Conference PaperPDF Available

‎Generalized Gini-type Index

Authors:

Abstract

To assess the degree of ageing or rejuvenation of repairable and non-repairable systems, the ‎Gini-type index‎ (GT) was recently introduced by Kaminsky and Krivtsov (2010). ‎Here, we introduce possible extensions for the GT in the multivariate case according to Shaked and Shanthikumar (1987, 2014) definitions for multivariate accumulated hazards. Besides, the properties of these definitions are considered for some multivariate distributions representing the lifetime of dependent components working in the same system.
Workshop “Stochastic Models And Related Topics” 2016
BOOK OF ABSTRACTS
January 21-22, 2016
Dipartimento di Matematica – Universit`a di Salerno
Via Giovanni Paolo II, n. 132, 84084 Fisciano (SA), Italy
Workshop SMART 2016 Book of Abstracts
FOREWORD
The Workshop “Stochastic Models And Related Topics” 2016 is a program of lectures and
poster session for a group of specialists in various fields of Probability and Mathematical
Statistics. Main topics of the Workshop include stochastic models in dynamical systems,
reliability theory, biomathematics, mathematical finance, queueing systems. Some talks
also focus on current problems in applications of mathematics, probability and statistics,
and on related computational aspects.
We aim to have a scientifically interesting and stimulating opportunity to exchange infor-
mation and to promote fruitful interactions.
Fisciano
January 2016
The Organizing Committee
Antonio Di Crescenzo, Virginia Giorno, Barbara Martinucci, Alessandra Meoli, Amelia
G. Nobile, Serena Spina
Sponsor
Dipartimento di Matematica, Universit`a di Salerno
Workshop SMART 2016 Book of Abstracts
Workshop SMART 2016 Book of Abstracts
TABLE OF CONTENTS
On the inverse first-passage-time problems for one-dimensional diffusions . . . . . . . . . . . . . . 1
Mario Abundo
New classes of priors based on stochastic orders and distortion functions . . . . . . . . . . . . . . 2
Jos´e Pablo Arias-Nicol´as, Fabrizio Ruggeri and Alfonso Su´arez-Llorens
Comparing residual lives and inactivity times by transform stochastic orders . . . . . . . . . . 3
Antonio Arriaza, Miguel Angel Sordo and Alfonso Su´arez-Llorens
evy processes with Poisson and Gamma times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Luisa Beghin
Approximation of Markov Chains by hybrid switching jump diffusion processes . . . . . . . .5
Enrico Bibbona and Roberta Sirovich
Some notes on stochastic diffusion equations for neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Stefano Bonaccorsi
Mathematical modeling of tumor-driven angiogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Vincenzo Capasso
The F¨ollmer-Schweizer decomposition under incomplete information and financial
applications...........................................................................8
Claudia Ceci, Katia Colaneri and Alessandra Cretarola
On a fractional growth process with two kinds of jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Antonio Di Crescenzo, Barbara Martinucci and Alessandra Meoli
Multivariate Gini-type index.........................................................10
Antonio Di Crescenzo and Motahareh Parsa
A new model of population growth .................................................. 11
Antonio Di Crescenzo and Serena Spina
Stochastic variability of synaptic responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12
Vito Di Maio and Silvia Santillo
Sample estimations and numerical evaluations of firing neural activity . . . . . . . . . . . . . . . .13
Giuseppe D’Onofrio, Enrica Pirozzi and Marcelo O. Magnasco
Revisiting some macroscopic limit results for particle systems under the view of
modelling tumor growth.............................................................14
Franco Flandoli
Workshop SMART 2016 Book of Abstracts
Some examples of the interplay between Probability and Number Theory . . . . . . . . . . . . 15
Rita Giuliano
Asymptotic results for runs and empirical cumulative entropies . . . . . . . . . . . . . . . . . . . . . . .16
Rita Giuliano, Claudio Macci and Barbara Pacchiarotti
Size biased couplings and the spectral gap for random regular graphs . . . . . . . . . . . . . . . . 17
Larry Goldstein
Stochastic single vehicle routing problem with ordered customers. . . . . . . . . . . . . . . . . . . . . 18
Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos and
Constantinos C. Karamatsoukis
The impact of degree variability on connectivity properties of large networks . . . . . . . . . 19
Lasse Leskel¨a
Two stochastic dominance criteria based on tail comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 20
Julio Mulero, Miguel Angel Sordo, Marilia C. de Souza and Alfonso Su´arez-Llorens
Comparisons of residual lifetimes of coherent systems under dependence. . . . . . . . . . . . . .21
Jorge Navarro
Gradient flow to the optimal transport plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 22
Giovanni Pistone
An unpredictable talk on prediction, the hot hand in basketball, and some
statistical principles ................................................................. 23
Yosef Rinott
First passage times of two-dimensional correlated diffusion processes with
application to neural modelling......................................................24
Laura Sacerdote
Inference in the early phase of an epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Gianpaolo Scalia Tomba and Tom Britton
Some remarks on multivariate conditional hazard rates and dependence modeling . . . . 26
Fabio L. Spizzichino
Workshop SMART 2016 Book of Abstracts
On the inverse first-passage-time problems for one-dimensional
diffusions
Mario Abundo
Dipartimento di Matematica, Universit`a Tor Vergata, Roma, Italy
We consider a temporally homogeneous, one-dimensional diffusion process X(t) driven by
the stochastic differential equation (SDE):
dX(t) = b(X(t))dt +σ(X(t))dBt, X(0) = η
where Btis a standard Brownian motion and the functions band σare regular enough,
so that a unique solution exists. If S(t) is a continuous function of t0,let τS(η) =
inf{t > 0 : X(t) = S(t)|X(0) = η}be the first-passage time (FPT) of X(t) through the
boundary S(t),with the condition that X(0) = η, and let f(t|η) denote its density. In the
direct FPT problem, the initial position ηand the barrier Sare assigned, so it consists
in finding f(t|η); on the contrary, various kinds of inverse FPT (IFPT) problems can be
considered: in the first one (IFPT1), one focuses on determining the boundary shape S,
when the FPT density fand the starting point ηare assigned; in the second one (IFPT2)
one assumes that the boundary is known, while the initial position ηis random, thus,
for a given FPT-distribution F, the IFPT2 problem consists in finding the density of η
s.t. P(τSt) = F(t).The IFPT1 problem has important applications e.g. in diffusion
models for neural activity ([3], [6]); the IFPT2 problem has interesting applications in
Mathematical Finance, in particular in credit risk modeling, where the FPT represents a
default event of an obligor ([4]) and also in diffusion models for neural activity ([5]).
We give an overview on IFPT problems (see [1], [2]); in particular, we present some new
results on the IFPT2 problem for diffusions with holding and jumps from a boundary.
References
1. Abundo M. (2006) Limit at zero of the first-passage time density and the inverse problem
for one-dimensional diffusions. Stochastic Anal. Appl. 24, 1119–1145.
2. Abundo M. (2014) One-dimensional reflected diffusions with two boundaries and an inverse
first-hitting problem. Stochastic Anal. Appl. 32, 975–991.
3. Giorno V., Nobile A.G., Ricciardi L.M. (1987) Single neurons activity: uncertain problems
of modeling and interpretation. Biosystems 40, 65–74.
4. Jackson K., Kreinin A., Zhang W. (2009) Randomization in the first hitting problem.
Statist. Probab. Lett. 79, 2422–2428.
