ArticlePDF Available

Status and Trends on Ecological Networks Research: A Review Based on Bibliometric Analysis

Authors:

Abstract and Figures

To understand the research status of ecological networks, a high-level analysis of ecological networks research domain is performed using scientometrics methods and visualization tools. We compiled the data of 2 782 articles during the period of 2007–2022 from Web of Science Core Collections (WOSCC) database, and conducted a scientometric analysis using bibliometrix package of R and VOSviewer. We aimed to assess the annual distribution of publications, countries, institutes, authors, journals and categories of ecological network researches. Furthermore, key topics and highly-cited papers were analyzed. The results showed that the output of papers focusing on ecological network had increased linearly and attracted much more attentions since 2007. The countries contributed to most of these papers are mainly China, USA, Britain, France and other European and American countries, while the top institutes included Beijing Normal University, Chinese Academy of Sciences, University of Sao Paulo, University of Canterbury and National Autonomous University of Mexico. The papers were primarily published on 565 journals (or books), including top journals of Ecological Modeling, Ecological Letters, Ecological Indicators, and OIKOS, all of which were well-known journals in the field of Ecology. The study identified that the subjects of ecological networks could be divided into five major groups: landscape network and biodiversity protection, climate change and networks stability, microbial community network, animal-plant mutualistic networks and co-occurrence networks, and the model and application of ecological network analysis. The highly cited papers in the period 2007–2021 indicated that Food webs, Mutualistic networks, Molecular ecological network and Stability were the highest impact research areas of ecological networks, and the application of ecological network in the study of the impact of global change on ecosystem is likely to be the main direction of ecological network research in the future. In addition, future research should pay more attention to the ecosystem multi-layer network construction and its stability mechanism.
Content may be subject to copyright.
生态环境学报 2022, 31(8): 1690-1699 http://www.jeesci.com
Ecology and Environmental Sciences E-mail: editor@jeesci.com
基金项目:湖南省自然科学基金优秀青年基金项目(2021JJ20031;贵州省科技支撑计划项目(黔科合支撑[2022]一般 200
作者简介:蔡国俊,男,博士研究生,主要从事生态系统生态学及湖泊生态学研究。E-mail: hunau_gjcai@stu.hunau.edu.cn
*通讯作者:符辉,教授,博士,主要从事淡水/湿地植物功能生态学、大数据生态学和生态系统生态学方面的研究。E-mail:
huifu367@163.com
收稿日期:2022-03-15
基于文献计量分析的生态网络研究现状和趋势
蔡国俊 1, 2,袁桂香 1,符辉 1*
1. 湖南农业大学资源环境学院/洞庭湖区农村生态系统健康湖南省重点实验室,湖南 长沙 410128
2. 贵州科学院贵州省山地资源研究所,贵州 贵阳 550001
摘要:基于图论graph)发展而来的生态网络ecological network)理论,为揭示生态系统组分之间的相互关系、生态系统
复杂性和稳定性以及生态系统演变规律和驱动机制等的研究提供了全新视角。为了解生态网络研究的现状和趋势,基于 We b
of Science 核心数据库WoSCC利用 R语言文献计量分析程序包 bibliometrix 和知识图谱分析软件 VOSviewer WoSCC
中检索到的 2782篇与生态网络相关的文献,从产出时间趋势、国家/地区和研究机构分布、文献刊载源、研究热点主题和高
被引论文分布情况等方面进行文献计量和知识图谱分析。结果表明,2007 年以来,生态网络相关的研究文献产出量呈线性
增长趋势;发表文献最多的国家(地区)主要是中国以及美国、英国、法国等欧美国家,其中中国的累积发文量最多;北京
师范大学、中国科学院、巴西圣保罗大学、新西兰坎特伯雷大学等科研机构发表论文最多。检索到的 2 782 篇文献主要来源
Ecological ModellingEcology LettersEcological IndicatorsOIKOS 等生态学领域的知名期刊;生态网络的研究主要集
于景观网络及生物多样性保护、气候变化和网络稳定性、微生物群落网络、动物-植物互惠及生物共现网络、生态网络分析
的模型及应用等 5个主题类群,其中,生态网络在研究全球变化对生态系统影响中的应用很有可能成为未来生态网络研究的
主要方向。未来的研究应关注多层生态网络的构建、多层网络结构特征分析、多层网络稳定性机制等方面。
关键词:生态系统;生态网络;生物多样性;复杂网络;全球变化
DOI: 10.16258/j.cnki.1674-5906.2022.08.021
中图分类号:Q14; X171.1 文献标志码:A 文章编号:1674-5906202208-1690-10
引用格式:蔡国俊, 袁桂香, 符辉, 2022. 基于文献计量分析的生态网络研究现状和趋势[J]. 生态环境学报, 31(8): 1690-1699.
CAI Guojun, YUAN Guixiang, FU Hui, 2022. Status and trends on ecological networks research: A review based on bibliometric
analysis [J]. Ecology and Environmental Sciences, 31(8): 1690-1699.
生态系统是高度自组织的复杂系统
Jørgensen2017。生态学研究的主要目标是了解
生态系统中生物与生物、生物与非生物环境之间的
相互关系,揭示生态系统各组分之间的相互关系及
其演化规律,以期对生态系统的动态演替进行合理
的预测Yackinous2015Dale2021为生态系
统保护、管理与退化生态系统恢复等提供理论和技
术支持。由图论(graphDale et al2010)发展
而来的复杂网络complex networks是研究复杂系
统行为和结构的一种新理念和新方法。近 20 年来,
随着复杂网络研究的发展,“网络思想”广泛渗透于
生态学研究的各个方向Albert et al.2001Proulx
et al.2005,如食物网(王少鹏,2020、分子网
Deng et al.2012代谢网络Cuff et al.2022
种间关系网络(朱建明等,2021传粉网络(罗芳
等,2013、微生物网络(Barberan et al.2012
性状网络He et al.2020等,这些研究的快速拓
展促使生态网络(Ecological Network)研究逐步发
展为一个新兴学科,被应用于生态学领域各个方向
的研究(Ings et al.2009Tylianakis et al.2017
Delmas et al.2018He et al.2019
。生态网络研
究的理论基础是:在生态系统中,不同组分间通过
物质、能量和信息的交换相互联系,形成复杂的相
互作用,这种复杂的生态关系可以表示为生态网络
Montoya et al.2006Zhou et al.2010,网络的
复杂程度及其稳定性揭示了生态系统的复杂程度
和稳定性Sole et al.2001Landi et al.2018Yu a n
et al.2021
基于整体论,借助复杂生态网络对生态系统内
各组分间的复杂关系进行量化和可视化,通过重点
分析网络的模块性和关键节点有利于找出关键物
种或具有重要生态效应的功能模块(肖显静等,
蔡国俊等:基于文献计量分析的生态网络研究现状和趋势 1691
2018李海东等,2021为解决各类生态问题,
关键生物保护(Kaiser-Bunbury et al.2015、物种
相互作用Messeder et al.2020生态系统稳定性
Ma et al.2019)及深入理解生态系统的演变机理
Dale2021)提供了可能。近 10 年以来,生态网
络相关的研究迎来了理论[包括网络构建方法Fath
et al.2007Freilich et al.2020网络结构Tel esfo rd
et al.2011Cagua et al.2019及特征指标生态学
意义(da Fontoura Costa et al.2006Borrett et al.
