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This paper presents a study on the application of the weight function and finite element
methods to evaluate residual stress intensity factors in welded test samples. Three speci-
men geometries and various residual stress profiles were studied. Comparisons of the
two different methods were made in terms of the accuracy, easiness to use, conditions
and limitations. Calculated residual stress intensity factors by the two different methods
are in general in good agreement for all the configurations studied. Computational issues
involved in executing these methods are discussed. Some practical issues are also
addressed, e.g. treatment of incomplete or limited residual stress measurements, influence
of transverse residual stresses, and modelling residual stress in short-length specimens.
The finite element method is validated by well-established weight functions and thus
can be applied to complex geometries following the procedures recommended in this
paper.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since the adoption of modern welding techniques for manufacturing aerospace structures, evaluation of crack tip stress
intensity factors (SIF) resulting from welding induced residual stresses has become an indispensable part to the damage tol-
erance analysis. This so-called residual stress intensity factor (Kres) is required in the prediction of fatigue crack growth rates
as well as in the residual strength calculations [1–6]. Current analysis methods are based on the superposition rule of linear
elastic fracture mechanics (LEFM). One popular engineering method is to determine the effective stress intensity factor ratio
(Reff) to account for the residuals stress effect [1,2]. An alternative method is based on the crack closure concept originally
proposed by Elber [7] by calculating the effective stress intensity factor range (DKeff) in a combined stress field of the applied
and residual. The validity of both methods has been generally accepted. Both Reff and DKeff are determined by calculating the
Kres and using the superposition method [2–4,8]. Therefore, the key task is to evaluate the Kres.

The weight function method (WFM) and the finite element method (FEM) have been widely employed for calculating SIFs.
The former has been successfully used by many researchers for welded test samples [1,5,9]. Closed-form or approximate
analytical solutions are available for calculating the Kres and, in general, the solutions are exact or accurate enough. However,
most weight functions were developed for simple geometries or require finite width correction. Some weight functions are in
very complicated forms that the calculation process involves solving complex integral equations. On the other hand, the FEM
is a more robust and versatile tool for complex geometries and loading conditions. It has been successfully used in the frac-
ture analysis in welds [3,10,11]. This method is getting more popular owing to the rapid development of fast computers and
. All rights reserved.
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Nomenclature

a half or full crack length in centre crack or edge crack geometry
E, G Young’s modulus, Shear modulus
E0 effective Young’s modulus, E for plane stress or E/(1 � m2) for plane strain
h (a, x) weight function
K, KI stress intensity factors (SIF), SIF for Mode I crack
Kapp, Kres, Ktot SIF due to applied, residual and combined stress fields
W half width of plate with centre crack, width of plate with edge crack
j j = (3 � m) /(1 + m) for plane stress or (3 � 4m) for plane strain
m Poisson’s ratio
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implementation of fracture mechanics analysis routines in the commercial FE packages. The most important case is that
welded structural components are usually in complex geometry for which FEM is more powerful than WFM in evaluating
the effect of residual stresses on crack tip stress field. However, although the FEM is used in many studies of Kres for many
years and one recent study has shown good agreement with WFM calculated Kres for the mid-crack tension geometry [11],
the FEM delivered Kres solutions are yet to be validated for further application to complex structural configurations and/or
residual stress distributions. There are a few aspects that need to be explored to make sure the FE results are correct or
acceptable.

The objectives of this paper are to validate the FEM by the well-established WFM for simple geometries and to establish
good practices and procedures for application of FEM to complex welded structures. The available weight functions and their
application in residual stress field are summarized firstly. Then, the procedure of evaluating Kres via FEM is described. Dis-
cussion is made for the aspects of introducing residual stresses into FE model, dealing with incomplete measured residual
stresses and effect of transverse residual stresses. The study cases include three specimen configurations and various resid-
ual stress profiles resulting from two welding processes and different crack positions. Comparisons of the two different
methods are performed in terms of their accuracy, easiness for the users, and application scope and conditions. Computa-
tional issues and influential factors in these two methods are also discussed.

