Alf Kirkevåg

Alf Kirkevåg

PhD (Dr. Scient)

About

172
Publications
37,972
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,234
Citations
Introduction
Modeling of physical properties of aerosols and their interaction with climate, directly through scattering and absorption of light, and indirectly through their interaction with clouds. Main modelling tools: the Norwegian Earth System Model NorESM, its offline aerosol module for microphysics AeroTab, and the online aerosol module OsloAero.
Additional affiliations
January 2011 - January 2021
Norwegian Meteorological Institute
Position
  • Researcher
Description
  • Main focus: Microphysics, radiative forcing and the effect of aerosols on on climate. Main model tool: the Norwegian Earth System Model (NorESM1, NorESM1.2 and NorESM2).
January 2007 - December 2011
Norwegian Meteorological Institute
Position
  • Researcher
January 2006 - December 2006
University of Oslo
Position
  • Researcher

Publications

Publications (172)
Article
Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and circulation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom model ensemble with satellite a...
Article
Full-text available
The Radiative Forcing Model Intercomparison Project (RFMIP) allows estimates of effective radiative forcing (ERF) in the Coupled Model Intercomparison Project phase six (CMIP6). We analyze the RFMIP output, including the new experiments from models that use the same parameterization for anthropogenic aerosols (RFMIP‐SpAer), to characterize and bett...
Article
Full-text available
Biomass burning (BB) is a major source of aerosols that remain the most uncertain components of the global radiative forcing. Current global models have great difficulty matching observed aerosol optical depth (AOD) over BB regions. A common solution to address modelled AOD biases is scaling BB emissions. Using the relationship from an ensemble of...
Article
Full-text available
For short-lived climate forcers such as black carbon (BC), the atmospheric concentrations, radiative forcing (RF), and, ultimately, the subsequent effects on climate, depend on the location and timing of the emissions. Here, we employ the NorESM1-Happi version of the Norwegian Earth System Model to systematically study how the RF associated with BC...
Article
Full-text available
Global models are widely used to simulate biomass burning aerosol (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observations and Models (AeroCom) project model simul...
Preprint
Full-text available
For short-lived climate forcers such as black carbon (BC), the atmospheric concentrations, radiative forcing (RF) and, ultimately, the subsequent effects on climate, depend on the location and timing of the emissions. Here, we employ the NorESM1-Happi version of Norwegian Earth System Model to systematically study how the RF associated with BC emis...
Article
Full-text available
This data descriptor reports the main scientific values from General Circulation Models (GCMs) in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The purpose of the GCM simulations has been to enhance the scientific understanding of how changes in greenhouse gases, aerosols, and incoming solar radiation perturb the Ear...
Preprint
Full-text available
Global models are widely used to simulate biomass burning aerosols (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observation project (AeroCom) model simulations with...
Article
Full-text available
The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol–cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with a...
Article
Full-text available
Aerosol-induced absorption of shortwave radiation can modify the climate through local atmospheric heating, which affects lapse rates, precipitation, and cloud formation. Presently, the total amount of aerosol absorption is poorly constrained, and the main absorbing aerosol species (black carbon (BC), organic aerosols (OA), and mineral dust) are di...
Preprint
Full-text available
How emissions of black carbon (BC) aerosols affect the climate is still uncertain, due to incomplete knowledge of its sources, optical properties and atmospheric processes such as transport, removal and impact on clouds. Here we constrain simulations from four climate models with observations of atmospheric BC concentrations and absorption efficien...
Preprint
Full-text available
The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol-cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with a...
Preprint
Full-text available
Aerosol induced absorption of shortwave radiation can modify the climate through local atmospheric heating, which affects lapse rates, precipitation, and cloud formation. Presently, the total amount of such absorption is poorly constrained, and the main absorbing aerosol species (black carbon (BC), organic aerosols (OA) and mineral dust are diverse...
Article
Full-text available
Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi...
Article
Full-text available
Aerosol absorption constitutes a significant component of the total radiative effect of aerosols, and hence its representation in general circulation models is crucial to radiative forcing estimates. We use here multiple observations to evaluate the performance of CAM5.3-Oslo with respect to its aerosol representation. CAM5.3-Oslo is the atmospheri...
Article
Full-text available
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemi...
Article
Full-text available
