella pneumoniae. Among the ESBL-producing isolates, the blaCTX-M-1 gene group was predominant (58.82%), followed by the blaCTX-M-9 group (41.18%). The blaTEM, blaSHV and blaOXA gene groups were identified in 54.83%, 29.03% and 3.22% of the analysed strains, respectively. The prevalence of PMQR genes was 22.58% and consisted only of qnrS (19.35%) and qnrA (3.22%) genes. The prevalence of ESBL strains related to the total number of analysed samples was 16.93% (21/124). The findings show a significant prevalence of ESBLs and PMQR genes in Enterobacterales strains isolated from the faeces of healthy dogs, implying that pets may pose a risk of transmitting ESBL strains to other animals or owners.
Article
Full-text available
Since the potential link between virulence genes and bacterial antibiotic resistance is of great importance in medical aspects, the properties of such a link were thoroughly investigated in this work. Sixty bacterial isolates were collected from patients with urinary tract infection (UTI) who visited the medical lab at the College of Science/the University of Al-Kufa. Preservation and sub-culture of these isolates were performed according to the guidelines of microorganism's care and the Research Committee of Al-Qasim Green University. Several phenotypic tests were performed involving hemolysis, haemagglutination, serum resistance, and biofilm formation. Genotypic analysis of virulence genes (biofilm and Iss) and antibiotics resistance genes (blaAmpC, blaTEM, blaSHV-5, and blaCTX-M) were measured using the polymerase chain reaction (PCR) technique. All isolates of P. mirabillis were extracted as positive for the serum resistance test with 100%, while a percentage of than less 14% was observed with isolates of Pseudomonas aeruginosa. From the acquired results of the biofilm formation test, it was revealed that all bacterial isolates exhibited negative results except in isolates of E. coli, Proteus mirabillis, and Enterococcus faecalis. As far as the genetic study is concerned, the biofilm gene was abundant and was also found in 95% of bacterial isolates followed by an increase in the serum survival (Iss) gene by 86.66%. Interestingly, the genotype study of antibiotic resistance genes showed that both blaAmpC and blaTEM had significantly greater prevalence in all isolates compared to blaSHV-5 and blaCTX-M at P≤ 0.05. In addition, the percentages of the prevalence of blaAmpC and blaTEM were significantly higher (93.33 and 71.66), respectively, compared to the respective values found in blaSHV-5 and blaCTX-M (20%, 46.66%). From the correlation findings, a significant constructive association between virulence and resistance to antibiotic profile was found (r=0.957, P=0.000). In conclusion, our work provides valuable insights for better understanding the potential link between genotypic (virulence genes) and phenotypic traits (antibiotic resistance). Future research holds the potential to deepen our comprehension of the intricate relationship between virulence genes and antibiotic resistance, thereby making substantial contributions to the development of more efficacious approaches for the management of bacterial infections. This recommendation extends to fellow researchers in the field.
Article
Full-text available
Background: Antimicrobial resistance (AR) has led to increasing human and animal morbidity and mortality and negative consequences for the environment. AR among Escherichia coli (EC) is on the rise, with serious concerns about extended-spectrum β-lactamase-producing E. coli (ESBL-EC). In the Galápagos Islands, where antimicrobials are available without a prescription, growing demands for food production can drive antimicrobial use. Food producing animals are at the interface of wildlife and environmental health on the smallest human-inhabited Galápagos Island, Floreana. We sought to determine if ESBL-EC were present in Floreana Island farm animal species and nearby wildlife and the relatedness of ESBL-EC isolates identified. Materials and Methods: During July 4-5, 2022, we visited 8 multispecies farms, representing 75% of food-producing animal production on Floreana, and collected 227 fecal samples from farm animals and wildlife. Each sample was plated on MacConkey agar supplemented with cefotaxime (4 μg/mL). Results: ESBL-EC was isolated from 20 (9%) fecal samples collected from pigs (N = 10), chickens (N = 6), wildlife (N = 3), and dog (N = 1). All ESBL-EC isolates were from samples taken at three (38%) of the eight farms. Fifteen (75%) of the ESBL-EC isolates were from a single farm. All ESBL-EC isolates were multidrug resistant. The most prevalent ESBL genes belonged to the blaCTX-M group. Among the typeable isolates from the farm with the largest proportion of ESBL-EC isolates (N = 14), we observed nine unique pulsed-field gel electrophoresis (PFGE) patterns, with identical patterns present across pig and chicken isolates. PFGE patterns in the three farms with ESBL-EC isolates were different. Conclusions: These results lend support for future routine AR monitoring activities at the livestock-wildlife interface in Galápagos to characterize potential interspecies transmission of AR bacteria and AR genes in this unique protected ecosystem, and the related human, animal, and environmental health impacts, and to formulate interventions to reduce AR spread in this setting.
