DataPDF Available

Stelbrink et al 2020 JGLR supplements

Authors:
1
Supplementary Material
Title: Ecological opportunity enabled invertebrate radiations in ancient Lake Ohrid
Authors: Björn Stelbrink, Thomas Wilke & Christian Albrecht
2
Figure S1. *BEAST MCC of the ‘non-pyrgulinid Hydrobiidae’
strict
dataset. Numbers at nodes indicate node ages, blue
bars represent 95% credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid
clade is marked in red. Sequence abbreviations: Gohr = Gocea ohridana; Lgjo = Lyhnidia gjorgjevici; Lsta = Lyhnidia
stankovici; Ocar = Ohridohoratia carinata; Odep = Ohridohauffenia depressa; Omin = Ohridohauffenia minuta; Opyg
= Ohridohoratia pygmaea; Orot = Ohridohauffenia rotonda; Osam = Ohrigocea samuili; Osan = Ohridohauffenia
sanctinaumi; Osta = Ohrigocea stankovici; Pbru = Pseudohoratia brusinae; Plac = Pseudohoratia lacustris; Pohr =
Pseudohoratia ohridana; Ppol = Polinskiola polinskii; Pstu = Polinskiola sturanyi; Sohr = Strugia ohridana. See Föller
et al. (2015) for details.
3
Figure S2. *BEAST MCC of the ‘non-pyrgulinid Hydrobiidae’
relaxed
dataset. Numbers at nodes indicate node ages, blue
bars represent 95% credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid
clade is marked in red. Sequence abbreviations: Gohr = Gocea ohridana; Lgjo = Lyhnidia gjorgjevici; Lsta = Lyhnidia
stankovici; Ocar = Ohridohoratia carinata; Odep = Ohridohauffenia depressa; Omin = Ohridohauffenia minuta; Opyg
= Ohridohoratia pygmaea; Orot = Ohridohauffenia rotonda; Osam = Ohrigocea samuili; Osan = Ohridohauffenia
sanctinaumi; Osta = Ohrigocea stankovici; Pbru = Pseudohoratia brusinae; Plac = Pseudohoratia lacustris; Pohr =
Pseudohoratia ohridana; Ppol = Polinskiola polinskii; Pstu = Polinskiola sturanyi; Sohr = Strugia ohridana. See Föller
et al. (2015) for details.
4
Figure S3. *BEAST MCC of the Pyrgulinae
strict
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Cstu = Chilopyrgula sturanyi; Gmmu = Ginaia munda munda; Gmms = G. munda sublitoralis;
Mpav = Macedopyrgula pavlovici; Msta = Micropyrgula stankovici; Mwag = Macedopyrgula wagneri; Nsta =
Neofossarulus stankovici; Omac = Ohridopyrgula macedonica; Pann = Pyrgula annulata; Pgro = Pyrgohydrobia
grochmalickii; Ppre = Prespopyrgula prespaensis; Xdyb = Xestopyrgula dybowskii. See Schreiber et al. (2012) and
Wilke et al. (2007) for details.
5
Figure S4. *BEAST MCC of the Pyrgulinae
relaxed
dataset. Numbers at nodes indicate node ages, blue bars represent
95% credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked
in red. Sequence abbreviations: Cstu = Chilopyrgula sturanyi; Gmmu = Ginaia munda munda; Gmms = G. munda
sublitoralis; Mpav = Macedopyrgula pavlovici; Msta = Micropyrgula stankovici; Mwag = Macedopyrgula wagneri;
Nsta = Neofossarulus stankovici; Omac = Ohridopyrgula macedonica; Pann = Pyrgula annulata; Pgro = Pyrgohydrobia
grochmalickii; Ppre = Prespopyrgula prespaensis; Xdyb = Xestopyrgula dybowskii. See Schreiber et al. (2012) and
Wilke et al. (2007) for details.
6
Figure S5. *BEAST MCC of the Acroloxus
strict
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Acim, Aim = A. improvisus; Acma = A. macedonicus. See Stelbrink et al. (2016) for details.
7
Figure S6. *BEAST MCC of the Acroloxus
relaxed
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Acim, Aim = A. improvisus; Acma = A. macedonicus. See Stelbrink et al. (2016) for details.
8
Figure S7. *BEAST MCC of the Ancylus
strict
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Alap = A. lapicidus; Asca = A. scalariformis; Atap = A. tapirulus; AspB = Ancylus sp. B;
AspD = Ancylus sp. D. See Albrecht et al. (2006) for details.
