Data

The metabolic modulator trimetazidine triggers autophagy and counteracts stress-induced atrophy in skeletal muscle myotubes

Wiley
The FEBS Journal
Authors:
To read the file of this research, you can request a copy directly from the authors.

Abstract

It has recently been demonstrated that trimetazidine (TMZ), an anti-ischemic antianginal agent, is also able to improve exercise performance in patients with peripheral arterial disease. TMZ is a metabolic modulator, and the mechanisms underlying its cytoprotective anti-ischemic activity could be ascribed, at least in cardiomyocytes, to optimization of metabolism. However, regarding the cytoprotection exerted by TMZ on skeletal muscle and allowing the improvement of exercise performance, no information is yet available. In the present study, we investigated in detail the protective effects of this drug on in vitro skeletal muscle models of atrophy. Experiments carried out with murine C2C12 myotubes treated with TMZ revealed that this drug could efficiently counteract the cytopathic effects induced by the proinflammatory cytokine tumor necrosis factor-α and by the withdrawal of growth factors. Indeed, TMZ significantly counteracted the reduction in myotube size induced by these treatments. TMZ also increased myosin heavy chain expression and induced hypertrophy in C2C12 myotubes, both effects strongly suggesting a role of TMZ in counteracting atrophy in vitro. In particular, we found that TMZ was able to activate the phosphoinositide 3-kinase–Akt–mammalian target of rapamycin 2 pathway and to reduce the stress-induced transcriptional upregulation of atrogin-1, muscle ring finger protein 1, and myostatin, all of which are key molecules involved in muscle wasting. Moreover, this is the first demonstration that TMZ induces autophagy, a key mechanism involved in muscle mass regulation. On the basis of these results, it can be hypothesized that the improvement in exercise performance previously observed in patients could be ascribed to a cytoprotective mechanism exerted by TMZ on skeletal muscle integrity.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

... Our data on the lack of effect of TMZ on mitochondrial substrate oxidation are also indirectly supported by results of some of the trials dealing with the clinical efficacy of TMZ. For example, TMZ therapy was found to be beneficial in some cardiac diseases where the main underlying pathophysiology does not involve ischaemia and oxygen limitation [the main disturbances that TMZ is proposed to ameliorate through the suggested increase in efficiency of ATP production and an improved coupling of glycolysis with glucose oxidation (Onbasili et al., 2007; Aygen et al., 2008; Ferraro et al., 2013)]. Along this line, an improved cardiac function following 3 months of TMZ therapy was also reported recently in patients suffering from idiopathic dilatative cardiomyopathy (Tuunanen et al., 2008). ...
Article
Background and purpose: Trimetazidine, known as a metabolic modulator, is an anti-anginal drug used for treatment of stable coronary artery disease (CAD). It is proposed to act via modulation of cardiac metabolism: shifting the mitochondrial substrate utilization towards carbohydrates, thus increasing the efficiency of adenosine triphosphate production. This mechanism was recently challenged, however using indirect approaches and animal models, making the conclusions of these studies questionable. The goal of the current study was to directly assess the effect of trimetazidine on mitochondrial substrate oxidation in left ventricular myocardium from CAD patients. Experimental approach: Mitochondrial fatty acid (palmitoylcarnitine) and carbohydrate (pyruvate) oxidation was measured in permeabilized left ventricular fibres obtained during coronary artery bypass grafting surgery from CAD patients, which either had trimetazidine included in their therapy (TMZ group) or not (Control). Key results: There was no difference between the two groups in either oxidation of palmitoylcarnitine or pyruvate, and no difference in the ratio of carbohydrate-to-fatty acid oxidation. Activity and expression of pyruvate dehydrogenase, the key regulator of carbohydrate metabolism, was also not different. Lastly, the acute in vitro exposure of myocardial tissue to different concentrations of trimetazidine did not affect myocardial oxidation of fatty acid. Conclusion and implications: Using myocardial tissue from a target CAD patient population, we found no effect of trimetazidine (applied chronically in vivo or acutely in vitro) on cardiac fatty acid and carbohydrate oxidation, suggesting that clinical effects of trimetazidine are unlikely due to its metabolic effects, but rather to yet unidentified intracardiac mechanism. This article is protected by copyright. All rights reserved.
Article
Full-text available
Background Trimetazidine, as an anti-ischemic and antioxidant agent, has been demonstrated to have many cardioprotective effects. However, whether early administration of trimetazidine has an effect on diabetic cardiomyopathy and the mechanisms underlying the effect have not yet been elucidated. Methods We established a type 2 DCM rat model by high-fat diet and low-dose streptozotocin. Rats were separated into different groups: control, diabetes, and diabetes + trimetazidine (n = 6, each). Cardiac autophagy, cardiac functions, and cardiomyocyte apoptosis were monitored. Results Rats with type 2 DCM showed severe insulin resistance, left ventricular dysfunction, increased cardiomyocyte apoptosis, and reduced cardiac autophagy. Collagen volume fraction (CVF) and perivascular collagen area/luminal area (PVCA/LA) ratio were significantly higher in the diabetic group than the control group. We found that trimetazidine treatment ameliorated metabolic disturbance and insulin resistance, reduced cardiomyocyte apoptosis, and restored cardiac autophagy. CVF and PVCA/LA ratio were also lower in the diabetes + trimetazidine group than the diabetic group (CVF, 4.75 ± 0.52 % vs. 11.04 ± 1.67 %, p < 0.05; PVCA/LA, 8.37 ± 0.51 vs. 17.97 ± 2.66, p < 0.05). Furthermore, trimetazidine inhibited phosphorylation of ERK and P38 MAPK to reduce myocardial fibrosis. Inhibited phosphorylation of AMPK was restored and the interaction between Bcl-2 and Beclin1 was enhanced in diabetes + trimetazidine group, resulting in the initiation of autophagy and alleviation of apoptosis. Conclusions Early administration of trimetazidine could ameliorate diabetic cardiomyopathy by inhibiting myocardial fibrosis and cardiomyocyte apoptosis and enhancing autophagy. Therefore, trimetazidine may be a good choice in the prevention of diabetic cardiomyopathy if applied at the early stage of diabetes.