Rapid adjustments occur after initial perturbation of an external climate driver (e.g., CO2) and involve changes in, e.g. atmospheric temperature, water vapour and clouds, independent of sea surface temperature changes. Knowledge of such adjustments is necessary to estimate effective radiative forcing (ERF), a useful indicator of surface temperatur...
Article
Full-text available
This study presents a multiparameter analysis of aerosol trends over the last 2 decades at regional and global scales. Regional time series have been computed for a set of nine optical, chemical-composition and mass aerosol properties by using the observations from several ground-based networks. From these regional time series the aerosol trends ha...
Article
Full-text available
Black carbon (BC) aerosols emitted from natural and anthropogenic sources induce positive radiative forcing and global warming, which in turn significantly affect the Asian summer monsoon (ASM). However, many aspects of the BC effect on the ASM remain elusive and largely inconsistent among previous studies, which is strongly dependent on different...
Article
Full-text available
The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties, which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative effects of...
Article
Full-text available
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 13 contemporary climate models that are participating in CMIP6 and have contrib...
Article
Rapid adjustments – the response of meteorology to external forcing while sea surface temperatures (SST) and sea ice are held fixed – can affect the midlatitude circulation and contribute to long-term forced circulation responses in climate simulations. This study examines rapid adjustments in the Southern hemisphere (SH) circulation using nine mod...
Preprint
Full-text available
Black carbon (BC) aerosols emitted from natural and anthropogenic sources induce positive radiative forcing and global warming, which in turn significantly affect the Asian summer monsoon (ASM). However, many aspects of the BC effect on ASM remain elusive and largely inconsistent among previous studies, which is strongly dependent on different low-...
Technical Report
Full-text available
AeroTab is an offline size-resolving aerosol microphysics model which produces look-up tables for use in the online aerosol module OsloAero of the Norwegian Earth System Model, NorESM. The AeroTab version described in this User's Guide is AeroTab6, except for some new functionality which is not previously published and only described in this techni...
Preprint
Full-text available
Abstract. Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the present day modelling of aerosol optical properties has been assessed using simulated data representative for the year 2010, from 14 global aerosol models participating in the Phase III Control experiment. The model versions are close...
Preprint
Full-text available
Abstract. The second version of the fully coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2), but has entirely different ocean and ocean biogeochemistry models; a new module for aerosols in the atmosphere model along with aerosol-radiation-clo...
Preprint
Full-text available
Abstract. The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative ef...
Preprint
Full-text available
Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 13 contemporary climate models that are participating in CMIP6 and ha...
Preprint
Full-text available
Abstract. This study presents a multi-parameter analysis of aerosol trends over the last two decades at regional and global scales. Regional time series have been computed for a set of nine optical, chemical composition and mass aerosol properties by using the observations of several ground-based networks. From these regional time series the aeroso...
Article
Full-text available
Quantifying the efficacy of different climate forcings is important for understanding the real‐world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instanta...
Article
Full-text available
Black carbon and sulfate aerosols have conflicting effects on global extreme dry and precipitation events. An international team of researchers led by Jana Sillmann at the Center for International Climate Research, Oslo use model simulations to examine the effect of sulfate aerosols and black carbon compared to greenhouse gases on global mean preci...
Article
Full-text available
Water vapour in the atmosphere is the source of a major climate feedback mechanism and potential increases in the availability of water vapour could have important consequences for mean and extreme precipitation. Future precipitation changes further depend on how the hydrological cycle responds to different drivers of climate change, such as greenh...
Article
Full-text available
Differences between a 1.5 and 2.0 ∘C warmer climate than 1850 pre-industrial conditions are investigated using a suite of uncoupled (Atmospheric Model Intercomparison Project; AMIP), fully coupled, and slab-ocean experiments performed with Norwegian Earth System Model (NorESM1)-Happi, an upgraded version of NorESM1-M. The data from the AMIP-type ru...
Article
Full-text available
A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC)....
Article
Full-text available
The Arctic is experiencing rapid climate change in response to changes in greenhouse gases, aerosols, and other climate drivers. Emission changes in general, as well as geographical shifts in emissions and transport pathways of short‐lived climate forcers, make it necessary to understand the influence of each climate driver on the Arctic. In the Pr...
