Benjamin Schindler

Benjamin Schindler
ETH Zurich | ETH Zürich · Department of Computer Science

PhD

About

16
Publications
2,812
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
487
Citations
Additional affiliations
May 2009 - present
ETH Zurich
Description
  • PhD in Computer Science: Efficient Algorithms for Lagrangian Visualization of Flow Structures
Education
September 2003 - April 2009
ETH Zurich
Field of study
  • Computer Science

Publications

Publications (16)
Article
Uncertainties in flood predictions complicate the planning of mitigation measures. There is a consensus that many possible incident scenarios should be considered. For each scenario, a specific response plan should be prepared which is optimal with respect to criteria such as protection, costs, or realization time. None of the existing software too...
Chapter
Finite-time and finite-size Lyapunov exponents are related concepts that have been used for the purpose of identifying transport structures in time-dependent flow. The preference for one or the other concept seems to be based more on a tradition within a scientific community than on proven advantages. In this study, we demonstrate that with the two...
Article
In this paper, we present a data-flow system which supports comparative analysis of time-dependent data and interactive simulation steering. The system creates data on-the-fly to allow for the exploration of different parameters and the investigation of multiple scenarios. Existing data-flow architectures provide no generic approach to handle modul...
Article
Room air flow and air exchange are important aspects for the design of energy-efficient buildings. As a result, simulations are increasingly used prior to construction to achieve an energy-efficient design. We present a visual analysis of air flow generated at building entrances, which uses a combination of revolving doors and air curtains. The res...
Conference Paper
Full-text available
The finite-time Lyapunov exponent (FTLE) is useful for the visualization of time-dependent velocity fields. The ridges of this derived scalar field have been shown to correspond well to attracting or repelling material structures, so-called Lagrangian coherent structures (LCS). There are two issues involved in the computation of FTLE for this purpo...
Conference Paper
Full-text available
The popularity of vector field topology in the visualization community is due mainly to the topological skeleton which captures the essential information on a vector field in a set of lines or surfaces separating regions of different flow behavior. Unfortunately, vector field topology has no straightforward extension to unsteady flow, and the conce...
Article
We present a dense visualization of vector fields on multi-layered surfaces. The method is based on the illustration buffer, which provides a screen space representation of the surface, where each pixel stores a list of all surface layers. This representation is implemented on the GPU using shaders and leads to a fast, output sensitive technique. I...
Article
We describe a novel adaptive mesh representation for streak-surfaces. The surface is represented as a mesh of small trees of initial depth zero (treelets). This mesh representation allows for efficient integration, refinement, coarsening and appending of surface patches utilizing the computational capacities of modern GPUs. Integration, refinement,...
Article
Full-text available
Flood disasters are the most common natural risk and tremendous efforts are spent to improve their simulation and management. However, simulation-based investigation of actions that can be taken in case of flood emergencies is rarely done. This is in part due to the lack of a comprehensive framework which integrates and facilitates these efforts. I...
Article
Vector fields are a common concept for the representation of many different kinds of flow phenomena in science and engineering. Methods based on vector field topology are known for their convenience for visualizing and analysing steady flows, but a counterpart for unsteady flows is still missing. However, a lot of good and relevant work aiming at s...
Article
Full-text available
In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas, decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting, the d...
Article
In this paper we present an extended critical point concept which allows us to apply vector field topology in the case of unsteady flow. We propose a measure for unsteadiness which describes the rate of change of the velocities in a fluid element over time. This measure allows us to select particles for which topological properties remain intact in...
Conference Paper
Full-text available
As an alternative to conventional Eulerian methods in the field of computational fluid dynamics (CFD), smoothed particle hydrodynamics (SPH) has been developed. Its mesh-free method is useful in problems, especially, where a free surface is present. Although researchers are currently able to simulate up to hundreds of millions of particles in a vol...
Article
Full-text available
In this paper we present a method for vortex core line extraction which operates directly on the smoothed particle hydro-dynamics (SPH) representation and, by this, generates smoother and more (spatially and temporally) coherent results in an efficient way. The underlying predictor-corrector scheme is general enough to be applied to other line-type...

Network

Cited By