5. Lanska V., Smith C.E. (1989) The effect of a random initial value in neural first- passage-
time models. Math. Biosci. 93(2), 191–215.
6. Sacerdote L., Zucca C. (2003) Threshold shape corresponding to a Gamma firing distri-
bution in an Ornstein–Uhlenbeck neuronal model. Sci. Math. Japon. 2, 295–305.
1
Workshop SMART 2016 Book of Abstracts
New classes of priors based on stochastic orders and distortion
functions
Jos´e Pablo Arias-Nicol´asa, Fabrizio Ruggeriband Alfonso Su´arez-Llorensc
aFacultad de Matem´aticas, Universidad de Extremadura, Spain
bCNR IMATI, Milano, Italy
cDpto. Estad´ıstica e I.O. Universidad de C´adiz, Spain
In the context of robust Bayesian analysis, we introduce a new class of prior distribu-
tions based on stochastic orders and distortion functions. We provide the new definition,
its interpretation and the main properties and we also study the relationship with other
classical classes of prior beliefs. We also consider Kolmogorov and Kantorovich metrics
to measure the uncertainty induced by such class, as well as its effect on the set of corre-
sponding Bayes actions. Finally, we conclude the paper with some numerical examples.
2
Workshop SMART 2016 Book of Abstracts
Comparing residual lives and inactivity times by transform
stochastic orders
Antonio Arriaza, Miguel Angel Sordo and Alfonso Su´arez-Llorens
Dpto. Estad´ıstica e Investigaci´on Operativa, Universidad de adiz, Spain
Comparisons of residual lives and inactivity times is an important topic in reliability. In
this framework, our purpose is twofold. First, we interpret a family of stochastic orders,
known in the literature as transform stochastic orderings, in terms of stochastic compar-
isons among residual lives and inactivity times at quantiles. Second, we introduce and
study a new stochastic order that occupies an intermediate position between two of these
transform orderings, namely, the convex order and the star order. As an application of
these results, we provide new relationships among some classes of life distributions, in-
cluding characterizations of the IHR and DHR classes in terms of aging properties of their
residual lives at any time.
References
1. Ahmad I.A. (2005) Further results involving the MIT order and the IMIT class. Prob.
Eng. Inf. Sci. 19, 377–395.
2. Barlow R.E., Proschan F. (1975) Statistical theory of reliability and life testing. Holt,
Reinhart and Winston, Inc.
3. Belzunce F., Candel J., RuizFeller J.M. (1996) Dispersive orderings and characterizations
of ageing classes. Statist. Prob. Lett. 28, 321–327.
4. Belzunce F. (1999) On a characterization of right spread order by the increasing convex
order. Statist. Prob. Lett. 45, 103–110.
5. Belzunce F., Hu T., Khaledi B. (2003) Dispersion-type variability orders. Prob. Eng. Inf.
Sci. 17, 305–334.
6. Gilchrist W.G. (2000) Statistical Modelling with Quantile Functions. Boca Raton, Florida,
USA: Chapman and Hall/CRC Press.
7. Kayid M. and Ahmad I.A. (2004) On the mean inactivity time ordering with reliability
applications. Prob. Eng. Inf. Sci. 18, 395–409.
8. Kayid M., Izadkhah S. (2014) Mean inactivity time function, associated orderings and
classes of life distributions. IEEE Trans. Rel. 63, 593–602.
9. Kochar S.C., Wiens D. (1987) Partial orderings of life distributions with respect to their
aging properties. Nav. Res. Logist. 34, 823–829.
10. Mu˜noz–P´erez J. (1990) Dispersive ordering by the spread function. Statist. Prob. Lett.
10, 407–410.
3
Workshop SMART 2016 Book of Abstracts
evy processes with Poisson and Gamma times
Luisa Beghin
Dipartimento di Scienze Statistiche, Sapienza University of Rome, Italy
We consider L´evy processes driven by an independent random time, which will be rep-
resented by a Poisson or a Gamma process, endowed with a drift. Our attention will
be addressed to the semigroups and the infinitesimal generators of these processes. In
particular, when the leading process is an α-stable, the governing equation is expressed in
terms of new pseudo-differential operators involving the Riesz-Feller fractional derivative
of order α(0,2]. The special case α= 2 is particularly interesting because it concerns
the Brownian motion with randomly intermitting times.
Thus we deal with extensions of the space-fractional diffusion equation, which is satisfied
by the density of a stable process: the first case considered here is obtained by adding a
fractional exponential differential operator. We prove that this produces a random addi-
tional term in the time-argument of the corresponding stable process, which is represented
by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional
diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we
obtain, as a solution, the transition semigroup of a stable process subordinated by an
independent gamma subordinator with drift. Finally, we show that a non-linear exten-
sion of the space-fractional diffusion equation is satisfied by the transition density of the
process obtained by time-changing the stable process with an independent linear birth
process with drift.
References
1. Beghin L. (2014) Geometric stable processes and fractional differential equation related
to them, Electron. Commun. Probab.,19, no. 13, 1–14.
2. Beghin L. (2015) Fractional gamma and gamma-subordinated processes, Stoch. Anal.
Appl., 33, no. 5, 903–926.
3. Beghin L. (2016) Fractional diffusion-type equations with exponential and logarithmic
differential operators, arXiv :1601.01476.
4. Beghin L., D’Ovidio M. (2014) Fractional Poisson process with random drift, Electron. J.
Probab., 19, no. 122, 1–26.
4
Workshop SMART 2016 Book of Abstracts
Approximation of Markov Chains by hybrid switching jump
diffusion processes
Enrico Bibbona and Roberta Sirovich
Department of Mathematics, University of Torino, Italy
There is a large body literature concerning diffusions and other approximations for large
state space continuous time Markov Chains. In two recent papers [1,2] we proposed an
hybrid switching jump diffusion approximation that aims at being an extension of the
diffusion approximation proposed in [3]. In particular we succeed in approximating the
discrete model even when the process reaches the boundaries of the state space with non-
negligible probability. We study the error of the approximation of the Markov Chain
theoretically and the results are illustrated on few examples drawn from biological system
modelling.
References
1. Beccuti M., Bibbona E., Horvath A., Sirovich R., Angius A., Balbo G. (2014) Analysis of
Petri Net models through Stochastic Differential Equations. Proceedings of the Interna-
tional Conference on application and theory of Petri nets and other models of concurrency
(ICATPN14), Springer LNCS vol. 8489, pp. 273–293.
2. Angius A., Balbo G., Beccuti M., Bibbona E., Horvath A., Sirovich R. (2015) Approximate
analysis of biological systems by hybrid switching jump diffusion. Theoretical Computer
Science 587, 49–72.
3. Kurtz T.G. (1976) Limit theorems and diffusion approximations for density dependent
Markov Chains. Stochastic Systems: modeling, Identification and Optimization I, 67–78.
5
Workshop SMART 2016 Book of Abstracts
Some notes on stochastic diffusion equations for neurons
Stefano Bonaccorsi
Department of Mathematics, University of Trento, Italy
Neurons continuously perform computations while converting synaptic inputs into action
potential output. In some recent papers, we investigates how the spatial extension of the
dendritic tree influences the responses of a single neuron or a whole system of neurons.
In this talk, we shall briefly discuss some models of synaptic activities, in order to get a
physically meaningful and mathematically treatable model.