2. Weight function method in residual stress field

2.1. The concept

Two-dimensional plane stress or plane strain problems of a crack length a in an infinite body subjected to an arbitrary
symmetrical loading can be solved provided that certain results are known for one symmetrical loading, i.e. displacement
of the crack faces, v ð1Þða; xÞ, and the stress intensity factor, Kð1ÞI [12]. The SIF for any other symmetrical loading at the crack
tip x ¼ a is given by
K I ¼
Z a

0
rðxÞhða; xÞdx ð1Þ
where rðxÞ is the stress over the crack site in an un-cracked body, hða; xÞ the weight function that is independent of rðxÞ.
hða; xÞ ¼ 8G
1þ j

1

Kð1ÞI

@v ð1Þ
@a

ð2Þ
The Green’s function is an earlier approach that is similar to the weight function method [13]. In order to apply the meth-
od, it is necessary to know the appropriate Green’s function and the distribution of stress along the crack site in the un-
cracked solid. Once these are known, the technique will give exact solutions. Often this may not be available and it is then
necessary to make approximations [12]. For the case of a two-dimensional problem of a cracked sheet containing a crack of
length 2a subjected to localized forces �P acting at points on the crack surface and normal to the crack faces, the SIF is cal-
culated by:
K I ¼
Pffiffiffiffiffiffi
pa
p aþ x

a� x

� �1
2
� Pffiffiffiffiffiffi

pa
p GðxÞ ð3Þ
If a pressure, pðxÞ, acts normal to the crack faces, �a 6 x 6 a, then
K I ¼
1ffiffiffiffiffiffi
pa
p

Z a

�a
pðxÞGðxÞdx ¼

Z a

�a
pðxÞ 1ffiffiffiffiffiffi

pa
p GðxÞdx ¼

Z a

�a
pðxÞgða; xÞdx ð4Þ
The Green’s function, GðxÞ, for this particular problem is:
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gða; xÞ ¼ 1ffiffiffiffiffiffi
pa
p GðxÞ ¼ 1ffiffiffiffiffiffi

pa
p

ffiffiffiffiffiffiffiffiffiffiffi
aþ x
a� x

r
ð5Þ
Eq. (4) is consentaneous to Eq. (1) in form.
In the following sections, both weight functions and Green’s functions are expressed as hða; xÞ, and the stresses acting on

the crack-free body are expressed by rðxÞ.
In order to apply the WFM to calculate the SIF resulting from weld thermal residual stresses, it is necessary to know rðxÞ

and hða; xÞ. The residual stress distributions, rðxÞ, can be obtained by either experimental measurements [14,15], e.g. the dif-
fraction methods, the hole drilling, and the cut-compliance method, or the inverse method from crack growth rate data [16],
or via thermal stress analysis of welding process. The availability of rðxÞ is the prerequisite of both the WFM and FEM.

The WFM should give exact solution providing that the correct hða; xÞ is used. Many different weight functions of either
closed-form or approximate are available for simple configurations, i.e. centre crack and edge crack(s) [17].

2.2. Available weight functions for simple configurations

Although the distributions of weld residual stresses always manifest different characteristics and profiles due to the dif-
ferent welding processes, from the numerical integration method point of view, load acting on the crack length interval Da
can be treated as point load when Da is infinitesimal. So, all the weight functions, including the approximate forms, devel-
oped for the point load can be applied for calculating SIF due to distributed residual stress.

2.2.1. Weight functions for an infinite sheet
Green’s function, Eqs. (4) and (5), is the simplest form of weight function for an infinite sheet with centre crack of length

2a, Fig. 1a, [18,19]. For edge crack in a semi-infinite sheet, Fig. 1b, Sih [20] used the approximate form of weight function
expressed by Eq. (6).
hða; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pað1� ðx=aÞ2Þ

q 1:3� 0:3ðx=aÞ
5
4

h i
ð6Þ
2.2.2. Weight functions for finite width sheet
Several weight functions are developed for the simple configurations of finite width with a centre or edge crack as shown

in Fig. 2.
Tada et al. [19] developed a weight function expressed by Eq. (7) for finite width, infinite length sheet with centre crack

subjected symmetrical point loads as shown in Fig. 2a. Tada stated that this weight function should give better accuracy if
a=W < 0:5
hða; xÞ ¼ 2ffiffiffiffiffiffiffiffi
2W
p 1þ 0:297

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx

a
Þ2

r
1� cos

pa
2W

� �h i� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan

pa
2W

� �r
1�

cos pa
2W

� �
cos px

2W

� �
" #2

8<
:

9=
;
�1

2

ð7Þ
Wu and Carlsson [17] derived Eq. (8) for a centre crack in a finite rectangular plate, Fig. 2b. For the special cases of
H=W P 2:0, Eq. (9) can be used to determine the simple expressions for the biða=WÞ functions (within 1% for the weight
function for a=W 6 0:5).
hða; xÞ ¼ 1ffiffiffiffiffiffi
pa
p

X3

i¼1

bi
a

W

� �
1� x

a

� �2
	 
i�3

2

ð8Þ

b1ða=WÞ ¼ 2:0
b2ða=WÞ ¼ pa

2W tan pa
2W

� �
b3ða=WÞ ¼ 0

ð9Þ
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Fig. 1. Configurations of infinite sheet with centre (a) and edge crack (b).
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Fig. 2. Configuration of finite width sheet with a center or edge crack: (a) infinite length center crack; (b) finite length center crack; (c) infinite length edge
crack; and (d) finite length edge crack.
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The weight functions for infinite sheet, i.e. Green’s function in Eq. (5) and Sih’s function in Eq. (6), etc., can also be applied
to finite width when multiplying a correction function, such as the Isida’s finite width correction function [21].

A weight function for single edge crack in a finite width but infinite length sheet, Fig. 2c, was firstly developed by Bue-
ckner [22], Eq. (10).
hða; xÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p 1þm1
a� x

a

� �
þm2

a� x
a

� �2
	 


ð10Þ
where
m1 ¼ 0:6147þ 17:1844ð a
W Þ

2 þ 8:7822 a
W

� �6

m2 ¼ 0:2502þ 3:2889ð a
W Þ

2 þ 70:0444 a
W

� �6
ð11Þ
Kaya and Erdogan [23] also presented a weight function for such geometry, Eq. (12), where giða=WÞ; i ¼ 1; 2; 3; 4, can be
found in [23] and are listed in Appendix A.
hða; xÞ ¼ 2ffiffiffiffiffiffi
pa
p g1

a
W

� �
þ g2

a
W
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x
aþ g3
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� �2 þ g4
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Wu and Carlsson also presented a weight function for this configuration in [17],
hða; xÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2pa
p

X5

i¼1

bi
a

W

� �
1� x

a

� �h ii�3
2 ð13Þ
where biða=WÞ is much more complicated than that in Eqs. (8) and (9), and can be expressed by several equations [17]. For
simplification in application, Wu and Carlsson provided some discrete values of biða=WÞ for selected non-dimensional crack
lengths which are listed in Appendix A, Table A1.
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If the edge crack is in a plate of finite width and length as shown Fig. 2d, e.g. the compact tension, C(T), then the effect of
sample’s length on the SIF must be taken into account by choosing a suitable weight function.

Fett and Munz [24] developed a weight function for the C(T) geometry, Eq. (14), by using the fundamental principle of
Petroski and Achenbach [25].
hða; xÞ ¼
ffiffiffiffiffiffi
2
pa

r
1ffiffiffiffiffiffiffiffiffiffiffi

1� x
a

p 1þ
Xl

t

At;l
a

W

� �l
1� a

W

� �3
2

1� x
a

� �tþ1

2
4

3
5 ð14Þ
where At;l are the weight function coefficients and listed in Appendix A, Table A2.
Wu and Carlsson [17] also proposed a weight function for the C(T) geometry, Eq. (15).
hða; xÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2pa
p

X4

i¼1

bi
a

W

� �
1� x

a

� �h ii�3
2 ð15Þ
where biða=WÞ are different from those in Eqs. (8) and (13). The discrete values of biða=WÞ for selected non-dimensional
crack lengths are listed in Appendix A, Table A3.

2.2.3. Other weight functions
Beghini and Bertini [26,27] developed weight functions for inclined cracks at sharp V-notches and semi-plane. Weight

function for a 3D surface crack is also available [28]. For other configurations, such as a centre crack in a circular disc,
double edge crack, multiple cracks, etc., corresponding weight functions have been developed by Tada et al. [19], Wu
and Carlsson [17], Fett and Munz [24]. Weight functions of general forms were also proposed by Fett et al. [29], and
Sha and Yang [30].

2.3. Evaluating SIF due to welding residual stresses by WFM

2.3.1. Available SIF solutions
Various kinds of weight functions have been applied to determine the intensity of the crack tip elastic field for cracks

introduced into the residual stress field (including thermal stresses). In the absence of external loads, residual stressed
are self-balanced, built-in field, which require no special treatment when using the WFM. The method is based on the super-
position principle [19].