Article
Full-text available
We compare six methods of estimating effective radiative forcing (ERF) using a set of atmosphere‐ocean general circulation models. This is the first multiforcing agent, multimodel evaluation of ERF values calculated using different methods. We demonstrate that previously reported apparent consistency between the ERF values derived from fixed sea su...
Article
Full-text available
The relationship between changes in integrated water vapour (IWV) and precipitation can be characterized by quantifying changes in atmospheric water vapour lifetime. Precipitation isotope ratios correlate with this lifetime, a relationship that helps understand dynamical processes and may lead to improved climate projections. We investigate how wat...
Article
Full-text available
A total of sixteen global chemistry transport models and general circulation models have participated in this study. Fourteen models have been evaluated with regard to their ability to reproduce near-surface observed number concentration of aerosol particle and cloud condensation nuclei (CCN), and derived cloud droplet number concentration (CDNC)....
Article
Full-text available
Rapid adjustments are responses to forcing agents that cause a perturbation to the top of atmosphere energy budget but are uncoupled to changes in surface warming. Different mechanisms are responsible for these adjustments for a variety of climate drivers. These remain to be quantified in detail. It is shown that rapid adjustments reduce the effect...
Article
Full-text available
Different climate drivers influence precipitation in different ways. Here we use radiative kernels to understand the influence of rapid adjustment processes on precipitation in climate models. Rapid adjustments are generally triggered by the initial heating or cooling of the atmosphere from an external climate driver. For precipitation changes, rap...
Article
Full-text available
The response of the hydrological cycle to climate forcings can be understood within the atmospheric energy budget framework. In this study precipitation and energy budget responses to five forcing agents are analyzed using 10 climate models from the Precipitation Driver Response Model Intercomparison Project (PDRMIP). Precipitation changes are spli...
Article
Full-text available
We document model updates and present and discuss modeling and validation results from a further developed production-tagged aerosol module, OsloAero5.3, for use in Earth system models. The aerosol module has in this study been implemented and applied in CAM5.3-Oslo. This model is based on CAM5.3–CESM1.2 and its own predecessor model version CAM4-O...
Article
Full-text available
The Nordic Centre of Excellence CRAICC (CRyosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, was the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic Region. CRAICC gathered more than 10...
Article
Full-text available
Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterran...
Article
Full-text available
Uncertainties in effective radiative forcings through aerosol–cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas f...
Article
Full-text available
We here document model updates, and present and discuss modelling and validation results, from a further developed production tagged aerosol module, OsloAero5.3, for use in earth system models. The aerosol module has in this study been implemented and applied in CAM5.3-Oslo. This model is based on CAM5.3/CESM1.2 and its own predecessor model versio...
Article
Full-text available
Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. H...
Article
Full-text available
Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyse the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven cir...
Article
Full-text available
Atmospheric aerosols such as sulfate and black carbon (BC) generate inhomogeneous radiative forcing and can affect precipitation in distinct ways compared to greenhouse gases (GHGs). Their regional effects on the atmospheric energy budget and circulation can be important for understanding and predicting global and regional precipitation changes, wh...
Article
Full-text available
Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation...
Article
Full-text available
Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing-estimates of the aerosol indirect effects are so negative that they even offset the greenhouse gas forcin...
Article
Full-text available
Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the...
Article
Full-text available
Climate change: Global warming increases rainfall most over oceans Global warming leads to more rain – but little of the change occurs over land. An international team of researchers, led by Bjørn H. Samset at the Norwegian CICERO Center for Climate Research, used ten global climate models to study how precipitation changes when just one factor in...
Article
Full-text available
The global NorESM1-M model that produced results for CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/index.html) has been slightly upgraded to NorESM1-Happi, and has been run with double resolution (~ 1° in the atmosphere and the land surface) to provide model simulations to address the differences between a 1.5 °C and a 2.0 °C warmer climate than the 1850...
Article
Full-text available
Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aero...
Article
Full-text available