Then we review some techniques of solving evolution systems of equations with inhomoge-
neous boundary conditions and we apply these results to neurons and systems of neurons.
References
1. Bonaccorsi S, Mugnolo D. (2010) Existence of strong solutions for neuronal network dy-
namics driven by fractional Brownian motions. Stochastics and Dynamics 10(3), 441–464.
2. Bonaccorsi S., Ziglio G. (2014) A variational approach to stochastic nonlinear diffusion
problems with dynamical boundary conditions. Stochastics 86(2), 218–233.
3. Bonaccorsi S., Ziglio G. (2006) A semigroup approach to stochastic dynamical boundary
value problems. IFIP International Federation for Information Processing 202, 55–65.
6
Workshop SMART 2016 Book of Abstracts
Mathematical modeling of tumor-driven angiogenesis
Vincenzo Capasso
ADAMSS (Advanced Applied Mathematical and Statistical Sciences)
Universit´a degli Studi di Milano, Italy
In the mathematical modelling of tumor-driven angiogenesis, the strong coupling between
the kinetic parameters of the relevant stochastic branching-and-growth of the capillary
network, and the family of interacting underlying fields is a major source of complexity
from both the analytical and computational point of view. Our main goal is thus to ad-
dress the mathematical problem of reduction of the complexity of such systems by taking
advantage of its intrinsic multiscale structure; the (stochastic) dynamics of cells will be
described at their natural scale (the microscale), while the (deterministic) dynamics of
the underlying fields will be described at a larger scale (the macroscale). In this pre-
sentation, starting from a conceptual stochastic model including branching, elongation,
and anastomosis of vessels, we discuss the possible derivation of a deterministic mean
field approximation of the vessel densities, leading to deterministic nonlinear partial dif-
ferential equations for the underlying fields. The propagation of chaos assumption on a
single replica is criticized, as opposed to the usual law of large numbers applied to a large
number of replicas. Outcomes of relevant numerical simulations will be presented.
References
1. Capasso V., Morale, D. (2009) Stochastic modelling of tumour-induced angiogenesis. J.
Math. Biol. 58, 219–33.
2. Capasso V., Morale D., Facchetti, G. (2012) The role of stochasticity for a model of retinal
angiogenesis. IMA J. Appl. Math. 77, 729–747.
3. Bonilla L.L., Capasso V, Alvaro M., and Carretero M. (2014) Hybrid modeling of tumor-
induced angiogenesis. Phys. Rev. E 90, 062716.
4. Terragni F., Carretero M., Capasso V., Bonilla L.L. (2015) Stochastic model of tumor-
induced angiogenesis: ensemble averages and deterministic equations. Submitted.
5. Bonilla L.L., Capasso V., Alvaro M., Carretero M., Terragni F. (2015) On the mathemat-
ical modelling of tumor-induced angiogenesis. Submitted.
7
Workshop SMART 2016 Book of Abstracts
The F¨ollmer-Schweizer decomposition under incomplete
information and financial applications
Claudia Cecia, Katia Colaneriaand Alessandra Cretarolab
aDepartment of Economics, University “G. D’Annunzio” of Chieti-Pescara, Viale Pindaro, 42,
I-65127 Pescara, Italy
bDepartment of Mathematics and Computer Science, University of Perugia, Via Vanvitelli, 1,
I-06123 Perugia, Italy
The aim is to derive and characterize the F¨ollmer -Schweizer decomposition of a square
random variable with respect to a given semimartingale under restricted information.
The F¨ollmer-Schweizer decomposition has a relevant application in finance. Indeed, un-
der suitable assumptions, the integrand in the decomposition of the square integrable
random variable representing the discounted payoff of a given European type contingent
claim, provides the locally risk-minimizing hedging strategy in an incomplete financial
market driven by semimartingales. In a partial information framework, where agents
have a limitative knowledge on the market, the F¨ollmer-Schweizer decomposition under
restricted information plays an analogous role. We discuss both the cases where the ran-
dom variable is observable or not observable and for partially observed Markovian models
we characterize the integrand of the F¨ollmer -Schweizer decomposition by means of filter-
ing problems.
References
1. Ceci C., Colaneri K., Cretarola A. (2015) Local risk-minimization under restricted infor-
mation on asset prices. Electronic Journal of Probability 20(96) 1–30
http://arxiv.org/abs/1312.4385
2. Ceci C., Colaneri K., Cretarola A. (2015) The F¨ollmer-Schweizer decomposition under
incomplete information. Submitted
http://arxiv.org/abs/1511.05465
8
Workshop SMART 2016 Book of Abstracts
On a fractional growth process with two kinds of jumps
Antonio Di Crescenzo, Barbara Martinucci and Alessandra Meoli
Dipartimento di Matematica, University of Salerno, Italy
Fractional order differential equations play a relevant role in the modeling of memory-
dependent phenomena, since the definition of fractional derivative involves an integration
which is a non-local operator. The need of dealing with processes exhibiting power-
law behavior and multiple occurrences of events stimulates us to investigate fractional
Poisson-type processes subject to multiple kinds of jumps, especially in view of their po-
tential applications in several fields of science and engineering. Therefore, we consider
a suitable fractional jump process describing growth phenomena, that may be viewed as
a counting process characterized by 2 kinds of jumps with size 1 and 2. We obtain the
probability generating function and the probability law of the process, expressed in terms
of the generalized Mittag-Leffler function. The mean, variance, and squared coefficient of
variation are also provided.
References
1. Di Crescenzo A., Martinucci B., Meoli A. (2015) Fractional growth process with two kinds
of jumps. In: R. Moreno-Diaz et al. (Eds.) Computer Aided Systems Theory – EURO-
CAST 2015, Lecture Notes in Computer Science 9520, 158–165, Springer International
Publishing Switzerland.
2. Beghin L., Macci C. (2014) Fractional discrete processes: compound and mixed Poisson
representations. J. Appl. Prob. 51, 19–36.
9
Workshop SMART 2016 Book of Abstracts
Multivariate Gini-type index
Antonio Di Crescenzoaand Motahareh Parsab
aUniversit`a degli Studi di Salerno, Italy
bFerdowsi University of Mashhad, Iran
Recently, Gini-type index (GT) has been introduced (Kaminsky and Krivtsov, 2010) to
assess the degree of ageing or rejuvenating of the repairable or non-repairable systems.
The GT for a system working in [0, t] is introduced as
C(t) = 1 Rt
0H(u)du
0.5t H(t),
in which H(t) represent the cumulative hazard rate function.
The extension of this index for higher dimensions does not appear to be clearly resolved.
Shaked and Shanthikumar (1987), defined the multivariate conditional hazard rate func-
tions, and also, described the total accumulated hazards for various components by their
failure time.
Here, we introduce possible extensions for the GT in the multivariate case according to
Shaked and Shanthikumar (1987) definitions. Besides, the properties of these definitions
are considered for some multivariate distributions representing the lifetime of dependent
components working in the same system.
References
1. Kaminsky M.P., Krivtsov V.V. (2010) A Gini-type index for ageing/rejuvenating ob-
jects. In: Mathematical and Statistical Models and Methods in Reliability: Applications
to Medicine, Finance, and Quality Control (Eds. Rykov V.V., Balakrishnan N., Nikulin
M.S.) Statistics for industry and Technology, Birkh¨auser, pp. 133–140.
2. Shaked M., Shanthikumar G. (1987) The multivariate hazard construction. Stoch. Proc.
Appl. 24, 241–258.