2019生态网络分析方法Borrett et al.2018Xing
et al.2021]及各个生态领域应用的快速发展
Barberan et al.2012Chen et al.2014Kleyer et
al.2019Windsor et al.2021虽然 Lau et al.2017
Borrett et al.2018对生态网络指标Ecological
Network Metrics)和生态网络分析(Ecological
Network Analysis相关研究进行了回顾性综述,
对于生态网络研究的主题整体布局,生态网络研究
进程中的主题演变以及随着生态网络研究的推进,
研究中紧密联系的知识单元的变化等问题需要进
一步梳理,以便于研究人员挖掘领域热点和前言,
并近一步拓展生态网络研究。
通过对某个领域研究主题的挖掘来探索该领
域主题特征的研究已涉及各个领域。科学计量及其
可视化为获得某个研究领域的深层次见解提供了
一种合适的方法。该方法应用统计学对研究领域有
关文章、期刊、发展趋势等信息和指标进行定量分
析,并通过可视化分析该研究领域的研究热点和发
展趋势等Li et al.2021赵蓉英等,2010,有助
于从事特定研究领域的研究人员更好地了解其研
究范围、类别、发展趋势、重点议题以及主要著作
和作者,这对于刚进入该领域研究人员尤其有用
Goerlandt et al.2020本文应用 R语言文献计量
程序包 bibliometrixAria et al.2017)和科技文献
可视化软件 VOSviewervan Eck et al.2010,对
生态网络主题词进行检索、提取和分析,探究生态
网络研究的学科领域构成、研究主题热点、极具影
响力的作品和发展趋势等,以期梳理生态网络研究
的整体布局,挖掘下一步研究方向。
1 数据源及分析方法
1.1 数据检索
Web of Science 核心数据库WOSCC)高
检索中,对生态网络研究主题进行广泛检索,检索
语句为:[(TS=ecological&network) or (TS=ecological
& networks)] andAK=ecological & networks,式
中,TS 为主题,AK 为关键词,检索期限为 1985
2022 年,检索截止日期为 2022 13日,检索
后导出检索数据集进行后期分析。
共检索到 2782 篇相关的文章,对主题词和关
键词的限定,可以认为检索到的文献为生态网络研
究的的核心文献, 1为使用 R程序包 bibliometrix
对数据集获取的主要描述性信息,检索到的文献的
时间跨度为 20072022 年(其中:19852006
未检索到文献,2022 年的文献为预印本或网络出
版),文献来源于 69 个国家(地区)565 种期刊,
8521位研究人员(单独或合著),其中 136 位研究
人员只发表过 1篇文献。大部分文献的工作都是由
多位作者共同协作完成,这些合作的文献每篇的平
均合作者数为 5.02,协作指数 3.19,仅有 152 篇文
献为单一作者贡献。平均每篇文献的引用数为
29.84相对较高,表明生态网络研究在学术界亦有
相当的影响力。
1.2 分析方法
应用 R程序包 bibliometrix 提取关键词、作者、
文献源等文献关键信息以及其时间序列数据,使用
stats 包中 l m 函数进行趋势拟合,使用 ggplot2
进行统计数据绘图。使用 VOSviewer 软件进行关键
词、国家、机构合作网络构建及主题聚类分析和可
视化分析。
1 检索数据集的主要描述性信息
Table 1 Descriptive information of the dataseton ecological
networks research
描述信息
Description
结果
Results
描述信息
Description
结果
Results
出版期间 Period 2007–
2022 作者数 Authors 8 521
贡献文献的国家
(地区) 数量
Countries (Region)
69 所有作者频数
Author appearances 13 957
文献源 (期刊、图书等)
Sources (journals,
books, etc.)
565
仅发表一篇文献的作者数
Authors of single-authored
documents
136
文献数量
Documents 2 782
合作文献的作者数
Authors of multi-authored
documents
8385
期刊论文
Journal articles 2 514 单一作者文献数
Single-authored documents 152
综述论文 Review articles 158
图书章节 Book chapter 54 平均每个作者的文献数
Number of documents
per author
0.326
评论文章
Editorials 36
其他
Other (letter, note, etc.) 20
平均每篇文献的作者数
Number of authors
per document
3.06
作者关键词
Author’s keywords 5641
每篇论文合作作者数
Number of co-authors per
document
5.02
平均每篇文章引用量
Avg. citations per
document
29.84 协作指数
Collaboration index 3.19
1692 生态环境学报 31 卷第 8期(2022 8月)
2 结果
2.1 论文产出的时间态势
2.1.1 整体产出趋势
科技文献承载着学科方向科学知识、科学信息
和研究趋势,其数量的变化直接反映了该主题或领
域科学知识量的变化和研究趋势。生态网络研究论
文发表趋势如图 1所示,生态网络相关的研究论文
2007 年发表 45 篇,到 2021 年年发文量 382 篇,
整体上呈线性增长趋势(y=24.643x49 449.048
F=275.4r2=0.952P=0.000平均每年以约 20
的速度增加(年均增长率为 19.4%,其中 2008
2013 年发文量较上一年有所降低,文献累计量
曲线呈显著的指数增长模式(y=1.708×10236
e0.272 7xF=212.4r2=0.937 9P=0.000这表明生
态网络的相关研究呈稳步增加的趋势。
2.1.2 学科类别产出趋势
某个科学主题在某一学科领域的发文量表征
了该主题在该学科领域内的应用或发展趋势
Price1976本文对生态网络研究主题发文量排
名前 15 的学科领域的发文趋势进行了分析,结果
如图 2所示,生态网络研究主要集中于生态学、环
境科学和生物多样性保护领域,其中生态学领域的
发文量持续增加,2017 年以来植物科学和微生物生
态领域的发文量也呈明显的增加趋势,这可能与近
几年来,植物科学和微生物生态领域广泛应用生态
网络分析有关。
2.1.3 期刊产出趋势
在生态网络研究主题发文量前 15 的期刊如表
2所示,其中 Ecological Modelling 发文量最高,总
发文量为 127 篇,Ecology Letters Ecological
Indicators 紧随其后,但发文量也均低于 80 篇,其
余期刊发文量均未超过 70 篇。整体上,生态网络研
究相关论文大多刊登于生态学相关领域的期刊。
3展示了自 2007 年以来,排名前 15 的期刊
年产出变化趋势, 15 年来,Ecological Modelling
的产出相对较稳定,多个期刊于 2013 年之后才开
始刊登相关的文献;2018 年之后 Ecological
Modelling 的发文量减少, Ecological Indicators
Science of the Total Environment 等期刊的发文量增
加,生态网络研究逐渐从网络模型构建转向网络特
征参数的揭示和应用。
2.2 论文产出的空间态势
2.2.1 国家(地区)分布
全球共有 69 个国家(地区)贡献了检索到的
2782篇文献,如表 3所示,其中产出量前 23 的国
家(地区)贡献了 90%的文献,中国大陆作者文献
产出量最大,共发表论文 601 篇( 21.67%美国次
之,贡献了 393 篇文献14.17%;从表中也可知,
生态网络的研究主要源自于欧美国家和中国大陆。
图2 发文量前 15 位的学科发文趋势
Figure 2 Annual distribution of publications of the top 15 WOS scientific categories
图1 生态网络研究论文的年分布
Figure 1 Publication trends of the papers from 2007
to 2021
蔡国俊等:基于文献计量分析的生态网络研究现状和趋势 1693
从文献引用次数来看,美国作者的文献总被引
次数最高,中国次之, 25 个国家中,总被引次数
与文献产出量的趋势大体一致;从平均引用次数来
看,丹麦、瑞典、阿根廷、西班牙等国家的平均被
引次数较高,中国虽然发文总量最高,但平均引用
频次比较靠后。
4展示了排名前 5的国家的年发文量趋势,
可以看出,2017 年以前,发文量前 5的国家中,
国的发文量保持领先水平;2017 年之后,中国的发
文量开始跃升超过美国,说明中国科研工作者自
2017 年开始对生态网络的研究兴趣逐步提升,研究
论文数量得到有效的提高。
生态网络研究的国家/地区间的合作如图 5
示,从图中可知,除少数国家(地区)外,国际间
生态网络研究的合作较密切,中国与欧美等西方国
家的合作较为紧密,与澳大利亚等国家的合作也较
多,伊朗、巴基斯坦、委内瑞拉、等国家在生态网
络研究上仅有少数或单一国家开展合作,俄罗斯开
图4 排名前 5的国家年发文量变化
Figure 4 Annual distribution of publications
of the top 5 countries/regions
3 排名前 15 的期刊年发文量变化
Figure 3 Outputs of top 15 journals on ecological networks
from 2007 to 2021
3 排名前 25 的国家/地区发文量和被引用频次
Table 3 Top 25-productivity countries/regions
in ecological networks
国家