There are some closed-form SIF solutions that are deduced by the WFM. Tada et al. [31] presented SIF solutions for various
crack-absent residual stress distributions and crack geometries. For example, they used the Green’s function to obtain the SIF
solution for centre crack in infinite width plate. When the residual stress distribution is expressed by Eq. (16), Fig. 3a, K I is
given by Eq. (17).
rðxÞ ¼ r0 � e�
1
2

x
cð Þ2 1� x

c

� �2
	 


ð16Þ

Kres ¼ r0
ffiffiffiffiffiffi
pa
p

e�0:42 a
cð Þ2 1� 1

p
a
c

� �2
	 


ð17Þ
For a finite width rectangular plate, Wu and Carlsson [17] presented the SIF solution according to this stress distri-
bution using their weight function, Eq. (8). Tada’s and Wu’s solutions are compared in Fig. 3b, which shows that: (1) The
SIF results given by Tada and Wu agree with each other very well when the width of the plate is adequate compared
with the distribution of residual stress. (2) For inadequate width ratio, e.g. W=c ¼ 4, although the stress at the edge is
almost zero, the width effect could not be ignored; weight functions with width correction gives more accurate result in
this case.

However, weld residual stresses as measured are not always in the single peak form as Fig. 3a and Eq. (16) de-
scribe. Most cases need numerical integration of Eq. (1). This will be demonstrated through practical examples in
Section 4.

2.3.2. Influence of incomplete residual stress measurement data
Residual stresses should be self-balanced in the absence of external loads. However, during residual stress measurement

experiments tensile residual stresses often attract more attention than compressive stresses. Consequently measured stress
distribution is often incomplete and dominated by tensile stresses resulting in un-balanced stress field. If the equilibrium
condition is not fulfilled, evaluated SIF distribution as a whole is in general meaningless. However, in some cases of engineer-
ing failure assessment, attention is on crack propagation in the weld zone. Thus, if the values of Kres are correct in region of
interest, then the assessment is meaningful. The purpose of the work presented in this section is to understand the effect of
incomplete RS on Kres if measured residual stresses are available only in the crack growth region.

Two cases are studied: case 1 is centre crack with a longitudinal weld in the middle of plate, Fig. 4a; case 2 is edge
crack with longitudinal weld, Fig. 4b. For demonstration purpose, the analytical stress distribution in Eq. (16) is used and
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Fig. 4. Balanced and incomplete residual stresses (W = 10c) in (a) centre crack and (b) edge crack samples.
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plotted in Fig. 4; solid and dotted lines form a full and balanced stress field. Assumed un-balanced residual stress is
achieved by limiting rðxÞ to region �1:1c 6 x 6 1:1c (solid line); stresses outside this region (dotted line) are set to zero.
For simplicity and emphasising on the effect of un-balanced stress, effect of sample length is not considered. Wu and
Carlsson weight function, Eq. (8), is used for case 1, and Bueckner’s weight function, Eq. (10), is used for case 2. Nor-
malized SIF values for case 1 and 2 are shown in Fig. 5a and b, respectively, and compared with those SIF solutions
due to balanced stresses. It indicates that: (1) For the centre crack that has the same symmetric axis as the stress dis-
tribution, the imbalance of the stresses has no influence on Kres while the crack length a is within the boundary of the
region where the residual stresses are known. (2) For the edge crack, the result obtained from un-balanced stresses is
totally different from that gained by balanced stresses. Therefore, for the edge crack geometry full and balanced residual
stress field is necessary for evaluating residual SIF by WFM. In other words, if a crack is completely embedded in the
region where the residual stress is evaluated or correctly interpolated and the crack and the residual stress distribution
have the same symmetric axis, (e.g. the centre crack case), then partial knowledge of the stress is not a problem when
using the WFM. The required function r(x) is enough for obtaining the correct Kres, and the stresses in other regions do
not affect the result. However, the problem of partial knowledge of residual stresses arises when the WFM is applied to
a crack for which residual stress is known only on a portion of the crack length (e.g. an edge crack). In this case appli-
cation of the WFM needs the residual stress to be reasonably extrapolated on the whole crack domain and the equilib-
rium condition has to be correctly fulfilled.
3. Finite element method

3.1. Introduction of residual stresses into FE models

For evaluating Kres, it is important to input correct initial stress conditions to numerical models to characterise measured
residual stresses. The function of defining initial stress condition is available in many commercial FE software packages, e.g.