10
Workshop SMART 2016 Book of Abstracts
A new model of population growth
Antonio Di Crescenzo and Serena Spina
Dipartimento di Matematica, Universit`a degli Studi di Salerno
Via Giovanni Paolo II, 132, I-84084, Fisciano (SA), Italy
We introduce a new model of population growth, which is able to describe growth phe-
nomena sharing some characteristics of the Gompertz and Korf laws:
N(t) = yexp (α
βh1(1 + t)βi), t > 0, N(0) = y > 0, α, β > 0.
The proposed model has the same carrying capacity of the previous ones, but is able
to capture different evolutionary dynamics. We investigate the main properties of N(t),
with reference to the correction function, the relative growth rate, the inflection point, the
maximum specific growth rate, the lag time and the threshold crossing problem. Some
comparison with Gompertz and Korf models are also studied. We discuss some data an-
alytic examples that pinpoint certain features of the proposed model.
We further define and study the corresponding time non-homogeneous birth-death process
X(t), whose mean satisfies the equation of N(t). We study the transition probabilities,
the mean, the variance and the population extinction probability of X(t). Our study is
supported by a scrutinized analysis of the model behaviour for different choices of the
involved parameters.
References
1. Lindsey J.K. (2004) Statistical Analysis of Stochastic Processes in Time. Cambrige Uni-
versity Press, New York.
2. Parthasarathy P.R., Krishna Kumar B. (1991) A birth and death process with logistic
mean population. Comm. Stat. Theory Meth. 20, 621–629.
3. Ricciardi L.M. (1986) Stochastic Population Theory: Birth and Death Processes, In:
Mathematical Ecology, 155–190. Biomathematics 17, Springer, Berlin.
4. Tan W.Y., Piantadosi S. (1991) A stochastic growth processes with application to stochas-
tic logistic growth. Statistica Sinica 1, 527–540.
5. Tsoularis A., Wallace J. (2012) Analysis of logistic growth models. Math. Biosci. 179,
21–55.
11
Workshop SMART 2016 Book of Abstracts
Stochastic variability of synaptic responses
Vito Di Maio and Silvia Santillo
Istituto di Scienze Applicate e Sistemi intelligenti del CNR, Pozzuoli (NA), Italy
Excitatory synaptic response shows a large variability which is influenced by several fac-
tors both of pre and post-synaptic origin. The average number of synapses on a single
hippocampal CA1 pyramidal neuron is 3×104[2]. Each synapse on the dendritic tree is
then influenced by the electrical activity of other synapses. We have simulated the single
synaptic event in terms of a difference of two exponential as follows:
V(t) = k(et
τ1et
τ2) (1)
where kmodulates the Excitatory Post Synaptic Potential (EPSP) peak amplitude and τ1
and τ2are the rising and decay time constants of the EPSP. Although k,τ1and τ2can be
all random variables, we have used their mean values for a typical EPSP in order to study
the effect of synaptic population and of electrical activity of the cell on the stochastic
variability of the single synaptic event [1].
We have tested a sinusoid wave which can well simulate the effect of a filtered retrograde
spike
Vs(t) = V(t) + αsin(ωt +φ) (2)
where αis the wave amplitude which depends on the distance of the synapse with respect
to the soma, ωt is the frequency and φis the phase of the sinusoid wave. We have
analyzed the variability of the EPSP as function of the amplitude, frequency and phase
of the background wave.
In addition we have tested the effect of a gaussian noise G(µ, σ) both with respect to a
fixed level of resting potential
Vw(t) = V(t) + G(µ, σ) (3)
and in a cooperation with the sinusoid wave
Vw,s(t) = V(t) + αsin(ωt +φ) + G(µ, σ) (4)
The variability of the EPSPs has been analyzed as function of the stochastic processes
occurring outside the synapse depending on the frequency and phase of the noise.
References
1. Di Maio V., L´ansk´y P., Rodriguez R. (2004) Different type of noise in leaky integrate-
and-fire model of neuronal dynamics with discrete periodical input. General Physiology
and Biophysics 23, 21–38.
2. Ventriglia F., Di Maio V. (2006) Multisynaptic activity in a pyramidal neuron model and
neural code. Biosystems 86, 18–26.
12
Workshop SMART 2016 Book of Abstracts
Sample estimations and numerical evaluations of firing neural
activity
Giuseppe D’Onofrioa, Enrica Pirozziaand Marcelo O. Magnascob
aDipartimento di Matematica e Applicazioni, Universit`a di Napoli Federico II, Italy
bLaboratory of Mathematical Physics, The Rockefeller University, New York, USA
The firing activity of stimulated neurons is affected by temporal structure of the injected
current. In [1] Taillefumier and Magnasco focus on the following stochastic leaky integrate-
and-fire (sLIF) model for a single neuron
dX(t) = αX(t)dt +dC (t) + σdW (t), α > 0, X(t0) = r < l, t t0(5)
in the presence of a constant threshold land a older-continuous load function C(t) such
that dC(t) = I(t)dt.I(t) is a frozen noise conveying random current pulses of varying
amplitudes and a constant current input. The authors generate numerically a train of
spikes of the Ornstein-Uhlenbeck X(t) as successive first passage times (FPTs) to an ef-
fective boundary L(t) = lZt
t0
eα(ts)dC(s).The determination of FPT density of these
successive spikes with a particular reset condition is called recurring-passage problem [1].
In order to address the model (5), we propose a stochastic model for the prediction of the
successive spikes that constitute the train by means of FPTs of a succession of Gauss-
Markov processes with a particular mean function involving the FPT already occurred
([2],[3]). In [1] the H¨older exponent Hof the input signal is connected with the regime of
the firing activity and the authors show evidences of a phase transition of the probability
distribution of observing a given instantaneous firing rate. The computed cumulative
distributions of the spiking times for different exponents Hcoincide even across the phase
transition. This kinematic property of the recurring problem turns out to be not depen-
dent on the shape of the boundary. We verify if it is valid for the FPT through a constant
boundary using the method of moments, the results of [2], [3] and [4].
References
1. Taillefumier T., Magnasco M.O. (2014) A transition to sharp timing in stochastic leaky
integrate-and-fire neurons driven by frozen noisy input. Neural Comput. 26(5), 819–859.
2. D’Onofrio G., Pirozzi E. (2016) Successive spike times predicted by a stochastic neuronal
model with a variable input signal Math. Biosci. Engin. 13(3), to appear.
3. D’Onofrio G., Pirozzi E., Magnasco M.O. (2015) Towards stochastic modeling of neuronal
interspike intervals including a time-varying input signal, Lecture Notes in Computer Sci-
ence - EUROCAST 2015,9520, 166–173.
4. Ricciardi L.M., Sato S. (1988) First-passage-time density and moments of the Ornstein-
Uhlenbeck process. J. Appl. Prob. 25(1), 43–57.
13
Workshop SMART 2016 Book of Abstracts
Revisiting some macroscopic limit results for particle systems
under the view of modelling tumor growth
Franco Flandoli
Dipartimento di Matematica, Universit`a di Pisa, Italy
When considering an aggregate of tumor cells, some of the main phenomena which are
observed are proliferation, interaction between cells and environment, transport, diffu-
sion, genetic changes. Some of these features can be described by stochastic differential
equations and jump processes. When the number of cells is very large, a macroscopic
description by means of partial and ordinary differential equations becomes relevant, in
particular for simulation purposes. We summarize some rigorous and heuristic results
in this direction. In particular, we discuss the question of proliferation and change of
species (see for instance 1, 3) and the question of interaction (see for instance 2, 4). The
limit PDE for proliferation is relatively clear, although the rigorous justification is only
partial. In the case of interactions like volume-constraint and membrane adhesion, the
limit PDE is on the contrary non clear yet, so we discuss some approximate models and
some conjectures supported by numerical simulations.