Countries
论文数
Articles
频率
Proportion/
%
总被引数
Total
citations
平均被引数
Average
citations
中国 China 601 21.67 10 412 17.32
美国 USA 393 14.17 15 948 40.58
英国 United
Kingdom 217 7.82 8504 39.19
法国 France 159 5.73 4047 25.45
西班牙 Spain 148 5.34 8430 56.96
巴西 Brazil 133 4.80 1772 13.32
德国 Germany 109 3.93 5296 48.59
意大利 Italy 107 3.86 2172 20.3
加拿大 Canada 101 3.64 3158 31.27
澳大利亚 Australia 66 2.38 2013 30.5
南非 South Africa 58 2.09 1390 23.97
荷兰 Netherlands 55 1.98 2627 47.76
墨西哥 Mexico 50 1.80 505 10.1
瑞士 Switzerland 40 1.44 1832 45.8
瑞典 Sweden 39 1.41 2385 61.15
葡萄牙 Portugal 37 1.33 545 14.73
丹麦 Denmark 31 1.12 2828 91.23
新西兰
New Zealand 31 1.12 1151 37.13
阿根廷 Argentina 26 0.94 1285 49.42
比利时 Belgium 26 0.94 719 27.65
智利 Chile 25 0.90 557 22.28
印度 India 23 0.83 239 10.39
日本 Japan 23 0.83 497 21.61
匈利亚 Hungary 20 0.72 502 25.1
韩国 Korea 19 0.69 97 5.11
蓝色-红色表示值从低到高。下同
Colors from blue to red indicate the value from low to high. The same
below
表2 生态网络发文量前 15 的期刊
Table 2 Outputs of top 15 journals on ecological networks
期刊英文名
Abbreviate of Journals
中文译名
Journals’ Chines Name
总发文量
Articles
Ecological Modelling 《生态建模》 127
Ecology Letters 《生态学通讯》 75
Ecological Indicators 《生态指标》 71
Plos One PLoS One 63
Oikos Oikos 62
Science of the Total Environment 《总环境科学》 60
Journal of Cleaner Production 《清洁生产杂志》 59
Scientific Reports 《科学报告》 58
Ecology Ecology 53
Landscape Ecology 《景观生态学》 50
Journal of Animal Ecology 《动物生态学杂志》 45
Sustainability 《可持续发展》 43
Methods in Ecology and Evolution 《生态学与演化学方法》 33
Proceedings of the Royal Society
B: Biological Sciences
《英国皇家学会会刊-
生物科学》 32
Ecological Complexity 《生态复杂性》 31
1694 生态环境学报 31 卷第 8期(2022 8月)
展的相关研究较少。
2.2.2 研究机构分布
生态网络研究产出前 15 的机构如图 6所示。
北京师范大学以累计发表 172 篇文献排名第一,
次是中国科学院,发表了 78 篇。其他排名前 15
机构依次为巴西圣保罗大学(65 篇)、新西兰坎特
伯雷大学(58 篇)、墨西哥国立自治大学(58 篇)
美国佐治亚州立大学(57 篇)、墨西哥韦拉克鲁斯
生态研究所56 篇)瑞士苏黎世大学56 篇)、中
国科学院大学(55 篇)、丹麦奥胡斯大学大学(54
篇)加拿大不列颠哥伦比亚大学53 篇)、清华
学( 52 篇)美国芝加哥大学47 篇)美国密歇根
大学(47 篇)和美国俄克拉荷马大学(47 篇)。前
15 个研究机构中,4个来自中国,4个来自美国。
生态网络研的科研机构合作网络如图 7,在生
态网络研究合作过程中,机构间合作与国家/地区间
的合作趋势相似,西方国家研究结构件合作较为紧
密,中国北京师范大学、中国科学院等主要科研机
构间联系紧密,同时也与其他国家的机构开展了密
切的合作。
2.3 主要研究主题
2.3.1 研究主题构成
2782 篇论文的关键词中提取出现频次不小
20 次的主题词,以分析生态网络研究的主题及
热点方向。 8为生态网络研究中出现频次大于 20
的前 100 个关键词的词云,字体越大表示出现频次
越高,即表示该关键词(主题)受到的关注度也较
高。由图可知,生物多样性biodiversity多样性
diversity动力学(dynamic、稳定性(stability
等是生态网络研究中主要的关注点,气候变化
climate-change 、食物网(food webs 、群落
communities)等也是较受关注的主题。
9展示了出现频次高于 20 次的关键词的聚
类和共现网络,如图所示,生态网络研究的关键词
可以分为 5个大的主题群:类群 1(红色) 35
图6 生态网络研究排名前 15 的研究机构
Figure 6 Publications of top 15 ecological networks
research institutes
图5 生态网络研究的核心国家/地区的合作网络
Figure 5 Countries/regions collaboration network of ecological networks research
蔡国俊等:基于文献计量分析的生态网络研究现状和趋势 1695
个主题词,主要为景观网络和生物多样性相关的生
态网络研究;类群 2(黄色) 34 个主题词,主要
为气候变化与食物网以及生态系统稳定性等生态
网络的研究;类群 3(蓝色) 33 个主题词,主要
为群落结构、微生物网络的研究;类群 4(紫色)
32 个主题词,主要为互惠网络及其网络结构的
研究;类群 5(绿色) 41 个主题词,主要为生态
网络分析及其框架模型的研究。表 4列出了 5个主
题聚类的前 15 个主题词及其词频。
2.3.2 高被引文献
生态网络研究被引超过 500 次的论文见表 5
9 生态网络研究主题聚类及共现网络(词频≥20
Figure 9 Terms clusters of ecological networks research (Keywors occurrence20)
7 生态网络研究的主要研究机构的合作网络
Figure 7 Institutions collaboration network of ecological networks research
图8 出现频次大于 20 的关键词词云(前 100 词)
Figure 8 Words cloud of top 100 keywords
1696 生态环境学报 31 卷第 8期(2022 8月)
15 篇高被引文献中,ScienceNature、美国国家科
学院院刊PNAS伦敦皇家学会哲学学报 B辑生
物版(Proceedings of The Royal Society B: Biological
Sciences)等 4个期刊各刊登了 2篇,Bascompte
Jordi 团队和 WoodwardGuy 团队各自贡献了 2
文献。15 篇高被引论文中,5篇是关于食物网、3
4 生态网络研究热点主题分布
Table 4 Hot topics distribution of ecological networks research
主题群 Cluster Name 热点主题(中文对照,词频) Hot Topics (Chinese name, Topics frequency)
类群 1:生物多样性保护、
景观网络
Cluster 1Biodiversity
Conservation, Landscape
Network
biodiversity(生物多样性,440)、conservation(保护,264)、connectivity(连通性,94)、dispersal(扩散,
93)、species richness(物种丰富度,77)、ecosystem services(生态系统服务,74)、landscape connectivity(景
观连通性,69)、land-use(土地利用,67)、landscape(景观,64)、habitat(生境,59)、corridors(廊道,
58)、habitat fragmentation(生境破碎化,56)、network(网络,54)、restoration(恢复,54)、scale(规模,
51)、fragmentation(破碎,51
类群 2:气候变化、食物
网、稳定性
Cluster 2Climate Change,
Food Web, Stability
ecological networks(生态网络,533)、dynamics(动力学/动态,282)、stability(稳定性,274)、food webs(食
物网,171)、climate-change(气候变化,140)、body-size(有机体大小,121)、robustness(鲁棒性,110)、
interaction strengths(作用强度,87)、food-web structure(食物网结构,75)、complexity(复杂性,71)、trophic
interactions(营养互作,65)、connectance(连接,64)、responses(反应,56)、increases(增加,39)、
population-dynamics(种群动态,38
类群 3:群落结构、微生物
网络
Cluster 3Community
Structure, Microbial Network