Fig. 6. Input and output of initial stresses.
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ABAQUS subroutine SIGINI [32], ANSYS command INISTATE [33]. These initial stresses should be equilibrated in the first
analysis step to result in zero stresses in model’s free edges and self-equilibrium condition without any constraint. ABAQUS
command ‘‘UN-BALANCED STRESSES” can be called to do this, while in ANSYS, the initial stress must be applied in the first
load step and be equilibrated automatically.

According to the experimental measurements, the profiles of weld residual stresses are almost identical along the y-axis
that is parallel to the weld line. Therefore, elements with the same x coordinate should have the same initial stress condition.
In other words, if the residual stress distribution is expressed by discrete value ri at xi, (i ¼ 1; 2; . . . ; n), initial stress
ðri�1 þ riÞ=2 should be introduced to all the elements located within ðxi�1; xiÞ.

To obtain correct Kres value, it is necessary to make sure that the resulted stress distribution in the FE model after the
equilibrium is in accordance with the measured residual stress field within an acceptable discrepancy. However, it is not al-
ways possible to obtain the same output stress field as the input residual stress. For configurations of relatively short length
with respect to the width, such as the C(T) geometry, obtained residual stresses are found to be much lower than inputted
values after the equilibrium step. This issue was also mentioned in [34].

An example is given here to demonstrate the influence of specimen length. The residual stress distribution follows Eq.
(16), letting c ¼ 10 mm, and is introduced to the FE model with discrete values over every 1 mm distance. Case 1 has the
average residual stress ðri�1 þ riÞ=2 introduced to all the elements located within ðxi�1; xiÞ, whereas in case 2 residual stres-
ses are only inputted into the elements within y < 10 mm (to model a short-length specimen). After the self-equilibrium bal-
ance, the resultant residual stresses being kept in the FE model of the case 2 is much lower than the actual input values as
shown in Fig. 6.

Therefore, when dealing with the C(T) configuration, the input initial stresses should be increased so that the actual resid-
ual stresses in the FE model, after the self-equilibrium step, can match the measured values. In [34], the proportional integral
(PI) adjustment, which is widely used in the area of automatic control, was applied to introduce residual stresses into FE
models. It is a good way to solve this problem. The adjustment equation is:
rðxÞjþ1
input ¼ rðxÞjinput þ b rðxÞtarget � rðxÞjoutput

� �
ð18Þ
The procedure starts with the adjustment step j ¼ 0 and rðxÞinput ¼ rðxÞtarget, and ends when the agreement between
rðxÞoutput and rðxÞtarget is satisfied, where rðxÞtarget is the measured residual stress distribution.

Welding process also introduces transverse residual stresses. Although, the magnitude of transverse residual stress is usu-
ally much smaller than that of the longitudinal residual stress, introducing transverse residual stress to FE model will affect
the magnitude of the longitudinal residual stress after the equilibrium step; consequently, evaluated Kres value will be af-
fected. Therefore, it is important to check the output value of the longitudinal residual stress in the FE model to make sure
that the residual stresses are introduced correctly.
3.2. Calculating Kres by FEM

There are a few methods for evaluating the SIF by FEM, such as the crack tip displacements extrapolation, the J-integral,
the strain energy approach, e.g. the virtual crack extension technique. The displacement extrapolation and J-integral meth-
ods are widely used practices and implemented in commercial FE software packages. However, the J-integral is no longer
path-independent in the presence of thermal strains, path dependent plastic strains, body forces within the integration area,
and pressure on the crack surface. Therefore, J-integral method is not suitable for evaluating SIF due to weld thermal residual
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stresses. For linear elastic analysis, the displacement extrapolation method is a good choice, which is simple and straight-
forward to obtain the SIF values based on FE results.