We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled-climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m−2, and a...
Article
Full-text available
Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the...
Article
Full-text available
We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS pro...
Article
Full-text available
A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of wa...
Article
Full-text available
We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean-acidification under the high emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS-pro...
Article
Full-text available
Atmospheric aerosols from anthropogenic and natural sources reach the Polar Regions through long-range transport. Such transport is however poorly constrained in present day global climate models, and few multi-model evaluations of Polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from si...
Article
Full-text available
Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-49 a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenari...
Article
Full-text available
As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicte...
Chapter
Using the advanced climate model NorESM1-M, the reduction of sulfate in Europe (EMEP region) between 1980 and 2005 is found to explain as much as about half of the warming observed in the Arctic during the same period. In other words, as a result of regulations on emissions in Europe to improve air quality and acidification of water and soils, a su...
Article
The ability of 11 models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model intercomparison initiative (AeroCom II), is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded data set of aerosol extinction profiles...
Article
Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to...
Article
The Arctic region is warming considerably faster than the rest of the globe, with important consequences for the ecosystems and human exploration of the region. However, the reasons behind this Arctic amplification are not entirely clear. As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursor...
Article
Full-text available
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aero...
Article
Full-text available
We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 μm dry diameter. Particle production decreased non-linearly with incre...
Article
Full-text available
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors, we investigate the effects of individual processes in one particular model (HadGEM3–UKCA), and compare the resulting diversity of aero...
Article
Full-text available
We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 μm dry diameter. Particle production decreased non-linearly with incre...
Article
Full-text available
The climate response to an abrupt increase of black carbon (BC) aerosols is compared to the standard CMIP5 experiment of quadrupling CO2 concentrations in air. The global climate model NorESM with interactive aerosols is used. One experiment employs prescribed BC emissions with calculated concentrations coupled to atmospheric processes (emission-dr...
Article
Full-text available
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100...
Article
Full-text available
Atmospheric black carbon (BC) absorbs solar ra-diation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range...
Article
Full-text available
Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range...
Article
In this study MODerate resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to sun-photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval...
Article
Full-text available
In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval...
Article
Full-text available
The Norwegian Earth System Model (NorESM) is evaluated against atmospheric observations of aerosol number concentrations. The model is extended to include an explicit mechanism for new particle formation and secondary organic aerosol (SOA) formation from biogenic precursors. Three nucleation mechanisms are included in NorESM: binary sulfuric acid,...
Article
Full-text available
Though many global aerosols models prognose surface deposition, only a few models have been used to di- rectly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol de- position fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Mod- els (AeroCom...
Article
Full-text available
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of Aer...
Article
Full-text available
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry/transport and general circulation models have participated in this intercomparison, in the framework of AeroCom phase II. The si...
Article
Full-text available
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea-ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) proj...
Article
Full-text available
The Norwegian Earth System Model (NorESM) is evaluated against atmospheric observations of aerosol number concentrations. The model is extended to include an explicit mechanism for new particle formation, and the secondary organic aerosol (SOA) formation from biogenic precursors is revised. Several model experiments are conducted to study the sensi...
Article
Full-text available
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20 % of the present uncertainty in modeled BC direct radiative forc-ing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the globa...
Article
Full-text available
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbo...

Network

Cited By