diversity(多样性,444)、community(群落,115)、ecology(生态学,110)、networks(网络,107)、
competition(竞争,106)、community structure(群落结构,90)、impact(影响,60)、diversity(多样性,
444)、community(群落,115)、ecology(生态学,110)、networks(网络,107)、competition(竞争,106)、
community structure(群落结构,90)、impact(影响,60)、microbial community(微生物群落,59)、growth(生
长,41)、carbon(碳,40)、soil(土壤,38)、performance(性能/表现 35)、bacteria(细菌,33)、degradation
(降解,30)、nitrogen(氮,28
类群 4:互惠网络、
网络结构
Cluster 4Mutualistic
Network, Network Structure
patterns(模式/参数,261)、specialization(物种特化/特化种,194)、communities(群落,188)、nestedness(嵌
套结构,162)、architecture(构建/结构,159)、evolution(进化,117)、abundance(丰度,117)、modularity
(模块化,114)、mutualistic networks(互惠网络,98)、animal mutualistic networks(动物互惠网络,89)、
consequences(生态后果,87)、plant(植物,77)、forest(森林,66)、coevolutionary networks(共同进化网络,
65)、pollination networks(传粉网络,62
类群 5:生态网络分析模型
Cluster 5Ecological Network
Analysis Model
model(模型,138)、management(管理,128)、models(模型,124)、ecological network analysis(生态网络分
析,104)、ecosystems(生态系统,98)、ecosystem(生态系统,96)、systems(系统,79)、impacts(影响,
71)、system(系统,71)、network analysis(网络分析,68)、energy(能量,66)、food-web(食物网,64)、
sustainability(可持续性,56)、consumption(消费者,56)、framework(框架,55
表5 被引超过 500 次的高被引论文
Table 5 Ecological Networks research papers cited more than 100 times
序号
Ordinal
标题
Title
第一作者
Author
期刊源
Source
被引频次
Citations
研究问题
Research Topics
1 Dynamics and Stabilization of the Human Gut
Microbiome during the First Year of Life
Backhed,
Fredrik
Cell Host
& Microbe 1162 肠道微生物、
分子网络
2 Anticipating Critical Transitions Scheffer, Marten Science 1019 复杂系统,综述
3 The Modularity of Pollination Networks Olesen, Jens M. PNAS 990 传粉网络、网络结构
4 Plant-animal mutualistic networks:
The Architecture of Biodiversity Bascompte, Jordi Annual Review of Ecology
Evolution and Systematics 893 互惠网络,图书章节
5 Inferring Correlation Networks
from Genomic Survey Data
Friedman,
Jonathan PLoS Computational Biology 854 分子网络
6 Stability of Ecological Communities and the Architecture
of Mutualistic and Trophic Networks
Thebault,
Elisa Science 817 群落稳定性、
营养网络
7 Community and Ecosystem Responses
to Recent Climate Change
Walther,
Gian-Reto
Philosophical Transactions of
The Royal Society B 716 生态系统稳定性
8 Climate Change and Freshwater Ecosystems: Impacts
Across Multiple Levels of Organization
Woodward,
Guy
Philosophical Transactions of
The Royal Society B 632 食物网、
营养网络
9 The Architecture of Mutualistic Networks Minimizes
Competition and Increases Biodiversity
Bascompte,
Jordi* Nature 593 互惠网络、
生物多样性
10 Molecular Ecological Network Analyses Zhou, Jizhong* BMC Bioinformatics 580 分子网络
11 Ecological Networks - beyond Food Webs Woodward, Guy* Journal of Animal Ecology 562 食物网,综述
12 Parasites in Food Webs: the Ultimate Missing Links Lafferty, Kevin D Ecology Letters 544 食物网
13 Stability Criteria for Complex Ecosystems Allesina, Stefano Nature 531 复杂系统、稳定性
14
A New Habitat Availability Index to Integrate Connectivity
in Landscape Conservation Planning: Comparison with Existing
Indices and Application to A Case Study
Saura,
Santiago Landscape Urban Plan 522 景观网络、生物多样
15
Widespread Crown Condition Decline, Food Web
Disruption, and Amplified Tree Mortality with Increased
Climate Change-type Drought
Carnicer,
Jofre PNAS 507 食物网
蔡国俊等:基于文献计量分析的生态网络研究现状和趋势 1697
互惠网络、3篇分子网络,3篇关于复杂性和稳定
性,这可能与目前生态网络的研究主要集中于食物
网、互惠网络及微生物和分子生物学方面有关。
3 讨论与结论
3.1 讨论
生态网络研究作为一个新的研究视角,对于揭
示生态系统稳定性、生态因果关系等具有重要作用
Nielsen et al.2019。通过对 Web of Science 核心
数据库中生态网络研究领域的论文进行计量分析,
结果表明,数据库中生态网络研究的相关论文主要
开始于 2007 年,且论文数量呈线性增长的趋势进
行发展。从 2017 年开始,中国论文贡献量超过美
国,成为发文量最多的国家,但论文平均引用量较
低,因此,国内学者在后期的研究中,应关注提升
论文的质量和引用量,从而提高中国研究成果在国
际上的影响力。前期主要的论文大多刊登于
Ecological ModellingEcology LettersEcological
Indicators 等知名生态学期刊上,特别是发文量最多
Ecological Modelling 主要关注网络构建模型、
络参数计算等。从实际论文上看,目前生态网络在
网络构建、网络参数(指标)选择与估算等方面仍
存在许多难点(Lau et al.2017特别是不同类型
的网络构建、不同生态网络的网络结构特征等方面
仍需要持续关注。在应用方面,早期的研究多集中
于食物网和植物-动物互惠网络。近年来,随着高通
量测序技术的发展在功能基因、微生物分类等方向
提供了海量的生物信息数据,生态网络在功能基因
分析和微生物生态研究等方面积累了大量的案例
Feng et al.2022王宇姝等,2021。同时,大量
公开的遥感数据也为生态网络在景观生态安全格
局等方面的应用提供了大量研究案例(郑宏媚,
2022,但生态网络研究在其他生态系统的应用仍
需要大量的数据作为支撑进行深入的研究。从关键
词和主题聚类来看,生态网络的研究多集中于食物
网、互惠网络和关键物种识别的生物多样性保护和
关键功能基因识别等方面,在气候变化和全球生态
系统稳定性等方面的研究相对较少。但近两年来,
随着多篇生态网络相关的研究论文在 PNAS
Felipe-Lucia et al.2020Nature Climate Change
Yuan et al.2021Ecology LettersLi et al.2022
Luna et al.2022等气候变化和生态学顶级期刊上
的发表,在全球变化日趋严峻的情大背景下,生态
网络在全球变化对生态系统影响研究中的应用有
望成为未来生态网络研究关注的主要方向。
此外,生态系统是一个复杂的多层系统,其真
实网络应为多层网络Pilosof et al.2017各个网
络中又包含了其他的次级网络(即网络中的网络,
如,“社会-生态”构成的复杂系统中,系统包括
了社会经济活动构成的社会网络,以及自然环境所
构成的自然生态网络(Bodin et al.2019,各个次