Article
Full-text available
Background: The loss of muscle mass (sarcopenia) and the associated reduced muscle strength are key limiting factors for elderly people's quality of life. Improving muscle performance does not necessarily correlate with increasing muscle mass. In fact, particularly in the elderly, the main explanation for muscle weakness is a reduction of muscle quality rather than a loss of muscle mass, and the main goal to be achieved is to increase muscle strength. The effectiveness of Trimetazidine (TMZ) in preventing muscle functional impairment during ageing was assessed in our laboratory. Methods: Aged mice received TMZ or vehicle for 12 consecutive days. Muscle function was evaluated at the end of the treatment by a grip test as well as by an inverted screen test at 0, 5, 7 and 12 days of TMZ treatment. After sacrifice, muscles were stored for myofiber cross-sectional area assessment and myosin heavy chain expression evaluation by western blotting. Results: Chronic TMZ treatment does not affect the mass of both gastrocnemius and tibialis anterior muscles, while it significantly increases muscle strength. Indeed, both latency to fall and grip force are markedly enhanced in TMZ-treated versus untreated mice. In addition, TMZ administration results in higher expression of slow myosin heavy chain isoform and increased number of small-sized myofibers. Conclusions: We report here some data showing that the modulation of skeletal muscle metabolism by TMZ increases muscle strength in aged mice. Reprogramming metabolism might therefore be a strategy worth to be further investigated in view of improving muscle performance in the elderly.
Article
Full-text available
Heart failure (HF) is a systemic and multiorgan syndrome with metabolic failure as fundamental mechanism. As a consequence of its impaired metabolism, other processes are activated in the failing heart, further exacerbating the progression of HF. Metabolic agents are a relatively new class of drugs that act through optimisation of cardiac substrate metabolism. Among the metabolic modulators, Trimetazidine (TMZ) and perhexiline are the only two agents with proven anti-ischaemic effect currently available. However, due to its major side effects, perhexiline is not yet approved in the US or Europe. Clinical trials have demonstrated that the adjunct of TMZ to optimal medical therapy improves symptoms and prognosis of HF without exerting negative hemodynamic effects. Due to its anti-ischaemic/anti-anginal effect and excellent tolerability, the modulation of cardiac metabolism with TMZ represents a promising approach for the treatment of patients with HF.
Article
Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25nM free), TMZ (0.1-100μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function.
Article
Cachexia is a relevant comorbid condition of chronic diseases including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-κB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-κB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-κB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-κB and MAPK, but not the proteasome system, induced in cancer cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. Attenuation of MAPK and NF-κB signaling pathway effects on muscles is beneficial in cancer-induced cachexia. J. Cell. Physiol. 9999: XX-XX, 2014. © 2014 Wiley Periodicals, Inc.
Article
Full-text available
Significance: Skeletal muscle is a highly plastic tissue. Exercise evokes signaling pathways that strongly modify myofiber metabolism and physiological and contractile properties of skeletal muscle. Regular physical activity is beneficial for health and is highly recommended for the prevention of several chronic conditions. In this review, we have focused our attention on the pathways that are known to mediate physical training-induced plasticity. Recent advances: An important role for redox signaling has recently been proposed in exercise-mediated muscle remodeling and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) activation. Still more currently, autophagy has also been found to be involved in metabolic adaptation to exercise. Critical issues: Both redox signaling and autophagy are processes with ambivalent effects; they can be detrimental and beneficial, depending on their delicate balance. As such, understanding their role in the chain of events induced by exercise and leading to skeletal muscle remodeling is a very complicated matter. Moreover, the study of the signaling induced by exercise is made even more difficult by the fact that exercise can be performed with several different modalities, with this having different repercussions on adaptation. Future directions: Unraveling the complexity of the molecular signaling triggered by exercise on skeletal muscle is crucial in order to define the therapeutic potentiality of physical training and to identify new pharmacological compounds that are able to reproduce some beneficial effects of exercise. In evaluating the effect of new "exercise mimetics," it will also be necessary to take into account the involvement of reactive oxygen species, reactive nitrogen species, and autophagy and their controversial effects.
Article
Full-text available
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.
Article
Full-text available
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, even despite recent scientific and technological advances and comprehensive preventive strategies. The cardiac myocyte is a voracious consumer of energy, and alterations in metabolic substrate availability and consumption are hallmark features of these disorders. Autophagy, an evolutionarily ancient response to metabolic insufficiency, has been implicated in the pathogenesis of a wide range of heart pathologies. However, the precise role of autophagy in these contexts remains obscure owing to its multifarious actions. Here, we review recently derived insights regarding the role of autophagy in cardiac hypertrophy and heart failure, highlighting its effects on metabolism.