References
1. Flandoli F., Leimbach M., Olivera C., The FKPP equation as a macroscopic limit of
proliferating particles. In preparation.
2. Oelschl¨ager K. (1985) A law of large numbers for moderately interacting diffusion pro-
cesses. Zeitschrift fur Wahrsch. Verwandte Gebiete 69, 279–322.
3. Stevens A. (2000) The derivation of chemotaxis equations as limit dynamics of moderately
interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, no. 1, 183–212.
4. Varadhan S.R.S. (1991) Scaling limit for interacting diffusions. Comm. Math. Phys. 135,
313–353.
14
Workshop SMART 2016 Book of Abstracts
Some examples of the interplay between Probability and Number
Theory
Rita Giuliano
Department of Mathematics, University of Pisa, Italy
Probability theory have been often used to study problems in number theory: for in-
stance the so–called “probabilistic method” is a powerful tool which traces back to P.
Erd¨os. More recently also the large deviations theory has been applied in number theo-
retical settings; we provide a list of references here below (papers from [5] to [10]). As the
authors of [5] say, “it might have the potential to become a useful tool in analytic number
theory”. In my talk I shall illustrate the main results of the papers [1], [2], [3], [4], which
are in the same circle of ideas. All these papers are in collaboration with Claudio Macci.
References
1. Giuliano R., Macci C. (2015) Asymptotic results for weighted means of random variables
which converge to a Dickman distribution, and some number theoretical applications.
ESAIM Probab. Stat. 19, 395–413.
2. Giuliano R., Macci C., Asymptotic results for a class of triangular arrays of multivariate
random variables with Bernoulli distributed components. Submitted.
3. Giuliano R., Macci C., Convergence results in the generalized Cramer’s model for prime
numbers. In preparation.
4. Giuliano R., Macci C., Convergence results for logarithmic means in the generalized
Cramer’s model for prime numbers. In preparation.
5. Mehrdad B., Zhu L. (2013) Moderate and Large Deviations for the Erd˝os-Kac Theorem.
http://arxiv.org/abs/1311.6180.pdf.
6. Lulu Fang (2015) Large and moderate deviation principles for alternating Engel expan-
sions. Journal of Number Theory 156, 263–276.
7. Wei Hu (2015) Moderate deviation principles for Engel’s, Sylvester’s series and Cantor’s
products. Stat. Prob. Lett. 96, 247–254.
8. Zhu L. (2014) On the large deviations for Engel’s, Sylvester’s series and Cantor’s products.
Electron. Comm. Probab. 19(2), 1–9.
9. Mehrdad B., Zhu L. (2013) Limit theorems for empirical density of greatest common
divisors. http://arXiv:1310.7260.pdf.
10. Fern´andez J.L., Fern´andez P. (2013) Asymptotic normality and greatest common divisors.
http://arxiv.org/pdf/1302.2357.pdf.
15
Workshop SMART 2016 Book of Abstracts
Asymptotic results for runs and empirical cumulative entropies
Rita Giulianoa, Claudio Macciband Barbara Pacchiarottib
aDepartment of Mathematics, University of Pisa, Italy
bDepartment of Mathematics, University of Rome Tor Vergata, Italy
We prove large and moderate deviations results (see e.g. [1]) for two sequences of estima-
tors based on the order statistics and, more precisely, on spacings. In the first case we
deal with runs, and we have sums of independent Bernoulli distributed random variables.
In the second case we deal with empirical cumulative entropies, and we have linear com-
binations of independent exponentially distributed random variables.
References
1. Dembo A., Zeitouni O. (1998) Large deviations techniques and applications. Second edi-
tion. Springer, New York.
16
Workshop SMART 2016 Book of Abstracts
Size biased couplings and the spectral gap for random regular
graphs
Larry Goldstein
Department of Mathematics, University of Southern California, Los Angeles, USA
The second largest absolute eigenvalue λof a graph’s adjacency matrix is closely related
to its expansion properties. Bounding λfor Gn,d, a uniformly chosen graph from the
collection of all d-regular graphs on nvertices, has been a major topic of research over the
last thirty years. A conjecture by Vu states that as n, and optionally d, tend to infinity,
the second eigenvalue λis bounded by Cdwith probability tending to 1, regardless of
the growth of d. This bound was formerly known to hold only if d=o(n1/2). We prove
that it holds as long as d=O(n2/3). We use the Kahn-Szemer`edi approach, which is
based on showing concentration for Rayleigh quotients of the graph’s adjacency matrix.
To prove that the required concentration estimates hold, we extend previous work for
showing concentration via size biased couplings to cases where the coupling may be un-
bounded. This is joint work with Nicholas Cook and Tobias Johnson.
References
1. Cook N., Goldstein L., Johnson T. (2015) Size biased couplings and the spectral gap for
random regular graphs. http://arxiv.org/abs/1510.06013
17
Workshop SMART 2016 Book of Abstracts
Stochastic single vehicle routing problem with ordered customers
Epaminondas G. Kyriakidisa, Theodosis D. Dimitrakosb
and Constantinos C. Karamatsoukisc
aDepartment of Statistics, Athens University of Economics and Business, Patission 76, 10434,
Athens, Greece
bDepartment of Mathematics, University of the Aegean, Karlovassi, 83200, Samos, Greece
cHellenic Army Academy, Department of Mathematics and Engineering Sciences, 16673, Vari,
Greece
We consider a set of nodes V={0,...,N}with node 0 denoting the depot and nodes
1,...,N corresponding to customers. There are two similar but not identical products to
be delivered to the customers. We refer to these products as product 1 and product 2.
The items of both products are of the same size. It is assumed that the depot contains
enough items of both products to satisfy the demands of all customers. The customers
are serviced in the order 1,...,N by a vehicle, which may carry any quantity of product
i∈ {1,2}provided that its total capacity Qis not exceeded. The vehicle starts its route
from the depot with a total load of Qitems of both products and after servicing all
customers it returns to the depot. We denote by cj,j +1,j= 1,...,N 1, the travel cost
between customers jand j+ 1, and by cj0,c0j,j= 1,...,N, the travel cost between
customer jand the depot and the cost between the depot and customer j, respectively.
These costs can be considered as the costs of the gasoline that the vehicle needs to
cover the distances between consecutive customers or the distances between customers
and the depot. We naturally assume that these costs are symmetric and satisfy the
triangle inequality, i.e. ci0=c0i, i = 1,...,N and ci,i+1 ci0+c0,i+1 , i = 1,...,N 1.
Each customer j∈ {1, . . . , N}demands either product 1 or product 2. We assume that
customer j∈ {1,...,N}prefers product 1 with known probability pjand product 2
with probability 1 pj. The actual preference of each customer becomes known when
the vehicle visits the customer. The number of items that each customer demands is a
discrete random variable ξjwith known distribution. The actual demand of each customer
cannot exceed the vehicle capacity, i.e. max1jNξjQ. If the vehicle contains a smaller
quantity of the product that a customer prefers, it is permissible (but not compulsory)
to deliver items of the other product. It is assumed that there is a penalty cost πj,
j= 1,...,N, if the vehicle delivers one item of the product that is not preferred by
customer j. The vehicle is allowed during its route to return to the depot to restock with
items of both products. The objective is to find the routing strategy that minimizes the
expected total cost among all possible routing strategies. It is possible to find the optimal
routing strategy using a suitable dynamic programming algorithm. It is also possible to
prove that the optimal routing strategy has a specific threshold-type structure.