级网络中可能还包含了下一级的网络)。网络复杂
程度较高,其网络的构建、网络结构特征参数等与
单层网络相差甚远(Bianconi2018。然而,目前
绝大部分研究都是单层网络,因此,在未来的研究
中应关注生态系统多层网络的构建、多层网络结构
特征分析、多层网络稳定性机制等方面。
3.2 结论
1研究共检索出刊载于 565 个期刊(或书籍)
2782篇生态网络研究的文献,时间跨度为 2007
2022 年。 20072021 年期间,相关文献的产出量
呈线性增长趋势,生态网络研究论文主要分布在生
态学、环境科学和生物多样性保护等学科领域,微生
物生态、植物科学和绿色可持续发展等学科方向发
文总量不高,但近 5年来发文增长速度较快,是目
前生态网络研究的重点关注方向;文献主要来源于
Ecological ModellingEcology Letters Ecological
IndicatorsOikos 等生态学领域的知名期刊。
2)生态网络研究主要分布于西欧、北美和中
国, 2017 年后,中国相关研究的发文量开始超过
美国,成为发文量最高的国家;北京师范大学、中
国科学院等单位成为发文量(合著)最高机构;国
/地区、机构之间的合作网络连接紧密,表明生态
网络研究主要以合作研究为主,这也是新时代科研
的新趋势。
3)从关键词趋势上看,目前生态网络的研究
主要集中于景观网络及生物多样性保护、网络稳定
性、微生物群落网络、动物-植物互惠及生物共现网
络、生态网络分析的模型及应用等方面;从被引频
次最高的文献来看,食物网络、互惠网络、分子网
络和稳定性是研究人员较关注的经典领域。
4)从文献上看,生态网络研究主要应用于物
种保护、土地利用和城市规划、微生物群落结构等
方面,随着全球气候变化趋势的日益加剧,生态网
络在研究全球变化对生态系统影响中的应用有望
成为未来生态网络研究的主要方向。同时,因为生
态系统是一个复杂的多层系统,其真实网络应为多
层网络,因此,在未来的研究中应关注多层生态网
络的构建、多层网络结构特征分析、多层网络稳定
性机制等方面。
参考文献:
ALBERT L, FRANGOS J, 2001. Linked: The new science of networks
science of networks [M]. New York: New York Perseus Books Group.
ARIA M, CUCCURULLO C, 2017. Bibliometrix: An R-tool for
1698 生态环境学报 31 卷第 8期(2022 8月)
comprehensive science mapping analysis [J]. Journal of Informetrics,
11(4): 959-975.
BARBERAN A, BATES S T, CASAMAYOR E O, et al., 2012. Using
network analysis to explore co-occurrence patterns in soil microbial
communities [J]. ISME Journal, 6(2): 343-351.
BIANCONI G, 2018. Multilayer networks: Structure and function [M].
Oxford: Oxford University Press.
BODIN Ö, ALEXANDER S M, BAGGIO J, et al., 2019. Improving network
approaches to the study of complex social-ecological interdependencies
[J]. Nature Sustainability, 2(7): 551-559.
BORRETT S R, SCHARLER U M, 2019. Walk partitions of flow in
Ecological Network Analysis: Review and synthesis of methods and
indicators [J]. Ecological Indicators, 106(2019): 105451.
BORRETT S R, SHEBLE L, MOODY J, et al., 2018. Bibliometric review of
ecological network analysis: 2010–2016 [J]. Ecological Modelling, 382:
63-82.
CAGUA E F, WOOTTON K L, STOUFFER D B, et al., 2019. Keystoneness,
centrality, and the structural controllability of ecological networks [J].
Journal of Ecology, 107(4): 1779-1790.
CHEN S, CHEN B, 2014. Ecological modelling and engineering of lakes and
wetlands [M]. Amsterdam: Elsevier Publishers.
CUFF J P, WINDSOR F M, TERCEL M P, et al., 2022. Overcoming the
pitfalls of merging dietary metabarcoding into ecological networks [J].
Methods in Ecology and Evolution, 13(3): 545-559.
DA FONTOURA COSTA L, SILVA F N, 2006. Hierarchical characterization
of complex networks [J]. Journal of Statistical Physics, 125(4): 841-872.
DALE M R T, 2021. Quantitative analysis of ecological networks [M].
Cambridge: Cambridge University Press.
DALE M R T, FORTIN M J, 2010. From graphs to spatial graphs [J]. Annual
Review of Ecology, Evolution, and Systematics, 41: 21-38.
DELMAS E, BESSON M, BRICE M H, et al., 2018. Analysing ecological
networks of species interactions [J]. Biological Reviews of the
Cambridge Philosophical Society, 94(1): 16-36.
DENG Y, JIANG Y H, YANG Y F, et al., 2012. Molecular ecological network
analyses [J]. BMC Bioinformatics, 13(1): 113.
FATH B D, SCHARLER U M, ULANOWICZ R E, et al., 2007. Ecological
network analysis: network construction [J]. Ecological Modelling,
208(1): 49-55.
FELIPE-LUCIA M R, SOLIVERES S, PENONE C, et al., 2020. Land-use
intensity alters networks between biodiversity, ecosystem functions, and
services [J]. Proceedings of the National Academy of Sciences, 117(45):
28140-28149.
FENG K, PENG X, ZHANG Z, et al., 2022. iNAP: An integrated network
analysis pipeline for microbiome studies [J]. iMeta, 1(2): e13.
FREILICH M A, REBOLLEDO R, CORCORAN D, et al., 2020.
Reconstructing ecological networks with noisy dynamics [J].
Proceedings. Mathematical, Physical, and Engineering Sciences,
476(2237): 20190739.
GOERLANDT F, LI J, RENIERS G, 2020. The landscape of risk
communication research: A scientometric analysis [J]. International
Journal of Environmental Research and Public Health, 17(9): 3255.
HE N P, LI Y, LIU C C, et al., 2020. Plant trait networks: Improved resolution
of the dimensionality of adaptation [J]. Trends in Ecology & Evolution,
35(10): 908-918.
HE N P, LIU C C, PIAO S L, et al., 2019. Ecosystem Traits Linking
Functional Traits to Macroecology [J]. Trends in Ecology & Evolution,
34(3): 200-210.
INGS T C, MONTOYA J M, BASCOMPTE J, et al., 2009. Ecological
networks-beyond food webs [J]. Journal of Animal Ecology, 78(1):
253-269.