9
Figure S8. *BEAST MCC of the Ancylus
relaxed
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Alap = A. lapicidus; Asca = A. scalariformis; Atap = A. tapirulus; AspB = Ancylus sp. B;
AspD = Ancylus sp. D. See Albrecht et al. (2006) for details.
10
Figure S9. *BEAST MCC of the Dina
strict
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Dkri = D. krilata; Dlep = D. lepinja; Dlyh = D. lyhnida; Dohr = D. ohridana; Dpro = D.
profunda; Dsvi = D. svilesta; Dsp1–Dsp10 = Dina sp. 1–10. See Trajanovski et al. (2010) for details.
11
Figure S10. *BEAST MCC of the Dina
relaxed
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked in red.
Sequence abbreviations: Dkri = D. krilata; Dlep = D. lepinja; Dlyh = D. lyhnida; Dohr = D. ohridana; Dpro = D.
profunda; Dsvi = D. svilesta; Dsp1–Dsp10 = Dina sp. 1–10. See Trajanovski et al. (2010) for details.
12
Figure S11. *BEAST MCC of the Gammarus
strict
dataset. Numbers at nodes indicate node ages, blue bars represent
95% credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked
in red. Sequence abbreviations: Glyc = G. lychnidensis; Gmac = G. macedonicus; Gpar = G. parechiniformis; Gsal = G.
salemaai; Gsol = G. solidus; Gsta = G. stankokaramani; Gsp1 = Gammarus sp. 1; Gsp2 = Gammarus sp. 2. See
Wysocka et al. (2013, 2014) for details.
13
Figure S12. *BEAST MCC of the Gammarus
relaxed
dataset. Numbers at nodes indicate node ages, blue bars represent
95% credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clade is marked
in red. Sequence abbreviations: Glyc = G. lychnidensis; Gmac = G. macedonicus; Gpar = G. parechiniformis; Gsal = G.
salemaai; Gsol = G. solidus; Gsta = G. stankokaramani; Gsp1 = Gammarus sp. 1; Gsp2 = Gammarus sp. 2. See
Wysocka et al. (2013, 2014) for details.
14
Figure S13. *BEAST MCC of the Proasellus
strict
dataset. Numbers at nodes indicate node ages, blue bars represent 95%
credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clades are marked in
red (littoral clade) and blue (sublittoral clade). Sequence abbreviations: Parn = P. arnautovici; Parn_elo = P.
arnautovici elongatus; Pgjo = P. gjorgjevici; Prem = P. remyi; Prem_acut = P. remyi acutangulus; Prem_nud = P.
remyi nudus; Prem_rem = P. remyi remyi. See Wysocka et al. (2008) for details.
15
Figure S14. *BEAST MCC of the Proasellus
relaxed
dataset. Numbers at nodes indicate node ages, blue bars represent
95% credibility intervals and numbers on branches denote and posterior probabilities. The Lake Ohrid clades are
marked in red (littoral clade) and blue (sublittoral clade). Sequence abbreviations: Parn = P. arnautovici; Parn_elo = P.
arnautovici elongatus; Pgjo = P. gjorgjevici; Prem = P. remyi; Prem_acut = P. remyi acutangulus; Prem_nud = P.
remyi nudus; Prem_rem = P. remyi remyi. See Wysocka et al. (2008) for details.
16
Table S1. DNA sequences generated in the course of this study (marked in red).
Dataset DNA# Coll. no. 16S
acc. no.
COI
acc. no.
ITS2
acc. no.