18
Workshop SMART 2016 Book of Abstracts
The impact of degree variability on connectivity properties of
large networks
Lasse Leskel¨a
Department of Mathematics and Systems Analysis, Aalto University, Finland
The goal of this work is to study how increased variability in the degree distribution im-
pacts the global connectivity properties of a large network. We approach this question
by modeling the network as a uniform random graph with a given degree sequence. We
analyze the effect of the degree variability on the approximate size of the largest connected
component using stochastic ordering techniques. A counterexample shows that a higher
degree variability may lead to a larger connected component, contrary to basic intuition
about branching processes. When certain extremal cases are ruled out, the higher degree
variability is shown to decrease the limiting approximate size of the largest connected
component. (Based on joint work with Hoa Ngo, Aalto University).
References
1. Leskel¨a L., Ngo H. (2015) The impact of degree variability on connectivity properties
of large networks. Proc. 12th Workshop on Algorithms and Models for the Web Graph
(WAW). Preprint: arXiv:1508.03379
19
Workshop SMART 2016 Book of Abstracts
Two stochastic dominance criteria based on tail comparisons
Julio Muleroa, Miguel Angel Sordob, Marilia C. de Souzaband Alfonso Su´arez-Llorensb
aFacultad de Matem´aticas, Universidad de Alicante, Spain
bDpto. Estad´ıstica e I.O., Universidad de C´adiz, Spain
Actuarial risks and financial asset returns are typically heavy tailed. In this paper, we
introduce two stochastic dominance criteria, called the right tail order and the left tail
order, to compare stochastically these variables. The criteria are based on comparisons of
expected utilities, for two classes of utility functions that give more weight to the right or
the left tail (depending on the context) of the distributions. We study their properties,
applications and connections with other classical criteria, including the increasing convex
and the second order stochastic dominance. Finally, we rank some parametric families
of distributions and provide empirical evidence of the new stochastic dominance criteria
with an example using real data.
20
Workshop SMART 2016 Book of Abstracts
Comparisons of residual lifetimes of coherent systems under
dependence
Jorge Navarro
Facultad de Matem´aticas, Universidad de Murcia, Spain
Consider a coherent system with a fixed dependence structure (copula) between its com-
ponent lifetimes. Then we compare, by using different criteria (stochastic orders), the
residual lifetime at time tof the system under two different assumptions: when, at time
t, we know that all the components are working or when, at time t, when we just know
that the system is working. The comparison results obtained are distribution-free, that
is, they do not depend on the distributions of the component lifetimes. Some illustrative
examples are included. They prove that, in some cases, these residual system lifetimes
are not ordered. Even more, surprisingly, sometimes the second residual lifetime is better
than the first one when the component lifetimes satisfy a given dependence model.
This work is supported by Ministerio de Econom´ıa y Competitividad of Spain under grant
MTM2012-34023-FEDER
References
1. Navarro J. (2015) Comparisons of the residual lifetimes of coherent systems under different
assumptions. Submitted.
2. Navarro J., Durante F. (2015) Copula–based representations for the reliability of the
residual lifetimes of coherent systems with dependent components. Submitted.
21
Workshop SMART 2016 Book of Abstracts
Gradient flow to the optimal transport plan
Giovanni Pistone
de Castro Statistics, Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
This talk is based on work in progress joint with Luigi Malag`o (Shinshu University, Japan)
and Luigi Montrucchio (Universit`a di Torino and Collegio Carlo Alberto). A research
announcement has been done at an ICMS workshop, Edinburgh Sep 21–25, 2015.
1. Statistical bundle The statistical bundle is an extension of the exponential manifold
introduced by G. Pistone and C. Sempi (1995). In particular, we consider a finite state
space Ω and its positive probability functions, i.e. the points in the interior of the proba-
bility simplex, γ(Ω). For each such a γ, we consider the vector space Bγof random
variables Vwith EγV= 0. Each one dimensional regular statistical model θ7→ γ(θ) has
Fisher score Dγ(θ) = dlog γ(θ)/dθ Bγ(θ). It follows that Bγis an expression of the
tangent space at γ. The statistical bundle is the set of couples (γ, V ), VBγ, see [2].
Given a regular function F: ∆(Ω), its statistical gradient is a section of the statistical
bundle, γ7→ F(γ)Bγ, such that dF (γ(θ))/dθ =Eγ(θ)(F(γ(θ))(θ)). It corresponds
to S.i. Amari’s natural gradient. The gradient flow of Fis the solution of the equation
(θ) = F(γ(θ). The gradient flow equation is expected to go towards a minimum
point of F. The most interesting cases arise when the curve γ(·) is restricted to belong
to some smooth sub-model, either exponential or mixture, see eg [1].
2. Gradient flow to optimal transport Assume Ω = Ω1×2and denote by Γ(µ1, µ2)
the set of positive probability functions with given marginals µ1, µ2. Given a cost function
c: Ω, we consider minimising F(γ) = Eγ(c) under the condition γΓ(µ1, µ2). The mini-
mum value of this problem for c(x, y) = |xy|is the Gini’s dissimilarity index, while for
c(x, y) = |xy|2its square root is the Wasserstein 2-distance. The problem does not have
a minimum on positive probability function, but it does have a solution γif we allow zero
probabilities. In this last case it is an instance of a linear programming problem whose
dual has been identified and studied by L. Kantorovich. There is a considerable body
research we cannot refer to here. We want to discuss an analytic approach, consisting in
computing the statistical gradient of the minimum expected cost problem and looking for
a gradient flow trajectory going from the product of the marginals µ1µ2toward the
solution γ. To this aim we compute the sub-bundle of scores when a curve is restricted
to have assigned marginals and show that such scores at each point are random variables
of the interaction type, i.e. they are γ-orthogonal to constants and to simple effects.
References
1. Malag`o L., Pistone G. (2015) Natural Gradient Flow in the Mixture Geometry of a
Discrete Exponential Family. Entropy 17(6), 4215–4254.
2. Pistone G. (2013) Examples of Application of Nonparametric Information Geometry to
Statistical Physics. Entropy 15(10), 4042–4065.
22
Workshop SMART 2016 Book of Abstracts
An unpredictable talk on prediction, the hot hand in basketball,
and some statistical principles
Yosef Rinott
Department of Statistics, The Hebrew University, Jerusalem, Israel
The old discussion of whether there exists a ‘hot hand’ phenomenon in basketball and
related questions arise from time to time with new analyses of the data. I will discuss
some new aspects, which raise some basic questions on statistical principles.
References
1. Rinott Y., Bar-Hillel M. (2015) Comments on a ‘Hot Hand’ Paper by Miller and Sanjurjo.
SSRN. http://ssrn.com/abstract=2642450
2. Miller J.B., Sanjurjo A. (2015) Surprised by the gambler’s and hot hand fallacies? A truth
in the Law of Large Numbers. SSRN. http://ssrn.com/abstract=2627354
3. Gilovich T., Vallone R., Tversky A. (1985) On the misperception of random sequences.
Cognitive Psychology 17, 295–314.