Article
Full-text available
Background Increasing antimicrobial resistance (AMR) raises serious health and financial concerns. However, the main drivers of the emergence, spread and subsequent colonisation of resistant bacterial strains between humans, animals and the environment are still poorly understood. Objective The aim of this review was to identify molecular studies on AMR in One Health settings in Africa and to determine the prevalence of antimicrobial resistance genes in humans, animals and the environment. Due to the very low number of studies including environmental samples, the meta‐analysis only includes data obtained from animals and humans. Methods The PubMed, Web of Science and Scopus databases were searched, identifying 10 464 publications on AMR in Africa from January 1st, 2000 until June 1st, 2020. Inclusion criteria were: (i) Integrated studies assessing AMR simultaneously in an animal‐human, animal‐environment, human‐environment or animal‐human‐environment context, (ii) Genotypic characterisation of AMR and (iii) temporal and spatial relationship between samples from humans and animals. Statistical random‐effects model meta‐analysis was performed. Results Overall, 18 studies met our eligibility criteria and were included in this review. Six studies investigated Escherichia coli and Salmonella spp. (N = 6). The most prevalent AMR genes in animals included sul1 (36.2%), sul2 (32.0%), tetA (31.5%), strB (30.8%) and blaTEM (30.0%), whereas sul2 (42.4%), tetA (42.0%), strB (34.9%), blaTEM (28.8%) and sul1 (27.8%) were most prevalent in humans. We observed no clear pattern for a higher prevalence in either the animal or the human reservoir. Conclusion To date, data on AMR in a One Health perspective in Africa are scarce. Prospective and longitudinal studies using an integrated One Health approach assessing the environment, animals and humans at the same time are needed to better understand the main drivers of AMR sharing in Africa.
Article
Full-text available
Circulation of a multi-resistance clone of bacteria associated with genetic elements in diseased animals constitutes a global public health problem. Our study focused on the characterization of the support of ESBL in cefotaxime resistant E. coli (CTXR) isolates recovered from poultry with diarrhea, analysis of their clonal lineage, and virulence-associated genes. The study was carried out on 130 samples of chickens with diarrhea, collected in 2015 from poultry farms in Tunisia. Isolates of 20 CTXR E. coli strains were identified as ESBL and AmpC β- lactamase producers. The following β-lactamase genes (number of isolates) were detected: blaCTX-M-15+ blaOXA1 (4), blaCTX-M-15 + blaOXA1 + blaTEM-1b (2), blaCTX-M-1 + blaTEM-1b (9), blaCTX-M-1 (2), blaCMY2 + blaTEM-1b (3). Six E. coli harboring blaCTXM-15 were allocated to ST131-B2-O25b-; six and three blaCTX-M-1 were grouped in ST155, ST10, and ST58, respectively, related to the phylogroup D and A. The qnrB gene, the variant aac(6′)-Ib-cr, and the class 1 integrons with different gene cassettes, were detected amongst our 20 isolated strains, which were classified as ExPEC and aEPEC. Our findings highlighted the emergence of the human pandemic ST131-CTX-M-15-O25-B2 clone and the high risk of such clonal lineage strains in diarrheic poultry, in Tunisia, which could constitute a risk of their transfer to healthy animals and humans.