KAISER-BUNBURY C N, BLUTHGEN N, 2015. Integrating network
ecology with applied conservation: A synthesis and guide to
implementation [J]. AoB Plants, 7: plv076.
KLEYER M, TRINOGGA J, CEBRIáN-PIQUERAS M A, et al., 2019. Trait
correlation network analysis identifies biomass allocation traits and stem
specific length as hub traits in herbaceous perennial plants [J]. Journal
of Ecology, 107(2): 829-842.
LANDI P, MINOARIVELO H O, BRÄNNSTRÖM Å, et al., 2018.
Complexity and stability of ecological networks: A review of the theory
[J]. Population Ecology, 60(4): 319-345.
LAU M K, BORRETT S R, BAISER B, et al., 2017. Ecological network
metrics: Opportunities for synthesis [J]. Ecosphere, 8(8): e01900.
LI J, GOERLANDT F, RENIERS G, 2021. An overview of scientometric
mapping for the safety science community: Methods, tools, and
framework [J]. Safety Science, 134: 105093.
LI Y, LIU C C, SACK L, et al., 2022. Leaf trait network architecture shifts
with species-richness and climate across forests at continental scale [J].
Ecology Letters, 25(6): 1442-1457.
LUNA P, VILLALOBOS F, ESCOBAR F, et al., 2022. Global trends in the
trophic specialisation of flower-visitor networks are explained by current
and historical climate [J]. Ecology Letters, 25(1): 113-124.
MA A, LU X K, GRAY C, et al., 2019. Ecological networks reveal resilience
of agro-ecosystems to changes in farming management [J]. Nature
Ecology & Evolution, 3(2): 260-264.
MESSEDER J V S , GUERRA T J, DÁTTILO W, et al., 2020. Searching for
keystone plant resources in fruit-frugivore interaction networks across
the Neotropics [J]. Biotropica, 52(5): 857-870.
MONTOYA J M, PIMM S L, SOLE R V, 2006. Ecological networks and their
fragility [J]. Nature, 442(7100): 259-264.
NIELSEN S N, FATH B, BASTIANONI S, et al., 2019. A new ecology:
Systems perspective [M]. Second Edition. Amsterdam: Elsevier
Publishers.
PILOSOF S, PORTER M A, PASCUAL M, et al., 2017. The multilayer nature
of ecological networks [J]. Nature Ecology & Evolution, 1(4): 0101.
PRICE D, 1976. A general theory of bibliometric and other cumulative
advantage processes [J]. Journal of the American Society for
Information Science, 27(5): 292-306.
PROULX S R, PROMISLOW D E, PHILLIPS P C, 2005. Network thinking in
ecology and evolution [J]. Trends in Ecology & Evolution, 20(6): 345-353.
SOLE R V, MONTOYA J M, 2001. Complexity and fragility in ecological
networks [J]. Proceedings of the Royal Society B: Biological Sciences,
268(1480): 2039-2045.
TELESFORD Q K, JOYCE K E, HAYASAKA S, et al., 2011. The ubiquity
of small-world networks [J]. Brain Connect, 1(5): 367-375.
TYLIANAKIS J M, MORRIS R J, 2017. Ecological networks across
environmental gradients [J]. Annual Review of Ecology, Evolution, and
Systematics, 48(1): 25-48.
VAN ECK N J, WALTMAN L, 2010. Software survey: VOSviewer, a
computer program for bibliometric mapping [J]. Scientometrics, 84(2):
523-538.
WINDSOR F M, TAVELLA J, ROTHER D C, et al., 2021. Identifying plant
mixes for multiple ecosystem service provision in agricultural systems
using ecological networks [J]. Journal of Applied Ecology, 58(12):
2770-2782.
XING S, FAYLE T M, 2021. The rise of ecological network meta-analyses:
Problems and prospects [J]. Global Ecology and Conservation, 30:
e01805
YACKINOUS W S, 2015. Understanding complex ecosystem dynamics: A
systems and engineering perspective [M]. Amsterdam: Elsevier
Publishers.
YUAN M M, GUO X, WU L W, et al., 2021. Climate warming enhances
microbial network complexity and stability [J]. Nature Climate Change,
11(4): 343-348.
ZHOU J Z, DENG Y, LUO F, et al., 2010. Functional molecular ecological
networks [J]. mBio, 1(4): e00169- e001610.
李海东, 吴新卫, 肖治术, 2021. 种间互作网络的结构、生态系统功能及
稳定性机制研究[J]. 植物生态学报, 45(10): 1049-1063.
LI H D, WU X W, XIAO Z S, 2020. Assembly, ecosystem functions, and
stability in species interaction networks [J]. Chinese Journal of Plant
蔡国俊等:基于文献计量分析的生态网络研究现状和趋势 1699
Ecology, 45(10): 1049-1063.
罗芳, 潘扬, 鲁长虎, 2013. 动植物互惠网络结构及影响因素[J]. 生态学
杂志, 32(8): 2179-2185.
LUO F, PAN Y, LU C H, 2013. Structural characteristics of plant-animal
mutualistic networks and related affecting factors [J]. Chinese Journal
of Ecology, 32(8): 2179-2185.
JØRGENSEN S E, 2017. 生态系统生态学[M]//曹建军, 赵斌, 张剑, ,
. 北京: 科学出版社.
JØRGENSEN S E, 2017. Ecosystem Ecology [M]//Translated by CAO
J J, ZHAO B, ZHANG J, et al., Beijing: Science Press.
王少鹏, 2020. 食物网结构与功能:理论进展与展望[J]. 生物多样性,
28(11): 1391-1404.
WANG S P, 2020. Food web structure and functioning: Theoretical
advances and outlook [J]. Biodiversity Science, 28(11): 1391-1404.
王宇姝, 盛海彦, 罗莎莎, , 2021. 环青海湖 4种生境土壤中原核微生
物群落结构及分子网络特征[J]. 生态环境学报, 30(7): 1393-1403.
WANG Y S, SHENG H Y, LUO S S, et al., 2021. Characteristics of
prokaryotic microbial community structure and molecular ecological
network in four habitat soils around Lake Qinghai [J]. Ecology and
Environmental Sciences, 30(7): 1393-1403.
肖显静, 何进, 2018. 生态系统生态学研究的关键问题及趋势——
体论与还原论的争论[J]. 生态学报, 38(1): 31-40.
XIAO X J, HE J, 2018. Key problems and trends in the study of
ecosystem ecology based on the debate of holism and reductionism [J].
Acta Ecologica Sinica, 38(1): 31-40.
赵蓉英, 许丽敏, 2010. 文献计量学发展演进与研究前沿的知识图谱探
[J]. 中国图书馆学报, 36(5): 60-68.
ZHAO R Y, XU L M, 2010.The knowledge map of the evolution and
research frontiers of the bibliometrics [J]. Journal of Library Science in
China, 36(5): 60-68.
郑宏媚, 2022. 基于生态网络分析的京津冀城市群隐含碳代谢强度研究
[J]. 环境科学学报, 42(3): 487-496.
ZHENG H M, 2022. Embodied carbon intensity analysis of Beijing-
Tianjin-Hebei urban metabolic system based on ecological network
analysis method [J]. Acta Scientiae Circumstantiae, 42(3): 487-496.
朱建明, 周进, 王慧, , 2021. 藻菌关系的生态网络研究方法: 回顾与
展望[J]. 科学通报, 66(34): 4378-4394.
ZHU J M, ZHOU J, WANG H, et al., 2021. The ecological network
approach to algal-bacterial relationships: Review and prospects [J].
Chinese Science Bulletin, 66(34): 4378-4394.