Article
Full-text available
Study over the past decade has revealed the critical role of autophagy in homeostatic and stress cell signaling. Autophagy is an intracellular process whereby double-membrane structures termed autophagosomes deliver cellular components to lysosomes for their degradation. RECENT ADVANCES: Targets of specific autophagy range from proteins to protein aggregates to organelles and intracellular pathogens. Accordingly, autophagy fulfills numerous physiological roles and its deregulation can underlie disease. Although autophagy is orchestrated by common core machinery, the discovery of distinct and highly varied autophagic programs reveals autophagy as a heterogeneous phenomenon, capable of specificity. Here the molecular mechanisms of mammalian autophagy are reviewed, including recent advances in unraveling of its machinery, specificity, and regulation. With our increasing knowledge of autophagy mechanisms and signaling roles, we begin to work towards a systems understanding of autophagy.
Article
Full-text available
A highly conserved signaling pathway involving insulin-like growth factor 1 (IGF1), and a cascade of intracellular components that mediate its effects, plays a major role in the regulation of skeletal muscle growth. A central component in this cascade is the kinase Akt, also called protein kinase B (PKB), which controls both protein synthesis, via the kinases mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK3β), and protein degradation, via the transcription factors of the FoxO family. In this paper, we review the composition and function of this pathway in skeletal muscle fibers, focusing on evidence obtained in vivo by transgenic and knockout models and by muscle transient transfection experiments. Although this pathway is essential for muscle growth during development and regeneration, its role in adult muscle response to mechanical load is less clear. A full understanding of the operation of this pathway could help to design molecularly targeted therapeutics aimed at preventing muscle wasting, which occurs in a variety of pathologic contexts and in the course of aging.
Article
Full-text available
Cachexia is a serious, however underestimated and underrecognised medical consequence of malignant cancer, chronic heart failure (CHF), chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), cystic fibrosis, rheumatoid arthritis, Alzheimer's disease, infectious diseases, and many other chronic illnesses. The prevalence of cachexia is high, ranging from 5% to 15% in CHF or COPD to 60% to 80% in advanced cancer. By population prevalence, the most frequent cachexia subtypes are in order: COPD cachexia, cardiac cachexia (in CHF), cancer cachexia, and CKD cachexia. In industrialized countries (North America, Europe, Japan), the overall prevalence of cachexia (due to any disease) is growing and currently about 1%, i.e., about nine million patients. The relative prevalence of cachexia is somewhat less in Asia, but is a growing problem there as well. In absolute terms, cachexia is, in Asia (due to the larger population), as least as big a problem as in the Western world. Cachexia is also a big medical problem in South America and Africa, but data are scarce. A consensus statement recently proposed to diagnose cachexia in chronic diseases when there is weight loss exceeding 5% within the previous 3-12 months combined with symptoms characteristic for cachexia (e.g., fatigue), loss of skeletal muscle and biochemical abnormalities (e.g., anemia or inflammation). Treatment approaches using anabolics, anti-catabolic therapies, appetite stimulants, and nutritional interventions are under development. A more thorough understanding of the pathophysiology of cachexia development and progression is needed that likely will lead to combination therapies being developed. These efforts are greatly needed as presence of cachexia is always associated with high-mortality and poor-symptom status and dismal quality of life. It is thought that in cancer, more than 30% of patients die due to cachexia and more than 50% of patients with cancer die with cachexia being present. In other chronic illnesses, one can estimate that up to 30% of patients die with some degree of cachexia being present. Mortality rates of patients with cachexia range from 10% to 15% per year (COPD), to 20% to 30% per year (CHF, CKD) to 80% in cancer.
Article
Full-text available
Autophagy is crucial in the turnover of cell components, and clearance of damaged organelles by the autophagic-lysosomal pathway is essential for tissue homeostasis. Defects of this degradative system have a role in various diseases, but little is known about autophagy in muscular dystrophies. We have previously found that muscular dystrophies linked to collagen VI deficiency show dysfunctional mitochondria and spontaneous apoptosis, leading to myofiber degeneration. Here we demonstrate that this persistence of abnormal organelles and apoptosis are caused by defective autophagy. Skeletal muscles of collagen VI-knockout (Col6a1(-/-)) mice had impaired autophagic flux, which matched the lower induction of beclin-1 and BCL-2/adenovirus E1B-interacting protein-3 (Bnip3) and the lack of autophagosomes after starvation. Forced activation of autophagy by genetic, dietary and pharmacological approaches restored myofiber survival and ameliorated the dystrophic phenotype of Col6a1(-/-) mice. Furthermore, muscle biopsies from subjects with Bethlem myopathy or Ullrich congenital muscular dystrophy had reduced protein amounts of beclin-1 and Bnip3. These findings indicate that defective activation of the autophagic machinery is pathogenic in some congenital muscular dystrophies.
Article
Full-text available
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Article
Full-text available
Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins in denervated muscle identified many myofibrillar components. Upon denervation or fasting, atrophying muscles show a loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from the myofibril, before any measurable decrease in myosin heavy chain (MyHC). Their selective loss requires MuRF1. MyHC is protected from ubiquitylation in myofibrils by associated proteins, but eventually undergoes MuRF1-dependent degradation. In contrast, MuRF1 ubiquitylates MyBP-C, MyLC1, and MyLC2, even in myofibrils. Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1.