Article
Full-text available
Background. The world prevalence of community and hospital-acquired extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is increasing tremendously. Bacteria harboring ESBLs are currently the number one critical pathogens posing a major threat to human health. Objective. To provide a summary of molecular evidence on the prevalence of ESBL-producing Enterobacteriaceae (ESBL-E) and associated genes at community and hospital settings in East, Central, and Southern African countries. Methods. We conducted a systematic literature search on PubMed and Google Scholar databases for the available molecular studies on ESBL-E in hospitals and community settings in East, Central, and Sothern Africa (ECSA). Published studies in English language involving gene characterization of ESBLs from human samples in hospital and community settings were included in the review, inception to November 2019. A random effect meta-analysis was performed to estimate the prevalence of ESBL-E. Results. A total of 27 studies involving molecular characterization of resistance genes from 20,225 ESBL-E isolates were included in the analysis. Seventy-four percent of all studies were hospital based, 15% were based in community settings, and others were done in both hospital and community settings. Of all the studies, 63% reported E. coli as the dominant isolate among ESBL-E recovered from clinical samples and Klebsiella pneumoniae was reported dominant isolates in 33% of all studies. A random pooled prevalence of ESBL-E was 38% (95% CI = 24–53%), highest in Congo, 92% (95% CI = 90–94%), and lowest in Zimbabwe, 14% (95% CI = 9–20%). Prevalence was higher in hospital settings 41% (95% CI = 23–58%) compared to community settings 34% (95% CI = 8–60%). ESBL genes detected from clinical isolates with ESBL-E phenotypes in ECSA were those of Ambler molecular class A [1] that belongs to both functional groups 2be and 2d of Bush and Jacob classification of 2010 [2]. Majority of studies (n = 22, 81.5%) reported predominance of blaCTX-M gene among isolates, particularly CTX-M-15. Predictors of ESBL-E included increased age, hospital admissions, previous use of antibiotics, and paramedical use of herbs. Conclusion. Few studies have been conducted at a molecular level to understand the genetic basis of increased resistance among members of ESBL-E in ECSA. Limited molecular studies in the ECSA region leave a gap in estimating the burden and risk posed by the carriage of ESBL genes in these countries. We found a high prevalence of ESBL-E most carrying CTX-M enzyme in ECSA with a greater variation between countries. This could be an important call for combined (regional or global) efforts to combat the problem of antimicrobial resistance (AMR) in the region. Antibiotic use and hospital admission increased the carriage of ESBL-E, while poor people contributed little to the increase of AMR due to lack of access and failure to meet the cost of healthcare compared to high income individuals. 1. Introduction Pathogenic bacteria evolve to resist the actions of antimicrobials through acquired and intrinsic mechanisms including production of β-lactamase enzymes, which inactivates antibiotic and decreases its therapeutic value [1, 2]. Extended-spectrum β-lactamases produced by many gram-negative bacteria, mostly Enterobacteriaceae, are able to hydrolyze penicillins, cephalosporin, and monobactams . They are mostly effective against a range of β-lactam drugs including ceftazidime, ceftriaxone, cefotaxime, and aztreonam [3–5]. In many cases, resistance to these antibiotics is transferred among bacteria through gene transfer systems of mobile genetic elements carried in bacteria plasmids or transposons by bacterial recombination process that involves conjugation, transformation, and transduction. The world prevalence of community and hospital-acquired ESBL-E is increasing tremendously. Bacteria harboring ESBL enzymes are currently the number one critical pathogens posing a major threat to human health [6]. The spread and dissemination of infections caused by ESBL-E are associated with increased morbidity and mortality, health care costs, the need for development of new wide-spectrum antimicrobials and lengthy hospital stay of infected patients. This is because of a major decrease in therapeutic value of mostly used drugs as a result of resistance [7–11]. There has been a significant advancement in the understanding of ESBL-producing bacteria epidemic which was previously related to hospital-acquired infections [12, 13]. Recent increased recovery of ESBL-E from community and environmental samples [14–16], especially E. coli commonly causing community acquired urinary tract infections (UTIs) [17], indicates a probability of the shift of importation of ESBL-producing bacteria to hospitals rather than vice versa. The spread of community acquired ESBL carrying pathogens is accelerated by between-persons transmission of ESBL bacteria in the communities. Some studies suggest there are significantly higher transmission rates of ESBL-producing bacteria among community households as compared to hospital transmissions [18]. However, detailed studies describing the ESBL-E reservoirs and