According to the LEFM, the crack tip displacement field in the load direction for a 2D problem is [35]:
uy ¼
K I

2G

ffiffiffiffiffiffiffi
r

2p

r
sin

h
2

� �
jþ 1� 2 cos2 h

2

� �	 

� K II

2G

ffiffiffiffiffiffiffi
r

2p

r
cos

h
2

� �
j� 1� 2 sin2 h

2

� �	 

ð19Þ
where uy, r, h are defined in crack tip coordinate, Fig. 7.
Fig. 7. Coordinate at crack tip and path for displacement extrapolation.
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The SIFs can be calculated from the FE solution according to the displacement extrapolation procedure [34] using Eq. (20):
K I ¼
ffiffiffiffiffiffiffi
2p
p 2G

jþ 1
Duyffiffiffi

r
p ð20Þ
where Duy is the displacement between the two corresponding nodes on the upper and lower crack surfaces, r is the node
coordinate. Away from the crack tip, Duy=

ffiffiffi
r
p

can be fitted by a linear function of r:
Duyffiffiffi
r
p ¼ Aþ B � r ð21Þ

r ! 0
lim Duyffiffiffi

r
p ¼ A ð22Þ
Thus,
K I ¼
ffiffiffiffiffiffiffi
2p
p 2GA

1þ j
ð23Þ
The displacement extrapolation needs not to be done manually; the procedure is now implemented in some commercial
FE packages and can be executed by calling a corresponding command. For example, in the ANSYS code, the ‘‘KCALC” com-
mand can be called in the general postprocessor after defining the path. When executing this command, care should be taken
to define either the plane stress or plane strain state for a 2D problem. It is recommended to use a refined mesh in the region
around the crack tip to capture the rapidly varying stress and deformation fields. The singularity elements at the crack tip
mesh will result in more accurate SIF for linear elastic problems. However, the embedded procedure in ANSYS soft package
uses the absolute value of the displacement when evaluating SIF via the ‘‘KCALC” command, the SIF values calculated by
ANSYS will always be positive or zero. If the SIF is evaluated by the energy approach (e.g. the J-integral), then the value will
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Fig. 9. FE results of Kres for cases of different residual stress: (a) centre crack and (b) edge crack.
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also be positive or zero. While the influence of residual stresses on the SIF can be either positive or negative as shown in
Fig. 5, i.e. Kres, which reflects the influence of residual stresses on crack tip stress field, Kres is no longer a strict SIF that cannot
be negative. To avoid modelling a nonlinear contact problem, we have used the following method. For negative residual
stresses, both residual stress and external tension stress are applied to the FE model simultaneously to keep the crack com-
pletely open, i.e. Duy > 0 at any position of the crack face. Kres is then evaluated based on the superposition principle [35], Eq.
(24).
Fi
Kres ¼ Ktot � Kapp ð24Þ
3.3. Influence of incomplete residual stresses on Kres

As mentioned in Section 2.3, measured residual stresses are usually incomplete and tension dominated, which will result
in inaccurate SIF when using the WFM. The same problem exists for using the FEM to evaluate Kres. Attempts have been made
to balance the initial stresses artificially when inputting them to the FE models. A equilibrium-based least-squares smooth-
ing method was proposed in [36] to obtain full-field residual stress using a set of residual stress data acquired by neutron
diffraction over a limited region. Extensive FE calculations are required when using this method. To facilitate simple engi-
neering calculations, two simple cases of artificially balanced stresses are studied in the present paper to demonstrate their
influences on the Kres. The two geometries used in Section 2.3 and shown in Fig. 4 are used, and set W = 100 mm, c = 10 mm,
r0 ¼ 1 MPa. The Kres results from four different initial stresses cases are evaluated. Case 1 is the full-field balanced initial
stress rðxÞ expressed by Eq. (16). Case 2 is the un-balanced case with incomplete rðxÞ located within�1:1c 6 x 6 1:1c. These
two cases are the same as those discussed in Section 2.3 for the WFM and shown in Fig. 4. Cases 3 and 4 are two artificially
balanced initial stress distributions shown in Fig. 8 (artificial balancing stresses are plotted by dashed lines). Incomplete ini-
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tial stresses are balanced by either concentrated compressive stresses in case 3 or distributed stresses in case 4. Calculated
Kres values are compared in Fig. 9. It can be said that: (1) For the region where the initial residual stress is known, calculated
Kres from un-balanced residual stress (case 2) is lower than the Kres values calculated from balanced stresses. (2) The artifi-
cially balanced initial stress fields give acceptable Kres values in the region where initial residual stress is known. (3) For the
area where the initial residual stress is unknown, the authentic Kres cannot be obtained.

The FE results for the cases 1 and 2 are also compared with the WFM results and shown in Fig. 10. For the area where
residual stress is known, it indicates that: (1) For centre crack configuration, the WFM calculated Kres for the un-balanced
residual stress field is exactly the same as that obtained by the self-balanced initial stress, whereas, the FEM results is
5.8% lower. (2) For the edge crack configuration, the WFM overestimates the Kres, whereas, the FEM underestimates the
Kres if the initial residual stress is un-balanced.