Article
Full-text available
Elderly patients have an increased incidence of ischemic dilated cardiomyopathy, often related to diffuse coronary artery disease. Data have been cumulated to suggest that trimetazidine improves myocardial ischemia in patients with ischemic heart disease and improves left ventricular function in elderly patients with ischemic cardiomyopathy. The purpose of the present study was to assess the effects of trimetazidine in addition to standard cardiovascular therapy on left ventricular function and quality of life (QOL) parameters in elderly patients with ischemic heart disease and reduced left ventricular function. Patients were randomized to receive either trimetazidine (twice daily) or placebo (twice daily) in addition to standard therapy, and were evaluated at baseline and after 6 months. Forty-seven patients completed the study (40 male, seven female; mean [+/-SD] age 78+/-3.4 years). Demographic data were comparable between the two groups with respect to sex, age, and race. At 6 months there was a significant improvement in the number of angina episodes per week in the trimetazidine group (-2.3+/-1, P=0.023). The overall assessment of QOL by a visual analog scale showed an improvement in patients randomized to trimetazidine at 6 months (from 4.1+/-0.6 to 6.4+/-0.8, P<0.01) and no changes in patients randomized to placebo (from 4.3+/-0.7 to 4.2+/-0.9, P>0.05). Physical QOL, evaluated by a MacNew Quality of Life After Myocardial Infarction questionnaire (MacNewQLMI), improved in patients randomized to trimetazidine but not in those allocated to placebo (32%+/-5% vs. -1%+/-3%, P<0.01). Similar results were obtained on social QOL evaluated by MacNewQLMI with trimetazidine compared with placebo (39%+/-4% vs. -2%+/-5%, P<0.01). In elderly patients with ischemic heart disease and reduced ventricular function, trimetazidine improves clinical condition and QOL.
Article
Full-text available
Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.
Article
Full-text available
Skeletal muscle is composed of multinucleated fibres, formed after the differentiation and fusion of myoblast precursors. Skeletal muscle atrophy and hypertrophy refer to changes in the diameter of these pre-existing muscle fibres. The prevention of atrophy would provide an obvious clinical benefit; insulin-like growth factor 1 (IGF-1) is a promising anti-atrophy agent because of its ability to promote hypertrophy. However, the signalling pathways by which IGF-1 promotes hypertrophy remain unclear, with roles suggested for both the calcineurin/NFAT (nuclear factor of activated T cells) pathway and the PtdIns-3-OH kinase (PI(3)K)/Akt pathway. Here we employ a battery of approaches to examine these pathways during the hypertrophic response of cultured myotubes to IGF-1. We report that Akt promotes hypertrophy by activating downstream signalling pathways previously implicated in activating protein synthesis: the pathways downstream of mammalian target of rapamycin (mTOR) and the pathway activated by phosphorylating and thereby inhibiting glycogen synthase kinase 3 (GSK3). In contrast, in addition to demonstrating that calcineurin does not mediate IGF-1-induced hypertrophy, we show that IGF-1 unexpectedly acts via Akt to antagonize calcineurin signalling during myotube hypertrophy.
Article
Full-text available
The respiratory and limb skeletal muscles become weakened in sepsis, congestive heart failure, and other inflammatory diseases. A potential mediator of muscle weakness is tumor necrosis factor (TNF)-alpha, a cytokine that can stimulate muscle wasting and also can induce contractile dysfunction without overt catabolism. This study addressed the latter process. Murine diaphragm and limb muscle (flexor digitorum brevis [FDB]) preparations were used to determine the relative sensitivities of these muscles to TNF-alpha. Intact muscle fibers were isolated from FDB and microinjected with indo-1 to measure changes in sarcoplasmic calcium regulation. We found that TNF-alpha depressed tetanic force of the diaphragm and FDB to comparable degrees across a range of stimulus frequencies. In isolated muscle fibers, TNF-alpha decreased tetanic force without altering tetanic calcium transients or resting calcium levels. We conclude that (1) TNF-alpha compromises contractile function of diaphragm and limb muscle similarly, and (2) TNF-alpha decreases force by blunting the response of muscle myofilaments to calcium activation.
Article
Full-text available
Skeletal muscle atrophy is a debilitating response to starvation and many systemic diseases including diabetes, cancer, and renal failure. We had proposed that a common set of transcriptional adaptations underlie the loss of muscle mass in these different states. To test this hypothesis, we used cDNA microarrays to compare the changes in content of specific mRNAs in muscles atrophying from different causes. We compared muscles from fasted mice, from rats with cancer cachexia, streptozotocin-induced diabetes mellitus, uremia induced by subtotal nephrectomy, and from pair-fed control rats. Although the content of >90% of mRNAs did not change, including those for the myofibrillar apparatus, we found a common set of genes (termed atrogins) that were induced or suppressed in muscles in these four catabolic states. Among the strongly induced genes were many involved in protein degradation, including polyubiquitins, Ub fusion proteins, the Ub ligases atrogin-1/MAFbx and MuRF-1, multiple but not all subunits of the 20S proteasome and its 19S regulator, and cathepsin L. Many genes required for ATP production and late steps in glycolysis were down-regulated, as were many transcripts for extracellular matrix proteins. Some genes not previously implicated in muscle atrophy were dramatically up-regulated (lipin, metallothionein, AMP deaminase, RNA helicase-related protein, TG interacting factor) and several growth-related mRNAs were down-regulated (P311, JUN, IGF-1-BP5). Thus, different types of muscle atrophy share a common transcriptional program that is activated in many systemic diseases.