transmission routes in diverse settings are still limited. In most poor resource countries of East, Central, and Southern Africa, there is lack of routine surveillance systems that could estimate the magnitude and risk factors as well as clinical outcomes associated with ESBL Enterobacteriaceae [19]. The overuse and misuse of antimicrobial agents in the environmental sector, agriculture, and human and veterinary medicine propel the spread of antimicrobial resistance among infectious bacteria. Other factors such as easy access to antibiotics, weak health systems, environmental contaminations, poor hygiene and sanitation services or practices, incomplete decontamination of medical devices, and lack of laboratory capacities for pathogens detection and surveillance have been described as important drives of the increasing resistance among members of ESBL Enterobacteriaceae in the region [20–22]. 1.1. Objective To better understand genetic determinants of resistance among ESBL-producing Enterobacteriaceae in East, Central, and Sothern Africa, we sought to summarize molecular evidence on the prevalence of ESBL-E and associated genes at community and hospital settings. 2. Material and Methods This review and meta-analysis of prevalence has been conducted in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and checklist [23]. 2.1. The Study Area The review provides information on published articles from East, Central, and Southern Africa (ECSA) countries in accordance with Africa Union Countries profile [24]. We included six countries from the eastern Africa which are Tanzania, Kenya, Uganda, Rwanda, Burundi, and Ethiopia; five countries from central Africa, Republic of Chad, Central African Republic, Democratic Republic of Congo, Republic of the Congo, and Gabon; and Seven southern African countries of Botswana, Angola, South Africa, Malawi, Namibia, Zambia, and Zimbabwe. 2.2. Literature Search Literature search of peer reviewed studies was conducted on PubMed and Google Scholar databases for the available molecular studies on ESBL-E in hospitals and community settings in ECSA. The search strategy included the following index terms and Boolean operators (extended-spectrum beta-lactamase OR extended-spectrum OR beta-lactamase OR ESBL beta-lactamases OR beta-lactamase OR Enterobacteriaceae) AND Community OR Hospital AND (Botswana OR Burundi OR Central African Republic OR Chad OR Congo OR Democratic Republic Congo OR “Democratic Republic of the Congo” OR Zaire OR Ethiopia OR Gabon OR Kenya OR Malawi OR Rwanda OR South Africa OR “South Africa” OR Tanzania OR Uganda OR Zambia OR Zimbabwe OR Southern Africa OR Eastern Africa OR East Africa OR Central Africa). 2.3. Study Inclusion and Exclusion Criteria All available published molecular studies (involving genotypic characterization of ESBL) in English language on human subject reporting ESBL-E in hospitals and communities in ECSA were considered eligible. Unpublished studies, editorials, letters, studies on nonhuman subjects, studies published in other languages than English, and studies that did not utilize molecular tools were excluded. All studies available on the selected databases at the time of data extraction were examined (inception to November 2019). 2.4. Data Extraction Data extraction checklist was developed to guide the acquisition of the information which included name of the author(s), year of publication, study setting (community or hospital), study design, subjects/target population, source of isolates/specimen, clinical samples, sample size, bacteriological methods for estimating ESBL’s, molecular methods used, isolate species, number of isolates analysed, ESBL positive isolates, genes encoding for ESBL identified and risk factors associated with ESBL infection if studied. 2.5. Data Analysis Acquired data were entered into Excel spreadsheet and statistical analysis was done using Stata version 12 (STATA Corporation, College Station, TX, USA). We performed a random effect meta-analysis to determine heterogeneity of ESBL-E prevalence in ECSA. Decision to perform random effect meta-analysis over fixed effect meta-analysis was made due to an assumption that the difference in ESBL-E prevalence among studies in ECSA is attributed to different factors such as study settings (hospital and community) and different laboratory methods used for detection of ESBL-E. A new program in STATA (Metanprop) specific for pooling binomial data including methods of computation of the 95% confidence intervals (CI), continuity correct, and the Freeman–Tukey transformation was used [25]. The risk of publication bias was assessed using funnel plot and Begg’s rank correlation test for funnel plot asymmetry [26]. 3. Results A total of 27 studies involving molecular characterization of ESBL-E that were retrieved from 11 countries in Eastern, Central, and Southern Africa region met the inclusion criteria and were included in this review (Figure 1). The publication year of the studies ranged between 2005 and 2019. Cross-sectional studies comprised 93% of all studies [9, 27–41]. Majority of studies (74%) were conducted in hospital settings, 15% in the community settings, and others in both hospital and community settings.