Pyrgulinae
Chilopyrgula sturanyi 12788 UGSB 10114 MT573282 MT576313 MT594151
Chilopyrgula sturanyi 12790 UGSB 10115 MT573283 MT576314 MT594152
Chilopyrgula sturanyi 12793 UGSB 10117 MT573284 MT576315 MT594153
Chilopyrgula sturanyi 13058 UGSB 10119 MT573285 MT576316 MT594154
Chilopyrgula sturanyi 13065 UGSB 10814 MT573286 MT576317 MT594155
Dianella thiesseana 12231 UGSB 10009 MT573287 MT576318 MT594156
Dianella thiesseana 12232 UGSB 10010 MT573288 MT576319 MT594157
Dianella thiesseana 12234 UGSB 10011 MT573289 MT576320 MT594158
Ginaia munda munda 12287 UGSB 4985 MT573290 JN398554 MT594159
Ginaia munda munda 12945 UGSB 4942 MT573291 JN398511 MT594160
Ginaia munda sublitoralis 12266 UGSB 5022 MT573292 JN398591 MT594161
Ginaia munda sublitoralis 12268 UGSB 5015 MT573293 JN398584 MT594162
Ginaia munda sublitoralis 12271 UGSB 4951 MT573294 JN398520 MT594163
Macedopyrgula pavlovici 12549 UGSB 4981 MT573295 JN398550 MT594164
Macedopyrgula pavlovici 12552 UGSB 4977 MT573296 JN398546 MT594165
Macedopyrgula pavlovici 12555 UGSB 5066 MT573297 JN398634 MT594166
Micropyrgula stankovici 12261 UGSB 10019 MT573298 MT571591 MT594167
Macedopyrgula wagneri 12569 UGSB 5023 MT573299 JN398592 MT594168
Macedopyrgula wagneri 13043 UGSB 5001 MT573300 JN398570 MT594169
Macedopyrgula wagneri 13051 UGSB 5012 MT573301 JN398581 MT594170
Macedopyrgula wagneri 13052 UGSB 5013 MT573302 JN398582 MT594171
Neofossarulus stankovici 12770 UGSB 10108 MT573303 MT571592
MT594172
Neofossarulus stankovici 12775 UGSB 10111 MT573304 MT571593
MT594173
Neofossarulus stankovici 12776 UGSB 10112 MT573305 MT571594
MT594174
Ochridopyrgula mac. charensis 13424 UGSB 4967 MT573306 JN398536 MT594175
Ochridopyrgula mac. charensis 13426 UGSB 4969 MT573307 JN398538 MT594176
Ochridopyrgula mac. charensis 13427 UGSB 4991 MT573308 JN398560 MT594177
Ochridopyrgula mac. macedonica 13921 UGSB 5070 MT573309 JN398638 MT594178
Pyrgula annulata 12431 UGSB 10026 MT573310 MT571595 MT594179
Pyrgohydrobia grochmalickii 14605 UGSB 10118 MT573311 MT571596 MT594180
Prespopyrgula prespaensis 12239 UGSB 10013 MT573312 MT571597 MT594181
Prespopyrgula prespaensis 12247 UGSB 10016 MT573313 MT571598 MT594182
Prespopyrgula prespaensis 12248 UGSB 10017 MT573314 MT571599 MT594183
Xestopyrgula dybowskii 12750 UGSB 10027 MT573315 MT571600 MT594184
Xestopyrgula dybowskii 12751 UGSB 10028 MT573316 MT571601 MT594185
Xestopyrgula dybowskii 12753 UGSB 10030 MT573317 MT571602 MT594186
Xestopyrgula dybowskii 12755 UGSB 10817 MT573318 MT571603 MT594187
Xestopyrgula dybowskii 12756 UGSB 10021 MT573319 MT571604 MT594188
Xestopyrgula dybowskii 12762 UGSB 10024 MT573320 MT571605 MT594189
Xestopyrgula dybowskii 12763 UGSB 10025 MT573321 MT571606 MT594190
Ancylus
A. lapicidus MK10b ZMB 104.530 DQ301858 DQ301827 MT594191
A. scalariformis MK4a ZMB 104.524 DQ301859 DQ301825 MT594192
A. scalariformis MK5 ZMB 104.526 DQ301848 DQ301839 MT594193
Ancylus sp. B GR1 ZMB 104.518 DQ301856 DQ301838 MT594194
Ancylus sp. B
GR2 ZMB 104.519 DQ301853 DQ301840 MT594195
Ancylus sp. B
MK1 ZMB 104.511 DQ301842 DQ301830 MT594196
Ancylus sp. B
MK2 ZMB 104.512 DQ301850 DQ301834 MT594197
Ancylus sp. B
MK3 ZMB 104.513 DQ301849 DQ301833 MT594198
Ancylus sp. B
MK6 ZMB 104.514 DQ301846 DQ301831 MT594199
Ancylus sp. B
TR2 ZMB 104.520 DQ301851 DQ301835 MT594200
Ancylus sp. B
TR3 ZMB 104.521 DQ301854 DQ301841 MT594201
Ancylus sp. D 16232 UGSB 7901 MT584051 MT578849
MT594202
Ancylus sp. D AL1 ZMB 104.517 DQ301847 DQ301832 MT594203
A. tapirulus MK7 ZMB 104.523 DQ301857 DQ301837 MT594204
17
continued
Dataset DNA# Coll. no. 16S
acc. no.
COI
acc. no.
ITS2
acc. no.