Article
Full-text available
Skeletal muscle atrophy attributable to muscular inactivity has significant adverse functional consequences. While the initiating physiological event leading to atrophy seems to be the loss of muscle tension and a good deal of the physiology of muscle atrophy has been characterized, little is known about the triggers or the molecular signaling events underlying this process. Decreases in protein synthesis and increases in protein degradation both have been shown to contribute to muscle protein loss due to disuse, and recent work has delineated elements of both synthetic and proteolytic processes underlying muscle atrophy. It is also becoming evident that interactions among known proteolytic pathways (ubiquitin-proteasome, lysosomal, and calpain) are involved in muscle proteolysis during atrophy. Factors such as TNF-alpha, glucocorticoids, myostatin, and reactive oxygen species can induce muscle protein loss under specified conditions. Also, it is now apparent that the transcription factor NF-kappaB is a key intracellular signal transducer in disuse atrophy. Transcriptional profiles of atrophying muscle show both up- and downregulation of various genes over time, thus providing further evidence that there are multiple concurrent processes involved in muscle atrophy. The purpose of this review is to synthesize our current understanding of the molecular regulation of muscle atrophy. We also discuss how ongoing work should uncover more about the molecular underpinnings of muscle wasting, particularly that due to disuse.
Article
Full-text available
We detected a protein in rabbit skeletal muscle extracts that was phosphorylated rapidly by SGK1 (serum- and glucocorticoid-induced kinase 1), but not by protein kinase Ba, and identified it as NDRG2 (N-myc downstream-regulated gene 2). SGK1 phosphorylated NDRG2 at Thr330, Ser332 and Thr348 in vitro. All three residues were phosphorylated in skeletal muscle from wild-type mice, but not from mice that do not express SGK1. SGK1 also phosphorylated the related NDRG1 isoform at Thr328, Ser330 and Thr346 (equivalent to Thr330, Ser332 and Thr348 of NDRG2), as well as Thr356 and Thr366. Residues Thr346, Thr356 and Thr366 are located within identical decapeptide sequences GTRSRSHTSE, repeated three times in NDRG1. These threonines were phosphorylated in NDRG1 in the liver, lung, spleen and skeletal muscle of wild-type mice, but not in SGK1-/- mice. Knock-down of SGK1 in HeLa cells using small interfering RNA also suppressed phosphorylation of the threonine residues in the repeat region of NDRG1. The phosphorylation of NDRG1 by SGK1 transformed it into an excellent substrate for GSK3 (glycogen synthase kinase 3), which could then phosphorylate Ser342, Ser352 and Ser362 in the repeat region. Incubation of HeLa cells with the specific GSK3 inhibitor CT 99021 increased the electrophoretic mobility of NDRG1 in HeLa cells, demonstrating that this protein is phosphorylated by GSK3 in cells. Our results identify NDRG1 and NDRG2 as physiological substrates for SGK1, and demonstrate that phosphorylation of NDRG1 by SGK1 primes it for phosphorylation by GSK3.
Article
Macroautophagy is a dynamic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to the lysosome or vacuole where the sequestered cargo is degraded and recycled. This process takes place in all eukaryotic cells. It is highly regulated through the action of various kinases, phosphatases, and guanosine triphosphatases (GTPases). The core protein machinery that is necessary to drive formation and consumption of intermediates in the macroautophagy pathway includes a ubiquitin-like protein conjugation system and a protein complex that directs membrane docking and fusion at the lysosome or vacuole. Macroautophagy plays an important role in developmental processes, human disease, and cellular response to nutrient deprivation.
Article
The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-DeltaDeltaCr) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-DeltaDeltaCr) method. In addition, we present the derivation and applications of two variations of the 2(-DeltaDeltaCr) method that may be useful in the analysis of real-time, quantitative PCR data. (C) 2001 Elsevier science.
Article
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.
Article
Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1.
Article
Trimetazidine, an inhibitor of free fatty acids (FFA) oxidation, shifts cardiac and muscle metabolism from FFA to glucose utilization. This effect results in a greater production of high energy phosphates and ultimately into an anti-ischemic effect. Whether the anti-ischemic cardiac effects of trimetazidine (TMZ) can be translated to skeletal muscle in patients with claudication is unknown. We investigated the effectiveness of TMZ on functional performance in patients with peripheral arterial disease (PAD) and claudication. One hundred patients with claudication were enrolled in a parallel, double-blind, 3 months study. Patients were randomized to receive TMZ or matching placebo and were included in a domiciliary exercise program, consisting in daily sessions of aerobic and isotonic exercise for at least five days a week. All patients underwent a treadmill test, evaluating maximal walking distance (MWD), and ankle-brachial index (ABI) at baseline and after 3 months. ABI was similar in the two groups at baseline and did not significantly change at the end of the study in either groups (0.83+0.04 vs 0.85+0.03, TMZ vs placebo, respectively). MWD improved in all patients with exercise training; however, a greater improvement in MWD was observed with TMZ compared to placebo (23% vs 14%, p<0.0001). Physical training ameliorates functional performance in PAD. The adjunct of TMZ to exercise induces a greater improvement in MWD, suggesting that the inhibition of FFA oxidation improves functional capacity in patients with PAD and claudication.