Status and Trends on Ecological Networks Research:
A Review Based on Bibliometric Analysis
CAI Guojun1, 2, YUAN Guixiang1, FU Hui1*
1. Ecology Department, College of Resources and Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area,
Hunan Agricultural University, Changsha 410128, P. R. China;
2. Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, P. R. China
Abstract: To understand the research status of ecological networks, a high-level analysis of ecological networks research domain is
performed using scientometrics methods and visualization tools. We compiled the data of 2 782 articles during the period of 2007
2022 from Web of Science Core Collections (WOSCC) database, and conducted a scientometric analysis using bibliometrix package
of R and VOSviewer. We aimed to assess the annual distribution of publications, countries, institutes, authors, journals and categories
of ecological network researches. Furthermore, key topics and highly-cited papers were analyzed. The results showed that the output
of papers focusing on ecological network had increased linearly and attracted much more attentions since 2007. The countries
contributed to most of these papers are mainly China, USA, Britain, France and other European and American countries, while the top
institutes included Beijing Normal University, Chinese Academy of Sciences, University of Sao Paulo, University of Canterbury and
National Autonomous University of Mexico. The papers were primarily published on 565 journals (or books), including top journals
of Ecological Modeling, Ecological Letters, Ecological Indicators, and OIKOS, all of which were well-known journals in the field of
Ecology. The study identified that the subjects of ecological networks could be divided into five major groups: landscape network and
biodiversity protection, climate change and networks stability, microbial community network, animal-plant mutualistic networks and
co-occurrence networks, and the model and application of ecological network analysis. The highly cited papers in the period 2007–
2021 indicated that Food webs, Mutualistic networks, Molecular ecological network and Stability were the highest impact research
areas of ecological networks, and the application of ecological network in the study of the impact of global change on ecosystem is
likely to be the main direction of ecological network research in the future. In addition, future research should pay more attention to
the ecosystem multi-layer network construction and its stability mechanism.
Keywords: ecosystem; ecological networks; biodiversity; complex network; global change
Article
Full-text available
Guilin is a typical representative of karst landform in South China. Because of its unique geographical landform and hydrological environment, Lijiang River Basin has received a certain degree of attention in field of ecology and sustainable development. Explore and visualize the hotspots and frontiers of Guilin Lijiang River Basin Ecology and Sustainable Development (GLRBESD) by using bibliometrics, CiteSpace, and VOSviewer. Results showed that number of published papers was in a fluctuating upward trend from 1992 to 2022 and from 2011 to 2022, respectively. Work of scholars in this field has been continuously strengthened and deepened, and overall scientific research results show an increasing trend. Research objects and topics are mainly aimed at the water resources, climate, and environment of GLRB Landscape ecology and SDG index construction. Research of GLRBESD-published documents has the characteristics of multi-disciplinary and interdisciplinary integration. High-frequency keywords in research field focus on ecotourism, ecological restoration, and sustainable development, mainly based on the research of ecotourism development. Impact of environmental factor changes and human activities on land use change in different periods is an important research topic. Core research field of GLRBESD on macro-scale can be divided into ESV and function, ecological compensation and ecotourism, ecological environment and ecological restoration, ecological network and ecological risk assessment, and sustainable development. This research provides systematic scientific research basis for enhancing sustainable development ability and ecosystem functions and services of World Natural Heritage Site.
Preprint
Full-text available
Guilin is a typical representative of karst landform in South China. Because of its unique geographical landform and hydrological environment, Lijiang River Basin has received a certain degree of attention in field of ecology and sustainable development. In order to understand the hot spots, research frontiers and literature overview in the research field of Guilin Lijiang River Basin Ecology and Sustainable Development (GLRBESD), and clarify current and future research directions. Results showed that number of published papers was in a fluctuating upward trend from 1992 to 2022 and from 2011 to 2022, respectively. Work of scholars in this field has been continuously strengthened and deepened, and overall scientific research results show an increasing trend. Research objects and topics are mainly aimed at the water resources, climate and environment of GLRB Landscape ecology and SDGs index construction. Research of GLRBESD published documents has the characteristics of multi-disciplinary and interdisciplinary integration. High-frequency keywords in research field focus on ecotourism, ecological restoration and sustainable development, mainly based on the research of ecotourism development. Impact of environmental factor changes and human activities on land use change in different periods is an important research topic. Core research fields of GLRBESD on macro-scale can be divided into ESV and function, ecological compensation and ecotourism, ecological environment and ecological restoration, ecological network and ecological risk assessment, sustainable development. This research provides systematic scientific research basis for enhancing sustainable development ability and ecosystem functions and services of World Natural Heritage Site.
Article
Full-text available
Variation in the architecture of trait networks among ecosystems has been rarely quantified, but can provide high resolution of the contrasting adaptation of the whole phenotype. We constructed leaf trait networks (LTNs) from 35 structural, anatomical and compositional leaf traits for 394 tree species in nine forests from tropical to cold‐temperate zones in China. Our analyses supported the hypothesis that LTNs would increase in modular complexity across forests in parallel with species‐richness and climatic warmth and moisture, due to reduced phenotypic constraints and greater opportunities for niche differentiation. Additionally, we found that within LTNs, leaf economics traits including leaf thickness would have central importance, acting as hub traits with high connectivity due to their contributions to multiple functions. Across the continent, the greater species richness and trait diversity observed in forests under resource‐rich climates enable greater complexity in whole phenotype structure and function as indicated by the trait network architecture.
Article
Full-text available
Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower-visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation.
Article
Full-text available
Investigating ecological networks can help us to understand how ecosystems respond to environmental changes. The increasing number of ecological network studies has facilitated the emergence of a body of meta-analyses that aims to generalize geographical patterns of ecological interactions. Here we summarize the status, potential shortcomings, and challenges in meta-analyses of ecological networks. We emphasize the importance of this approach and how it can be developed in the future. This ongoing ecological network meta-analytical approach will continue to generate important insights into existing patterns in global ecological networks and enhance our knowledge of future global changes.
Article
Full-text available
Managing agricultural environments in a way that maximises the provision of multiple ecosystem services is a significant challenge in the development of sustainable and secure food systems. Advances in network ecology provide a way forward, particularly in arable landscapes, as they incorporate mutualistic and antagonistic interactions associated with crop production. Here, we present an approach to identify mixes of non‐crop plant species that provide multiple ecosystem services while minimising disservices. Genetic algorithms were applied to the Norwood Farm ecological network—a comprehensive dataset of antagonistic and mutualistic species interactions on an organic farm in the United Kingdom. We aimed to show how network analyses can be used to select plants supporting a high diversity of insect pollinators and parasitoids of insect pests, but low diversity of herbivores. Further to this, we wanted to understand the trade‐offs in ecosystem service provision associated with conventional management practices that focus on individual ecosystem services. We show that multilayer network analyses can be used to identify mixes of plant species that maximise the species richness of pollinators and parasitoids (natural enemies of insect pests), while minimising the species richness of herbivores. Trade‐offs between ecosystem processes were apparent with several plant species associated with a high species richness of both positive (pollinators and parasitoids) and negative (herbivores) functional taxonomic groups. As a result, optimal plant species mixes for individual ecosystem services were different from the mix simultaneously maximising pollination and parasitism of pest insects, while minimising herbivory. Synthesis and applications. Plant mixes designed solely for maximising pollinator species richness are not optimal for the provision of other ecosystem services and disservices (e.g. parasitism of insect pests and herbivory). The method presented here will allow for the design of management strategies that facilitate the provision of multiple ecosystem services. To this end, we provide a protocol for practitioners to develop their own plant mixes suitable for farm‐scale management. This avenue of predictive network ecology has the potential to enhance agricultural management, supporting high levels of biodiversity and food production by manipulating ecological networks in specific ways.