Article
Full-text available
Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum β-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBL producers. The co-existence of 2–3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India. HIGHLIGHTS Occurrence of ESBL genes from Exiguobacterium mexicanum was first reported.; blaCTX-M gene from environmental isolate of Aeromonas caviae is the first report.; Co-resistance of β-lactam and non-β-lactam classes of antibiotics was observed among a high proportion of ESBL positive bacterial isolates.; This study emphasizes the need for more comprehensive genetic research of diverse microorganisms from environmental settings.;
Article
Full-text available
Faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R E. coli) in dogs has been reported worldwide and can reduce the effectiveness of treatments against bacterial infections. However, the drivers that influence faecal carriage of ESC-R E. coli in dogs are poorly understood. The aims of this study were to estimate the prevalence of ESC-R E. coli among dogs prior to their admission to a veterinary teaching hospital and to identify risk factors associated with the faecal carriage of ESC-R E. coli. Rectal swabs (n = 130) were collected from dogs and screened for ESC-R E. coli using MacConkey agar supplemented with cefotaxime (2 μg/mL). E. coli species was confirmed by MALDI-TOF and screening of extended-spectrum beta-lactamase (ESBL) genes was conducted by multiplex PCR. Questionnaires were completed by each dog’s owner to test several human and dog characteristics associated with ESC-R E. coli. The prevalence of faecal carriage of ESC-R E. coli was 9.2% and 67% of ESC-R E. coli isolates harboured ESBL genes including CTX-M alone or in combination with TEM. All ESC-R E. coli isolates were resistant to ceftriaxone, cefpodoxime, and cefotaxime and were susceptible to cefoxitin and carbapenems. The likelihood of carrying ESC-R E. coli was 15 times higher (OR = 14.41 [95% CI: 1.80-38.02], p < 0.01) if the dog was treated with antibiotics 3-12 months prior to sampling and 8 times higher (OR = 7,96 [95% CI: 2.96-92.07], p < 0.01) if the dog had direct contact with livestock, but 15 times lower (OR = 0,07 [95% CI: 0.01-0.32], p < 0.01) if the dog was dewormed during the previous year. Our findings confirm the faecal carriage of ESC-R E. coli in subclinical dogs and call for further investigation regarding the impact of deworming on antibiotic-resistant bacteria in companion animals.
Article
Full-text available
The widespread and poorly regulated use of antibiotics in animal production in low- and middle-income countries (LMICs) is increasingly associated with the emergence and dissemination of antibiotic resistance genes (ARGs) in retail animal products. Here, we compared Escherichia coli from chickens and humans with varying levels of exposure to chicken meat in a low-income community in the southern outskirts of Lima, Peru. We hypothesize that current practices in local poultry production result in highly resistant commensal bacteria in chickens that can potentially colonize the human gut. E. coli was isolated from cloacal swabs of non-organic ( n = 41) and organic chickens ( n = 20), as well as from stools of market chicken vendors ( n = 23), non-vendors ( n = 48), and babies ( n = 60). 315 E. coli isolates from humans ( n = 150) and chickens ( n = 165) were identified, with chickens showing higher rates of multidrug-resistant and extended-spectrum beta-lactamase phenotypes. Non-organic chicken isolates were more resistant to most antibiotics tested than human isolates, while organic chicken isolates were susceptible to most antibiotics. Whole-genome sequencing of 118 isolates identified shared phylogroups between human and animal populations and 604 ARG hits across genomes. Resistance to florfenicol (an antibiotic commonly used as a growth promoter in poultry but not approved for human use) was higher in chicken vendors compared to other human groups. Isolates from non-organic chickens contained genes conferring resistance to clinically relevant antibiotics, including mcr-1 for colistin resistance, blaCTX-M ESBLs, and blaKPC-3 carbapenemase. Our findings suggest that E. coli strains from market chickens are a potential source of ARGs that can be transmitted to human commensals.