Article
Activation of the PI3 kinase pathway can induce skeletal muscle hypertrophy, defined as an increase in skeletal muscle mass. In mammals, skeletal muscle hypertrophy occurs as a result of an increase in the size, as opposed to the number, of pre-existing skeletal muscle fibers. This pathway’s effects on skeletal muscle have been implicated most prominently downstream of Insulin-like growth factor 1 signaling. IGF-1’s pro-hypertrophy activity comes predominantly through its ability to activate the Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Akt is a serine-threonine protein kinase that can induce protein synthesis and block the transcriptional upregulation of key mediators of skeletal muscle atrophy, the E3 ubiquitin ligases MuRF1 and MAFbx (also called Atrogin-1), by phosphorylating and thereby inhibiting the nuclear translocation of the FOXO (also called “forkhead”) family of transcription factors. Once phosphorylated by Akt, the FOXOs are excluded from the nucleus, and upregulation of MuRF1 and MAFbx is blocked. MuRF1 and MAFbx mediate atrophy by ubiquitinating particular protein substrates, causing them to undergo degradation by the proteasome. MuRF1’s substrates include several components of the sarcomeric thick filament, including Myosin Heavy Chain (MyHC). Thus, by blocking MuRF1 activation, IGF-1 helps prevent the breakdown of the thick filament under atrophy conditions.
Article
Muscle mass represents 40-50% of the human body and, in mammals, is one of the most important sites for the control of metabolism. Moreover, during catabolic conditions, muscle proteins are mobilized to sustain gluconeogenesis in the liver and to provide alternative energy substrates for organs. However, excessive protein degradation in the skeletal muscle is detrimental for the economy of the body and it can lead to death. The ubiquitin-proteasome and autophagy-lysosome systems are the major proteolytic pathways of the cell and are coordinately activated in atrophying muscles. However, the role and regulation of the autophagic pathway in skeletal muscle is still largely unknown. This review will focus on autophagy and discuss its beneficial or detrimental role for the maintenance of muscle mass.
Article
The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.
Article
Signalling through mTORC1 (mammalian target of rapamycin complex 1) is important in controlling many cell functions, including protein synthesis, which it activates. mTORC1 signalling is activated by stimuli which promote protein accumulation such as anabolic hormones, growth factors and hypertrophic stimuli. mTORC1 signalling regulates several components of the protein synthetic machinery, including initiation and elongation factors, protein kinases which phosphorylate the ribosome and/or translation factors, and the translation of specific mRNAs. However, there are still important gaps in our understanding of the actions of mTORC1 and the relative contributions that different targets of mTORC1 make to the activation of protein synthesis remain to be established.
Article
Trimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 microU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either (3)H or (14)C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488+/-24 to 408+/-15 nmol x g dry weight(-1) x minute(-1) (P<0.05), whereas it increased rates of glucose oxidation from 1889+/-119 to 2378+/-166 nmol x g dry weight(-1) x minute(-1) (P<0.05). In hearts subjected to low-flow ischemia, trimetazidine resulted in a 210% increase in glucose oxidation rates. In both aerobic and ischemic hearts, glycolytic rates were unaltered by trimetazidine. The effects of trimetazidine on glucose oxidation were accompanied by a 37% increase in the active form of pyruvate dehydrogenase, the rate-limiting enzyme for glucose oxidation. No effect of trimetazidine was observed on glycolysis, glucose oxidation, fatty acid oxidation, or active pyruvate dehydrogenase when palmitate was substituted with 0.8 mmol/L octanoate or 1.6 mmol/L butyrate, suggesting that trimetazidine directly inhibits long-chain fatty acid oxidation. This reduction in fatty acid oxidation was accompanied by a significant decrease in the activity of the long-chain isoform of the last enzyme involved in fatty acid beta-oxidation, 3-ketoacyl coenzyme A (CoA) thiolase activity (IC(50) of 75 nmol/L). In contrast, concentrations of trimetazidine in excess of 10 and 100 micromol/L were needed to inhibit the medium- and short-chain forms of 3-ketoacyl CoA thiolase, respectively. Previous studies have shown that inhibition of fatty acid oxidation and stimulation of glucose oxidation can protect the ischemic heart. Therefore, our data suggest that the antianginal effects of trimetazidine may occur because of an inhibition of long-chain 3-ketoacyl CoA thiolase activity, which results in a reduction in fatty acid oxidation and a stimulation of glucose oxidation.
Article
We recently suggested that, in muscular dystrophies, the excessive accumulation of adenosine as a result of an altered purine metabolism may contribute to progressive functional deterioration and muscle cell death. To verify this hypothesis, we have taken advantage of C2C12 myoblastic cells, which can be differentiated in vitro into multinucleated cells (myotubes). Exposure of both proliferating myoblasts and differentiated myotubes to adenosine or its metabolically-stable analog, 2-chloro-adenosine, resulted in apoptotic cell death and myotube disruption. Cytotoxicity by either nucleoside did not depend upon extracellular adenosine receptors, but, at least in part, by entry into cells via the membrane nitro-benzyl-thio-inosine-sensitive transporter. The adenosine kinase inhibitor, 5-iodotubercidin, prevented 2-chloro-adenosine-induced (but not adenosine-induced) effects, suggesting that an intracellular phosphorylation/activation reaction plays a key role in 2-chloro-adenosine-mediated cytotoxicity. Conversely, adenosine cytotoxicity was aggravated by the addition of homocysteine, suggesting that adenosine effects may be due to the accumulation of S-adenosyl-homocysteine, which blocks intracellular methylation-dependent reactions. Both nucleosides markedly disrupted the myotube structure via an effect on the actin cytoskeleton; however, also for myotubes, there were marked differences in the morphological alterations induced by these two nucleosides. These results show that adenosine and 2-chloro-adenosine induce apoptosis of myogenic cells via completely different metabolic pathways, and are consistent with the hypothesis that adenosine accumulation in dystrophic muscles may represent a novel pathogenetic pathway in muscle diseases.