4. Case studies – comparison of WFM and FEM

4.1. VPPA welded AA 2024 M(T) specimen

The Variable Polarity Plasma Arc (VPPA) welding technology has been widely used in the aerospace industry. Residual
stress distributions usually show multiple peaks. VPPA welded M(T) and C(T) configurations have been studied by Liljedahl
et al. [37] in terms of residual stress measurement and crack growth prediction. These two test sample geometries and mea-
sured residual stresses are used in this study to compare the FEM with the WFM. Test samples dimensions are shown in
Fig. 11. A measured residual stress distribution for the M(T) configuration was presented in [37] and shown here in
Fig. 12a. The residual stress distribution is considered to be symmetric, so it is averaged and mirrored before calculating
the Kres. For the WFM analysis, residual stress plot was firstly fitted by a multi-peak function, Eq. (25). For the FEM analysis,
residual stress profile was artificially balanced (see the dotted lines in Fig. 12a).
yðxÞ ¼ y0 þ
Xn

i¼1

Ai

Wi

ffiffiffiffiffiffiffiffiffi
p=2

p e
�2
ðx�XCiÞ

2

W2
i ð25Þ
where Ai, Wi, and XCi are fitting parameters, n is the number of peaks.
The Kres results obtained by the Wu and Carlsson weight function, Eq. (8), and the FEA are compared in Fig. 12b. It can be

seen from Fig. 12b that the WFM and FEM results agree very well to each other when a < 24 mm (a/W < 0.6). Since the error
of Wu’s weight function is said to be less than 1% when a=W 6 0:5 [17], when the crack length is much longer (a/W > 0.6),
FEM gives more accurate evaluation.

4.2. VPPA welded AA 2024 C(T) specimen

For the C(T) geometry, Fig. 11, measured residual stress distribution is taken from [37] and shown here in Fig. 13a. Since
the C(T) was cut off from the M(T) specimen, the original residual stress distribution should be the same as the M(T). How-
ever, cutting has resulted in stress redistribution and the measured residual stress field in the C(T) specimen is hence asym-
metric and compressive at the weld centre contrary to the stresses in the M(T).

The redistribution of residual stress can be evaluated by FE analysis, which is in good agreement with the measured pro-
file and values. The residual stress distribution introduced to the FE model should be the one before the cutting induced
redistribution, i.e. the same as the M(T) and then introduce the notch and let the FE to release the stresses for the C(T).
For the WFM, the residual stress should be the one without the notch (crack-free stresses). The Kres results obtained by
the Fett and Munz weight function, Eq. (14), and FE calculation for this geometry are compared in Fig. 13b. Notch tip is
at x = �10 mm. The WFM and FEM results agree with each other very well. The difference at the beginning (notch tip) is
360

75

Fig. 11. M(T) and C(T) specimens with a longitudinal VPPA weld; C(T) is cut form an M(T) specimen [37]; unit: mm.
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due to the asymmetric geometry of the C(T). The difference in the final part is due to the inherent limitation of the weight
function for longer crack lengths.
4.3. FSW welded AA 2195 ESE(T) specimen

Friction Stir Welding (FSW) is an innovative solid-state welding technique developed for the aerospace applications.
Residual stress distribution in the FS welds usually has the character of double peaks. Measured residual stress distribution
for eccentrically-loaded single edge crack under tension, ESE(T), geometry was presented in [8], from which the specimen
configuration and measured longitudinal residual stress distribution are taken for this study and shown in Figs. 14 and
15a. Residual stress measurement was conducted after cutting the notch, which results in the asymmetric stress profile.
Since the initial stress for both the WFM and FEM should be the one without the notch, measured residual stress was mir-
rored from right to left and fitted by a multi-peak function with five peaks. Calculated Kres by the Bueckner’s weight function,
Eq. (10), and FE result are compared in Fig. 15b. It can be seen that the WFM and FEM results agree with each other when
a=W < 0:6.
5. Conclusions and recommended calculation procedures

An overview of the WFM and FEM procedures has been performed for evaluating residual stress intensity factors. Accord-
ing to the study described in this paper, especially on the treatment of un-balanced residual stresses, inputting residual
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stresses into FE models and SIF solution of negative residual stresses for the edge crack problem, following conclusions can
be drawn:

(1) For the M(T), C(T) and ESE(T) configurations presented in this paper, residual stress intensity factor solutions obtained
by the WFM and FEM agree very well for a/W < 0.6. For larger a/W ratio, the difference between the two methods is
caused by the inherent limitation of the WFM for longer crack lengths.
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(2) FE analysis procedures have been developed and validated by well-established weight functions; therefore, the
FEM can be employed with confidence for longer crack lengths and for more complex geometries and
structures.