23
Workshop SMART 2016 Book of Abstracts
First passage times of two-dimensional correlated diffusion
processes with application to neural modelling
Laura Sacerdote
Dept. of Mathematics “G. Peano”, University of Torino, Italy
A large literature concerns First Passage Time problems (FPT) for one dimensional dif-
fusion processes through constant or time dependent boundaries. Analytical, numerical
as well as simulation results are nowadays available and their application plays an impor-
tant role in many contexts ranging from physics to engineering, psychology or biology.
Motivations for such study came from the modelling of the firing time of a single neuron.
In this framework, a diffusion process models the membrane potential evolution and we
identify the firing time of the neuron with the times in which the process crosses a suitable
boundary.
Nowadays an increasing number of modeling instances requests to determine the joint
density of the FPTs of multivariate diffusion processes in presence of constant or time
dependent boundaries. The theoretical difficulties of the bivariate and multivariate case
are similar and here we limit ourselves to the two dimensional instance.
To deal with this problem we note that the joint density of two FPTs depends on the
joint density of the FPT of the first crossing component and of the position of the second
crossing component before its crossing time [1]. First, we derive explicit expressions for
this and other quantities of interest in the case of a bivariate Wiener process. Then we
consider a bivariate diffusion process. We show that the densities of the position of the
second crossing component before its crossing time are solutions of a system of Volterra-
Fredholm integral equations of the first kind. We propose a numerical algorithm to solve
it and we prove its convergence. Then we describe its use to evaluate the joint density of
the FPTs and we illustrate the application of the method through a set of examples on a
bivariate Ornstein-Uhlenbeck process.
These results are a first tool for the study of a generalization of the Leaky Integrate and
Fire model for a single neuron to the case of a small neural network. The necessity to
model the joint behavior of two or more neurons suggested us the development of this
model. Its formulation implies to prove the weak convergence of marked point processes
generated by the crossings of multivariate jump process that tends to a diffusion [2]. We
finally briefly discuss the use of available results on bivariate FPTs in this context and
we introduce some related open problems.
References
1. Sacerdote L., Tamborrino M., Zucca C. (2016) First passage times of two-dimensional
correlated processes: Analytical results for the Wiener process and a numerical method
for diffusion processes. Journal of Computational and Applied Mathematics 296, 275–292.
2. Tamborrino M., Sacerdote L., Jacobsen M. (2014) Weak convergence of marked point
processes generated by crossings of multivariate jump processes. Applications to neural
network modeling. Physica D: Nonlinear Phenomena 288, 45–52.
24
Workshop SMART 2016 Book of Abstracts
Inference in the early phase of an epidemic
Gianpaolo Scalia Tombaaand Tom Brittonb
aDept. Mathematics, Univ. of Rome Tor Vergata, Italy
bDept. Mathematical Statistics, Univ. of Stockholm, Sweden
In several recent epidemic outbreaks (SARS, A(H1N1) flu, Ebola,...), efficient data col-
lection has allowed inference on important epidemic parameters such as R0, exponential
increase rate (r), generation time distribution characteristics, case fatality rate (CFR),
already in the early phase of spread (see e.g. [1]). However, statistical analysis of such
data poses interesting non-standard problems. These problems will be discussed and some
solution proposals presented.
References
1. WHO Ebola Response Team (2014) Ebola Virus disease in West Africa - The first 9
months of the epidemic and forward projections. N Engl J Med 371, 1481-95.
25
Workshop SMART 2016 Book of Abstracts
Some remarks on multivariate conditional hazard rates and
dependence modeling
Fabio L. Spizzichino
Department of Mathematics, University La Sapienza, Piazzale Aldo Moro, 5, 00185 Rome, Italy
In the absolutely continuous case, the joint distribution of nnon-negative random vari-
ables X1, ..., Xncan be characterized in terms of the so-called Multivariate Conditional
Hazard Rate (MCHR) functions. Such a characterization is alternative, but equivalent,
to the one based on the joint density function (or on other tools such as joint survival
function, marginal distributions and survival copula). These two types of characteriza-
tions imply however completely different methods for building multivariate dependence
models and for describing stochastic dependence among the variables X1,...,Xn. The
method of the M.C.H.R. functions is, in fact, specially adapt to describe dynamic models
of dependence.
In this talk we will first recall some basic definitions and provide some related comments.
On this basis, we shall later on establish a comparison between two special classes of
dependence models: those defined in terms of conditional independence and those of the
type Load-Sharing (a property that can be directly defined in terms of the M.C.H.R.
functions). Such a comparison can shed some light on topics of interest in both the two
fields of Reliability and Portfolio Credit Risk. In the final part of the talk we will, in
particular, concentrate attention on the special cases when the afore-mentioned models
are exchangeable. We will be thus in a position to pointing out some relevant aspects
concerning concepts of positive dependence for vectors of exchangeable random variables.
26
Workshop SMART 2016 Book of Abstracts
Notes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
Workshop SMART 2016 Book of Abstracts
Notes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
Workshop SMART 2016 Book of Abstracts
Notes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
Workshop SMART 2016 Book of Abstracts
Notes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
Workshop SMART 2016 Book of Abstracts
Notes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
Workshop SMART 2016 Book of Abstracts
PROGRAM
Thursday – January 21
8:15–8:45 bus from Salerno
9:00–9:15 registering
9:15–9:30 opening
Session 1 Chairperson: V. Capasso
9:30–9:50 Size biased couplings and the spectral gap for random regular graphs
L. Goldstein (pag. 17)
9:55–10:15 Revisiting some macroscopic limit results for particle systems under
the view of modelling tumor growth
F. Flandoli (pag. 14)
10:20–10:40 The F¨ollmer-Schweizer decomposition under incomplete information
and financial applications
C. Ceci, K. Colaneri, A. Cretarola (pag. 8)
10:45–11:15 coffee break
Session 2 Chairperson: G. Scalia Tomba
11:15–11:35 Stochastic single vehicle routing problem with ordered customers
E.G. Kyriakidis, T.D. Dimitrakos, C.C. Karamatsoukis (pag. 18)
11:40–12:00 First passage times of two-dimensional correlated diffusion processes
with application to neural modelling
L. Sacerdote (pag. 24)
12:05–12:25 Gradient flow to the optimal transport plan
G. Pistone (pag. 22)
12:30–12:55 On the inverse first-passage-time problems for one-dimensional
diffusions
M. Abundo (pag. 1)
13:00–14:30 lunch break
Session 3 Chairperson: F. Flandoli
14:30–14:50 Comparisons of residual lifetimes of coherent systems under
dependence
J. Navarro (pag. 21)
14:55–15:15 New classes of priors based on stochastic orders and distortion
functions
J.P. Arias-Nicol´as, F. Ruggeri, A. Su´arez-Llorens(pag. 2)
15:20–15:40 Some remarks on multivariate conditional hazard rates and
dependence modeling
F.L. Spizzichino (pag. 26)
15:45–16:05 Some examples of the interplay between Probability and Number
Theory
R. Giuliano (pag. 15)
16:10–16:40 coffee break
16:40–17:30 Poster Session
17:30–18:00 bus to Salerno
32
Workshop SMART 2016 Book of Abstracts
Poster Session
Thursday – January 21
Comparing residual lives and inactivity times by transform stochastic orders
A. Arriaza, M.A. Sordo, A. Su´arez-Llorens (pag. 3)
On a fractional growth process with two kinds of jumps
A. Di Crescenzo, B. Martinucci, A. Meoli(pag. 9)
Multivariate Gini-type index
A. Di Crescenzo, M. Parsa(pag. 10)
A new model of population growth