Article
MyoD regulates skeletal muscle differentiation (SMD) and is essential for repair of damaged tissue. The transcription factor nuclear factor kappa B (NF-kappaB) is activated by the cytokine tumor necrosis factor (TNF), a mediator of skeletal muscle wasting in cachexia. Here, the role of NF-kappaB in cytokine-induced muscle degeneration was explored. In differentiating C2C12 myocytes, TNF-induced activation of NF-kappaB inhibited SMD by suppressing MyoD mRNA at the posttranscriptional level. In contrast, in differentiated myotubes, TNF plus interferon-gamma (IFN-gamma) signaling was required for NF-kappaB-dependent down-regulation of MyoD and dysfunction of skeletal myofibers. MyoD mRNA was also down-regulated by TNF and IFN-gamma expression in mouse muscle in vivo. These data elucidate a possible mechanism that may underlie the skeletal muscle decay in cachexia.
Article
Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box(MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx orMuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.
Article
Trimetazidine (TMZ) has been shown to partially inhibit free fatty acid oxidation by shifting substrate utilization from fatty acid to glucose. The aim of this study was to assess the effects of TMZ in patients with diabetes and ischemic cardiomyopathy. Sixteen patients with diabetes and ischemic hypokinetic cardiomyopathy (all males) on conventional therapy were randomized to receive either placebo or TMZ (20 mg 3 times per day), each arm lasting 15 days, and then again to receive either placebo or TMZ for 2 additional 6-month periods, according to a double-blind, crossover design. At the end of each period, all patients underwent exercise testing, 2-dimensional echocardiography, and hyperinsulinemic/euglycemic clamp. Among the others, New York Heart Association class, ejection fraction, exercise time, fasting blood glucose, end-clamp M value (index of total body glucose disposal) and endothelin-1 levels were evaluated. Both in the short and long term (completed by 13 patients), on TMZ compared to placebo, ejection fraction (47 +/- 7 vs 41 +/- 9 and 45 +/- 8 vs 36 +/- 8%, P <.001 for both) and M value (4.0 +/- 1.8 vs 3.3 +/- 1.6, P =.003, and 3.5 +/- 1.5 vs 2.7 +/- 1.6 mg/kg body weight/min, P <.01) increased, while fasting blood glucose (121 +/- 30 vs 136 +/- 40, P =.02 and 125 +/- 36 vs 140 +/- 43, P =.19) and endothelin-1 (8.8 +/- 3.8 vs 10.9 +/- 3.8, P <.001 and 6.2 +/- 2.4 vs 9.2 +/- 4.3 pg/mL, P =.03) decreased. In the short term, 10 patients decreased 1 class on the NYHA scale during treatment with TMZ (P =.019 vs placebo). Eight patients decreased 1 NYHA class while on long-term TMZ treatment, while on placebo 1 patient increased 1 NYHA class and none improved (P =.018 vs placebo). In a short series of patients with diabetes and ischemic cardiomyopathy, TMZ improved left ventricular function, symptoms, glucose metabolism, and endothelial function. Shifting energy substrate preference away from fatty acid metabolism and toward glucose metabolism by TMZ appears an effective adjunctive treatment in patients with diabetes with postischemic cardiomyopathy.
Article
Skeletal muscle atrophy is a debilitating response to fasting, disuse, cancer, and other systemic diseases. In atrophying muscles, the ubiquitin ligase, atrogin-1 (MAFbx), is dramatically induced, and this response is necessary for rapid atrophy. Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction. IGF-1 treatment or AKT overexpression inhibits Foxo and atrogin-1 expression. Moreover, constitutively active Foxo3 acts on the atrogin-1 promoter to cause atrogin-1 transcription and dramatic atrophy of myotubes and muscle fibers. When Foxo activation is blocked by a dominant-negative construct in myotubes or by RNAi in mouse muscles in vivo, atrogin-1 induction during starvation and atrophy of myotubes induced by glucocorticoids are prevented. Thus, forkhead factor(s) play a critical role in the development of muscle atrophy, and inhibition of Foxo factors is an attractive approach to combat muscle wasting.
Article
Patients referred for cardiac rehabilitation may benefit from combining trimetazidine with exercise training because both treatments produce synergic benefits on the cardiovascular system. There is evidence that trimetazidine improves left ventricular (LV) function in patients with ischemic and diabetic cardiomyopathy by shifting the cellular energy substrate reference from fatty acids to glucose oxidation, and that this effect is associated with a better outcome. Recently, results have demonstrated that trimetazidine improves radial artery endothelium-dependent relaxation related to its antioxidant properties. Similarly, exercise training has been demonstrated to improve diastolic filling and systolic function in patients with ischemic cardiomyopathy, in relation to enhanced perfusion and contractility of dysfunctional myocardium. Patients with viable myocardium, in theory, should have the greatest benefits because trimetazidine improves contractility of dysfunctional hibernating/stunned myocardium, whereas exercise has documented efficacy in improving endothelial vasomotor response of coronary arteries, stimulating coronary collateral circulation and small vessel growth, improving LV function, and increasing functional capacity. At present, there are no published reports about the efficacy of the combination of trimetazidine with exercise training. In this article, we discuss the rationale for using trimetazidine in cardiac rehabilitation, the identification of patients referred for cardiac rehabilitation who might benefit the most from the addition of trimetazidine to standard therapy, and the documented benefits.