Article
Full-text available
Background: There is a significant gap in our understanding of the sources of multidrug-resistant bacteria and resistance genes in community settings where human-animal interfaces exist. Objectives: This study characterized the relationship of third-generation cephalosporin-resistant Escherichia coli (3GCR-EC) isolated from animal feces in the environment and child feces based on phenotypic antimicrobial resistance (AMR) and whole genome sequencing (WGS). Methods: We examined 3GCR-EC isolated from environmental fecal samples of domestic animals and child fecal samples in Ecuador. We analyzed phenotypic and genotypic AMR, as well as clonal relationships (CRs) based on pairwise single-nucleotide polymorphisms (SNPs) analysis of 3GCR-EC core genomes. CRs were defined as isolates with fewer than 100 different SNPs. Results: A total of 264 3GCR-EC isolates from children (n=21), dogs (n=20), and chickens (n=18) living in the same region of Quito, Ecuador, were identified. We detected 16 CRs total, which were found between 7 children and 5 domestic animals (5 CRs) and between 19 domestic animals (11 CRs). We observed that several clonally related 3GCR-EC isolates had acquired different plasmids and AMR genes. Most CRs were observed in different homes (n=14) at relatively large distances. Isolates from children and domestic animals shared the same blaCTX-M allelic variants, and the most prevalent were blaCTX-M-55 and blaCTX-M-65, which were found in isolates from children, dogs, and chickens. Discussion: This study provides evidence of highly dynamic horizontal transfer of AMR genes and mobile genetic elements (MGEs) in the E. coli community and shows that some 3GCR-EC and (extended-spectrum β-lactamase) ESBL genes may have moved relatively large distances among domestic animals and children in semirural communities near Quito, Ecuador. Child-animal contact and the presence of domestic animal feces in the environment potentially serve as important sources of drug-resistant bacteria and ESBL genes. https://doi.org/10.1289/EHP7729.
Article
Full-text available
Migratory birds are carriers of multidrug resistant pathogenic Escherichia coli. However, their roles in the dissemination of these resistant pathogens are still being neglected in Bangladesh. The present study was therefore carried out to detect multidrug resistant E. coli. In addition, these isolates were also screened for the presence of avian pathogenic E. coli (APEC)-associated virulence genes. A total of 66 fecal matter samples of migratory birds were screened. E. coli were isolated and identified by culturing and biochemical tests followed by polymerase chain reaction (PCR). APEC-associated virulence genes were detected by PCR. Disk diffusion assays were employed to investigate antibiogram profiles. Bivariate analysis was performed to assess correlations in resistance patterns between antimicrobials and to assess associations between virulence genes of E. coli. Among the 66 samples assessed by PCR, 55 (83.33%) were found positive for E. coli. Of these 55 isolates, the APEC-associated virulence gene fimC was detected in 67.27% of the isolates, which was significantly higher than in the cases of iucD (29.09%) and papC (5.45%) genes. In addition, three isolates were found positive for all three virulence genes, while 23 and 12 isolates were positive for one and two virulence genes respectively. In the bivariate analysis, significant associations were detected between fimC and iucD virulence genes. Using the antibiogram, all E. coli isolates were found to be multidrug resistant (MDR). The isolates exhibited 100% resistance against ampicillin and erythro-mycin in addition to varying percentages of resistance against streptomycin, tetracycline, ciproflox-acin, and chloramphenicol. Highly positive correlations between tetracycline and ciprofloxacin, chloramphenicol and ciprofloxacin, chloramphenicol and tetracycline were observed by bivariate analysis. To the best of our knowledge, this is the first study that reports APEC-associated virulence genes of MDR E. coli from migratory birds in Bangladesh. Results indicate that migratory birds are reservoirs of MDR E. coli isolates carrying APEC-associated virulence genes, which can seriously contribute to the development of human and animal diseases.
Article
Full-text available
The close contact between dogs and humans creates the best bridge for interspecies transmission of antimicrobial-resistant bacteria. The surveillance of its resistance including the detection of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli as indicator bacteria is an important tool to control the use of antimicrobials. The aim of this research was to evaluate the E. coli resistance in strains by phenotypic methods, isolated from pet and stray dogs of La Plata city, Argentina. Faecal samples were collected using rectal swabs from 50 dogs with owners (home dogs = HD) and 50 homeless dogs (stray dogs = SD). They were cultured in 3 MacConkey agar plates, with and without antibiotics (ciprofloxacin and cefotaxime). 197 strains were isolated, of which only 95 strains were biochemically identified as E. coli, 46 strains were from HD, and 49 were from SD. Antimicrobial susceptibility was evaluated by the Kirby–Bauer disk diffusion method. The most prevalent resistance was for tetracycline, streptomycin, and ampicillin. In both groups, the level of resistance to 3rd generation cephalosporins was high, and there were multiresistant strains. There was a higher level of antimicrobial resistance in strains from SD compared to HD. There were 8% of strains suspected of being ESBLs among samples of HD and 36% of SD. One (2%) of the strains isolated from HD and 11 (22%) from SD were phenotypically confirmed as ESBL. Pets and stray dogs are a potential source of E. coli antibiotic resistance in Argentina; therefore, its surveillance must be guaranteed.