Dina
D. lineata lacustris 9213 UGSB 4166 MT573322 HM246611
D. lyhnida 6308 UGSB 1659 MT573323 HM246573
D. ohridana 5960 UGSB 1692 MT573324 HM246548
D. svilesta 6922 UGSB 1651 MT573325 HM246598
Dina sp. 2 11377 UGSB 4184 MT573326 HM246627
Dina sp. 7 3951 UGSB 1700 MT573327 HM246536
Dina sp. 9 6296 UGSB 1703 MT573328 HM246565
Dina sp. 10 6913 UGSB 1677 MT573329 HM246590
18
Table S2. Shifts in diversification rates identified by the TreePar analyses for random trees sampled from the BEAST
posterior distribution.
Dataset and random tree number Tree root height (My) Shift (My)
‘non-pyrgulinid Hydrobiidae’
strict
#01 1.79 0.05
#06 2.25 0.30
#09 1.45 0.95
#10 2.22 0.20
‘non-pyrgulinid Hydrobiidae’
relaxed
#02 1.64 0.05
Pyrgulinae
strict
#01 1.24 0.35
#02 1.50 0.60
#04 1.59 0.90
#10 1.29 0.25
Pyrgulinae
relaxed
#01 1.60 0.55
#04 1.80 0.65
#07 1.97 0.70
Dina
relaxed
#08 1.20 0.15
Gammarus
strict
#02 2.70 1.95
#05 2.64 2.15
Gammarus
relaxed
#01 3.48 3.00
#02 2.74 1.85
#05 3.03 2.65
#09 2.55 2.00
19
References
Albrecht, C., Trajanovski, S., Kuhn, K., Streit, B., Wilke, T., 2006. Rapid evolution of an ancient lake species flock:
freshwater limpets (Gastropoda: Ancylidae) in the Balkan Lake Ohrid. Org. Divers. Evol. 6, 294–307.
https://doi.org/10.1016/j.ode.2005.12.003.
Föller, K., Stelbrink, B., Hauffe, T., Albrecht, C., Wilke, T., 2015. Constant diversification rates of endemic gastropods
in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations. Biogeosciences 12, 7209–
7222. https://doi.org/10.5194/bg-12-7209-2015.
Schreiber, K., Hauffe, T., Albrecht, C., Wilke, T., 2012. The role of barriers and gradients in differentiation processes of
pyrgulinid microgastropods of Lake Ohrid. Hydrobiologia 682, 61–73. https://doi.org/10.1007/s10750-011-0864-
4.
Stelbrink, B., Shirokaya, A.A., Föller, K., Wilke, T., Albrecht, C., 2016. Origin and diversification of Lake Ohrid’s
endemic acroloxid limpets: the role of geography and ecology. BMC Evol. Biol. 16, 273.
https://doi.org/10.1186/s12862-016-0826-6.
Trajanovski, S., Albrecht, C., Schreiber, K., Schultheiß, R., Stadler, T., Benke, M., Wilke, T., 2010. Testing the spatial
and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea:
Erpobdellidae) in Lake Ohrid. Biogeosciences 7, 3387–3402. https://doi.org/10.5194/bg-7-3387-2010.
Wilke, T., Albrecht, C., Anistratenko, V.V., Sahin, S.K., Yildirim, Z., 2007. Testing biogeographical hypotheses in
space and time: faunal relationships of the putative ancient Lake Eǧirdir in Asia Minor. J. Biogeogr. 34, 1807–
1821.
Wysocka, A., Kostoski, G., Kilikowska, A., Wróbel, B., Sell, J., 2008. The Proasellus (Crustacea, Isopoda) species
group, endemic to the Balkan Lake Ohrid: a case of ecological diversification? Fundam. Appl. Limnol. / Arch. für
Hydrobiol. 172, 301–313. https://doi.org/10.1127/1863-9135/2008/0172-0301.
Wysocka, A., Grabowski, M., Sworobowicz, L., Burzyński, A., Kilikowska, A., Kostoski, G., Sell, J., 2013. A tale of
time and depth: intralacustrine radiation in endemic Gammarus species flock from the ancient Lake Ohrid. Zool. J.
Linn. Soc. 167, 345–359. https://doi.org/10.1111/j.1096-3642.2012.00878.x.
Wysocka, A., Grabowski, M., Sworobowicz, L., Mamos, T., Burzyński, A., Sell, J., 2014. Origin of the Lake Ohrid
gammarid species flock: ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768.
https://doi.org/10.1111/jbi.12335.

File (1)

Content uploaded by Björn Stelbrink
Author content
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.