A. Di Crescenzo, S. Spina(pag. 11)
Stochastic variability of synaptic responses
V. Di Maio, S. Santillo (pag. 12)
Sample estimations and numerical evaluations of firing neural activity
G. D’Onofrio, E. Pirozzi, M.O. Magnasco (pag. 13)
Asymptotic results for runs and empirical cumulative entropies
R. Giuliano, C. Macci, B. Pacchiarotti (pag. 16)
Two stochastic dominance criteria based on tail comparisons
J. Mulero, M.A. Sordo, M.C. de Souza, A. Su´arez-Llorens (pag. 20)
33
Workshop SMART 2016 Book of Abstracts
PROGRAM
Friday – January 22
8:20–9:00 bus from Salerno
Session 4 Chairperson: F.L. Spizzichino
9:30–9:50 An unpredictable talk on prediction, the hot hand in basketball,
and some statistical principles
Y. Rinott (pag. 23)
9:55–10:15 Mathematical modeling of tumor-driven angiogenesis
V. Capasso (pag. 7)
10:20–10:40 evy processes with Poisson and Gamma times
L. Beghin (pag. 4)
10:45–11:15 coffee break
Session 5 Chairperson: L. Sacerdote
11:15–11:35 The impact of degree variability on connectivity properties of
large networks
L. Leskel¨a (pag. 19)
11:40–12:00 Some notes on stochastic diffusion equations for neurons
S. Bonaccorsi (pag. 6)
12:05–12:25 Approximation of Markov Chains by hybrid switching jump
diffusion processes
E. Bibbona, R. Sirovich(pag. 5)
12:30–12:55 Inference in the early phase of an epidemic
G. Scalia Tomba, T. Britton (pag. 25)
13:00–14:00 lunch break
14:00–14:15 closing
14:15–14:45 bus to Salerno
34
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
A recent conceptual model of tumor-driven angiogenesis including branching, elongation, and anastomosis of blood vessels captures some of the intrinsic multiscale structures of this complex system, yet allowing to extract a deterministic integro-partial differential description of the vessel tip density [Phys. Rev. E 90, 062716 (2014)]. Here we solve the stochastic model, show that ensemble averages over many realizations correspond to the deterministic equations, and fit the anastomosis rate coefficient so that the total number of vessel tips evolves similarly in the deterministic and ensemble averaged stochastic descriptions.
Article
Full-text available
Two different stochastic processes are used to model the evolution of the membrane voltage of a neuron exposed to a time-varying input signal. The first process is an inhomogeneous Ornstein-Uhlenbeck process and its first passage time through a constant threshold is used to model the first spike time after the signal onset. The second process is a Gauss-Markov process identified by a particular mean function dependent on the first passage time of the first process. It is shown that the second process is also of a diffusion type. The probability density function of the maximum between the first passage time of the first and the second process is considered to approximate the distribution of the second spike time. Results obtained by simulations are compared with those following the numerical and asymptotic approximations. A general equation to model successive spike times is given. Finally, examples with specific input signals are provided.
Article
Full-text available
Let $\lambda$ be the second largest eigenvalue in absolute value of a uniform random $d$-regular graph on $n$ vertices. When $d$ and $n$ grow simultaneously with $d=o(n^{1/2})$, Broder, Frieze, Suen, and Upfal (1999) showed that $\lambda\leq C\sqrt{d}$ with high probability. We show that this bound holds so long as $d=O(n^{2/3})$, making progress towards a conjecture of Van Vu. Our proof relies on concentration estimates for random regular graphs, which we obtain by new developments on the theory of concentration by size biased couplings. Specifically, we prove concentration given the existence of certain unbounded size biased couplings, and obtain tail estimates analogous to the ones given by Bennett's inequality.
Article
We prove that a subtle but substantial bias exists in a standard measure of the conditional dependence of present outcomes on streaks of past outcomes in sequential data. The magnitude of this novel form of selection bias generally decreases as the sequence gets longer, but increases in streak length, and remains substantial for a range of sequence lengths often used in empirical work. The bias has important implications for the literature that investigates incorrect beliefs in sequential decision making - most notably the Hot Hand Fallacy and the Gambler's Fallacy. Upon correcting for the bias, the conclusions of prominent studies in the hot hand fallacy literature are reversed. The bias also provides a novel structural explanation for how belief in the law of small numbers can persist in the face of experience. JEL Classification Numbers: C12; C14; C18;C19; C91; D03; G02. Keywords: Law of Small Numbers; Alternation Bias; Negative Recency Bias; Gambler's Fallacy; Hot Hand Fallacy; Hot Hand Effect; Sequential Decision Making; Sequential Data; Selection Bias; Finite Sample Bias; Small Sample Bias.
Article
In this paper, we prove large and moderate deviation results for normalized sums of multivariate random variables of suitable triangular arrays having Bernoulli distributed components. Moreover, motivated by possible connections with the probabilistic method in number theory, we apply the univariate versions of these results to Newman polynomials with random coefficients.
Chapter
Birth and death processes were introduced by Feller (1939) and have since been used as models for population growth, queue formation, in epidemiology and in many other areas of both theoretical and applied interest. From the standpoint of the theory of stochastic processes they represent an important special case of Markov processes with countable state spaces and continuous parameters.
Article
We deal with some extensions of the space-fractional diffusion equation, which is satisfied by the density of a stable process (see Mainardi, Luchko, Pagnini (2001)): the first equation considered here is obtained by adding an exponential differential operator expressed in terms of the Riesz-Feller derivative. We prove that this produces a random additional term in the time-argument of the corresponding stable process, which is represented by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we obtain, as a solution, the transition semigroup of a stable process subordinated by an independent gamma subordinator with drift. Finally, we show that a non-linear extension of the space-fractional diffusion equation is satisfied by the transition density of the process obtained by time-changing the stable process with an independent linear birth process with drift.
Article
This paper studies some examples of weighted means of random variables. These weighted means generalize the logarithmic means. We consider different kinds of random variables and we prove that they converge weakly to a Dickman distribution; this extends some known results in the literature. In some cases we have interesting connections with number theory. Moreover we prove large deviation principles and, arguing as in [R. Giuliano and C. Macci, J. Math. Anal. Appl. 378 (2011) 555-570], we illustrate how the rate function can be expressed in terms of the Hellinger distance with respect to the (weak) limit, i.e. the Dickman distribution.
Article
In this paper we study the Föllmer-Schweizer decomposition of a square integrable random variable ξ with respect to a given semimartingale S under restricted information. Thanks to the relationship between this decomposition and that of the projection of ξ with respect to the given information flow, we characterize the integrand appearing in the Föllmer-Schweizer decomposition under partial information in the general case where ξ is not necessarily adapted to the available information level. For partially observable Markovian models where the dynamics of S depends on an unobservable stochastic factor X, we show how to compute the decomposition by means of filtering problems involving functions defined on an infinite-dimensional space. Moreover, in the case of a partially observed jump-diffusion model where X is described by a pure jump process taking values in a finite dimensional space, we compute explicitly the integrand in the Föllmer-Schweizer decomposition by working with finite dimensional filters.