Article
High rates of fatty acid oxidation in the heart and subsequent inhibition of glucose oxidation contributes to the severity of myocardial ischemia. These adverse effects of fatty acids can be overcome by stimulating glucose oxidation, either directly or secondary to an inhibition of fatty acid oxidation. We recently demonstrated that trimetazidine stimulates glucose oxidation in the heart secondary to inhibition of fatty acid oxidation. This inhibition of fatty acid oxidation was attributed to an inhibition of mitochondrial long-chain 3-ketoacyl CoA thiolase (LC 3-KAT), an enzyme of fatty acid beta-oxidation. However, the accompanying Research Commentary of MacInnes et al suggests that trimetazidine does not inhibit cardiac LC 3-KAT. This discrepancy with our data can be attributed to the reversible competitive nature of trimetazidine inhibition of LC 3-KAT. In the presence of 2.5 micromol/L 3-keto-hexadecanoyl CoA (KHCoA), trimetazidine resulted in a 50% inhibition of LC-3-KAT activity. However, the inhibition of LC 3-KAT could be completely reversed by increasing substrate (3-keto-hexadecanoyl CoA, KHCoA) concentrations to 15 micromol/L even at high concentrations of trimetazidine (100 micromol/L). The study of MacInnes et al was performed using concentrations of 3K-HCoA in excess of 16 micromol/L, a concentration that would completely overcome 100 micromol/L trimetazidine inhibition of LC 3-KAT. Therefore, the lack of inhibition of LC 3-KAT by trimetazidine in the MacInnes et al study can easily be explained by the high concentration of KHCoA substrate used in their experiments. In isolated working hearts perfused with high levels of fatty acids, we found that trimetazidine (100 micromol/L) significantly improves functional recovery of hearts subjected to a 30-minute period of global no-flow ischemia. This occurred in the absence of changes in oxygen consumption resulting in an improved increase in cardiac efficiency. Combined with our previous studies, we conclude that trimetazidine inhibition of LC 3-KAT decreases fatty acid oxidation and stimulates glucose oxidation, resulting in an improvement in cardiac function and efficiency after ischemia. The full text of this article is available online at http://www.circresaha.org.
Article
Autophagy is a highly conserved catabolic programme for degrading proteins and organelles. This process has been shown to act as a pro-survival or pro-death mechanism in different physiological and pathological conditions. Several stress stimuli can induce autophagy, such as nutrient deprivation or critical steps in development of lower and higher eukaryotes. Apoptosis is an orchestrated form of cell death in which cells are actively involved in their own demise. Again, stress is a positive regulator of apoptosis and, in particular, of its apoptosome-mediated mitochondrial pathway. Besides discussing the individual roles played by the key molecules involved in autophagy in mammals in response to stress signals, we discuss here the interrelations between autophagy and apoptosis under these conditions.
Article
Muscle performance is influenced by turnover of contractile proteins. Production of new myofibrils and degradation of existing proteins is a delicate balance, which, depending on the condition, can promote muscle growth or loss. Protein synthesis and protein degradation are coordinately regulated by pathways that are influenced by mechanical stress, physical activity, availability of nutrients, and growth factors. Understanding the signaling that regulates muscle mass may provide potential therapeutic targets for the prevention and treatment of muscle wasting in metabolic and neuromuscular diseases.
Autophagic cell death: the story of a misnomer
  • G Kroemer
  • B Levine
Kroemer G & Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9, 1004-1010.
Quantitative realtime PCR was performed with the Applied Biosystems 7500 FAST real-time PCR machine. The following primers were used: mouse myostatin forward, 5′-CTGTAACCTTCCCAG GACCA-3′; mouse myostatin reverse, 5′-TCTTTTGGG TGCGATAATCC-3′; mouse atrogin-1 forward
  • Ca South San Francisco
Quantitative real-time PCR was performed with the Sensi- Mix Plus SYBR Kit (Quantace -Biocompare Oyster Point Blvd, South San Francisco, CA, USA). Quantitative realtime PCR was performed with the Applied Biosystems 7500 FAST real-time PCR machine. The following primers were used: mouse myostatin forward, 5′-CTGTAACCTTCCCAG GACCA-3′; mouse myostatin reverse, 5′-TCTTTTGGG TGCGATAATCC-3′; mouse atrogin-1 forward, 5′-ATGC ACACTGGTGCAGAGAG-3′, mouse atrogin-1 reverse, 5′-TGTAAGCACACAGGCAGGTG-3′; mouse MuRF1 forward, 5′-GACAGTCGCATTTCAAAGCA-3′; mouse MuRF1 reverse, 5′-AACGACCTCCAGACATGGAC-3′;
Italy) was added to the culture medium 2 h before the assay. The samples were mounted in SlowFade Gold mounting medium. The images were acquired with an Olympus BX51/BX52 system microscope equipped with a Zeiss charge-coupled device camera
  • Lysotracker Red
LysoTracker Red DND (250 nM; Invitrogen, Life Technologies Europe, Monza, Italy) was added to the culture medium 2 h before the assay. The samples were mounted in SlowFade Gold mounting medium. The images were acquired with an Olympus BX51/BX52 system microscope equipped with a Zeiss charge-coupled device camera (Carl Zeiss, Milan, Italy).