(3) Incomplete residual stress data have significant influence on the Kres distribution evaluated by both the WFM and FEM
when they are applied to a crack for which the residual stress is known only on a portion of the crack length (for
instance an edge crack). If an incomplete measured stress distribution is artificially balanced, then the Kres calculated
by the FEM is acceptable in the region where the initial residual stresses are known from the measurement.

Following calculation procedures are recommenced for the FEM:

(1) Measured residual stresses should be firstly processed, e.g. averaged, smoothed, fitted and mirrored, etc., before
conducting FE analysis to obtain more accurate Kres results. This is also recommended for the WFM solution
process.

(2) For incomplete or un-balanced residual stress data, adding artificial balancing stress will help to obtain acceptable Kres

values in the region where residual stresses are known.
(3) In order to maintain self-equilibrium condition without any constraints and keep the model boundaries free of stres-

ses, it is necessary to apply the ‘‘equilibrium” step in FE packages after inputting measured residual stresses.
(4) For short-length geometries, higher (than the measured) residual stresses should be inputted into the FE model to

accommodate the adjustment in the self-equilibrium step.
(5) For cracks located in compressive residual stress field, external stress should be applied simultaneously to the residual

stress field to make the crack surface completely open for calculating the total SIF. The residual SIF can then be found
by the superposition principle.
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Appendix A

1. Functions giða=WÞ in the Kaya–Erdogan weight function for single edge crack problem in a finite width plate, in Eq. (12)
[23].
Table A
Values

a/W

0.01
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.85
0.90

Table A
At;l in E
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W

� �
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� �
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� �2
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� �2
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� �
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ðA4Þ
2. Discrete values of coefficient biða=WÞ in the Wu and Carlsson weight function for single edge crack in a finite width plate
in Eq. (13) [17] are given in Table A1.

3. Coefficients At;l in the Fett and Munz weight function for C(T) geometry in Eq. (14) [24] are listed in Table A2.
4. Discrete values of coefficient biða=WÞ in Wu and Carlsson weight function for the C(T) geometry in Eq. (15) [17] are listed

in Table A3.
1
of biða=WÞ in Eq. (13).

b1 b2 b3 b4 b5

2.00 0.9765 1.1420 �0.3504 �0.0912
2.00 1.0927 1.1506 �0.3662 �0.0819
2.00 1.4187 1.1378 �0.3550 �0.0763
2.00 2.5366 1.2378 �0.3474 �0.0562
2.00 4.2381 1.6796 �0.4095 �0.0188
2.00 6.6359 2.8048 �0.6105 0.0394
2.00 10.0222 5.4999 �1.3401 0.2178
2.00 15.0359 11.8784 �3.6067 0.7858
2.00 29.5188 45.5066 �18.9281 4.8834
2.00 38.8128 78.7524 �36.5957 9.8712
2.00 53.8457 151.2119 �79.0151 22.2696
2.00 82.6869 350.9961 �207.0916 60.8592

2
q. (14).

l = 0 1 2 3 4

2.673 �8.604 20.621 �14.635 0.477
�3.557 24.9726 �53.398 50.707 �11.837

1.230 �8.411 16.957 �12.157 �0.940
�0.157 0.954 �1.284 �0.393 1.655



Table A3
biða=WÞ in Eq. (15).

a/W b1 b2 b3 b4

0.2 2.0 3.3270 1.4351 �0.4652
0.3 2.0 4.9886 1.7280 �0.4130
0.4 2.0 7.2610 2.7054 �0.4570
0.5 2.0 10.4356 5.2943 �0.7632
0.6 2.0 15.1033 11.3700 �1.6671
0.7 2.0 22.6843 26.0237 �4.0924
0.75 2.0 28.5976 41.2320 �6.7399
0.8 2.0 37.2393 69.1970 �11.7568
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