Article
Full-text available
Unravelling the relationships between network complexity and stability under changing climate is a challenging topic in theoretical ecology that remains understudied in the field of microbial ecology. Here, we examined the effects of long-term experimental warming on the complexity and stability of molecular ecological networks in grassland soil microbial communities. Warming significantly increased network complexity, including network size, connectivity, connectance, average clustering coefficient, relative modularity and number of keystone species, as compared with the ambient control. Molecular ecological networks under warming became significantly more robust, with network stability strongly correlated with network complexity, supporting the central ecological belief that complexity begets stability. Furthermore, warming significantly strengthened the relationships of network structure to community functional potentials and key ecosystem functioning. These results indicate that preserving microbial ‘interactions’ is critical for ecosystem management and for projecting ecological consequences of future climate warming.
Article
Full-text available
生态群落中不同物种间发生多样化的相互作用, 形成了复杂的种间互作网络。复杂生态网络的结构如何影响群落的 生态系统功能及稳定性是群落生态学的核心问题之一。 种间互作直接影响到物质和能量在生态系统不同组分之间的流动和循 环以及群落构建过程, 使得网络结构与生态系统功能和群落稳定性密切相关。在群落及生态系统水平上开展种间互作网络研 究将为群落的构建机制、生物多样性维持、生态系统稳定性、物种协同进化和性状分化等领域提供新的视野。当前生物多样 性及生态系统功能受到全球变化的极大影响, 研究种间互作网络的拓扑结构、构建机制、稳定性和生态功能也可为生物多样 性的保护和管理提供依据。该文从网络结构、构建机制、网络结构和稳定性关系、种间互作对生态系统功能的影响等4个方 面综述当前种间网络研究进展, 并提出在今后的研究中利用机器学习和多层网络等来探究环境变化对种间互作网络结构和 功能的影响, 并实现理论和实证研究的有效整合。 Varied species interactions form complex species interaction networks in diverse ecological communities. Understanding how the network structure affects ecosystem functions and community stability is one major issue for community ecology. Species interactions can directly affect the flow and circulation of matter and energy among different components of ecosystems. As a result, the network structure is closely related to the structure, stability, and functioning of ecological communities. Prior studies on interaction networks have shed light on community assembly, biodiversity maintenance, ecosystem stability, coevolution and trait diversification. Currently, biodiversity and ecosystem functions have been largely affected by global environmental changes. The interaction networks and their relationship with biodiversity loss in a changing world have become important research topics. Exploring the structure and assembly of species interaction networks, stability, and ecosystem functions is significant for understanding the maintenance mechanism and biodiversity conservation. Here, we reviewed the reserach advances in the structure of ecological networks and their determinants, network stability, the relationship between network and ecosystem functions, and the mechanisms underlying these relationships. We also suggest future research directions on how to apply machine learning and multilayer network to disentangle the effects of environmental change on network structure and ecosystem functions by integrated theoretical and empirical studies.
Article
Full-text available
Sustainable management of ecosystems and growth in agricultural productivity is at the heart of the United Nations’ Sustainable Development Goals for 2030. New management regimes could revolutionize agricultural production, but require an evaluation of the risks and opportunities. Replacing existing conventional weed management with genetically modified, herbicide-tolerant (GMHT) crops, for example, might reduce herbicide applications and increase crop yields, but remains controversial owing to concerns about potential impacts on biodiversity. Until now, such new regimes have been assessed at the species or assemblage level, whereas higher-level ecological network effects remain largely unconsidered. Here, we conduct a large-scale network analysis of invertebrate communities across 502 UK farm sites to GMHT management in different crop types. We find that network-level properties were overwhelmingly shaped by crop type, whereas network structure and robustness were apparently unaltered by GMHT management. This suggests that taxon-specific effects reported previously did not escalate into higher-level systemic structural change in the wider agricultural ecosystem. Our study highlights current limitations of autecological assessments of effect in agriculture in which species interactions and potential compensatory effects are overlooked. We advocate adopting the more holistic system-level evaluations that we explore here, which complement existing assessments for meeting our future agricultural needs. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.
Article
The relationship between food web structure and functioning can have important implications for predicting the responses of ecosystems to global changes. Previous studies have mainly explored food web structure and functioning separately or in simple food web models (e.g. food chains), but recent studies made significant progress in understanding the structure and functioning of complex food webs. This paper reviews the theoretical approaches and recent advances of complex food webs. In particular, I summarize the multiple metrics for quantifying the structure, biodiversity, and functioning of complex food webs, explain the theoretical framework for modeling complex food webs, and review the recent progress in understanding the relationships between food web structure, biodiversity, and functioning, and how they respond to global changes. I end with discussion on potential future directions by integrating food web theory with functional trait, ecological stoichiometry, other types of ecological networks, metacommunity theory, and evolutionary models.
Article
Scientometrics analysis is increasingly applied across scientific domains to gain quantitative insights in the development of research on particular (sub-)domains of scientific inquiry. By visualizing metrics containing quantitative information about such a domain, scientometric mapping allows researchers to gain insights in aspects thereof. Methods have been developed to answer specific research questions, focusing e.g. on collaboration networks, thematic research clusters, historic evolution patterns, and trends in topics addressed. Several articles applying scientometric mapping to safety-related topics have been published. In context of the Special Issue 'Mapping Safety Science-Reviewing Safety Research', this article first reviews these, and subsequently provides an overview of key concepts, methods, and tools for scientometric mapping. Data sources and freely available tools are introduced, focusing on which research questions these are suited to answer. A brief tutorial-style description of a scientometrics research process is provided, guiding researchers new to this method how to engage with it. Finally, a discussion on best practices in scientometric mapping research is made, focusing on how to obtain reliable and valid results, and how to use the scientometric maps to gain meaningful insights. It is hoped that this work can advance the application of scientometric research within the safety science community.
Article
Identifying keystone plant resources (KPR) is a contentious issue in ecology and conservation. Despite recent advances provided by mutualistic networks, we still lack studies addressing large‐scale identification of keystone plants. We developed a novel quantitative framework for the large‐scale identification of KPR that combines centrality and effects of simulated removals on networks properties. We built a database with 38 fruit–frugivore networks comprising 6,180 pairwise interactions from Neotropical forest and non‐forest ecosystems ranging from sea level to 2,500 m a.s.l.. Effects of random removal simulations and removal of keystone taxa candidates on nestedness, modularity and niche overlap were assessed. Furthermore, we tested whether changes in network descriptors responded to both latitudinal and elevational gradients. From a total of 373 genera on networks, only species in six genera were ranked as keystone candidates. The simulated removal of species in Miconia (Melastomataceae), Cecropia (Urticaceae) and Byrsonima (Malpighiaceae) led to significant changes in nestedness, modularity and niche overlap, suggesting that these plants play important roles in maintaining the structure of Neotropical fruit–frugivore interaction networks, regardless of latitude or elevation. Our results confirm the keystone role of previously recognized taxa, recognize overlooked ones, providing support for their role at a biogeographical scale, and partially challenge taxa traditionally identified as keystone resources for frugivores. Our study has implications for conservation and restoration of Neotropical ecosystems and provides a new framework for large‐scale identification of keystones in other types of ecological networks. Abstract in Spanish is available with online material.