ArticlePDF Available

A Review on Rain Signal Attenuation Modeling, Analysis and Validation Techniques: Advances, Challenges and Future Direction

Authors:

Abstract and Figures

Radio waves are attenuated by atmospheric phenomena such as snow, rain, dust, clouds, and ice, which absorb radio signals. Signal attenuation becomes more severe at extremely high frequencies , usually above 10 GHz. In typical equatorial and tropical locations, rain attenuation is more prevalent. Some established research works have attempted to provide state-of-the-art reviews on modeling and analysis of rain attenuation in the context of extremely high frequencies. However, the existing review works conducted over three decades (1990 to 2022), have not adequately provided comprehensive taxonomies for each method of rain attenuation modeling to expose the trends and possible future research directions. Also, taxonomies of the methods of model validation and regional developmental efforts on rain attenuation modeling have not been explicitly highlighted in the literature. To address these gaps, this paper conducted an extensive literature survey on rain attenuation modeling, methods of analyses, and model validation techniques, leveraging the ITU-R regional categorizations. Specifically, taxonomies in different rain attenuation modeling and analysis areas are extensively discussed. Key findings from the detailed survey have shown that many open research questions, challenges, and applications could open up new research frontiers , leading to novel findings in rain attenuation. Finally, this study is expected to be reference material for the design and analysis of rain attenuation.
Content may be subject to copyright.
Sustainability2022,14,11744.https://doi.org/10.3390/su141811744www.mdpi.com/journal/sustainability
Review
AReviewonRainSignalAttenuationModeling,Analysis
andValidationTechniques:Advances,Challenges
andFutureDirection
EmmanuelAlozie
1
,AbubakarAbdulkarim
2,3
,IbrahimAbdullahi
4
,AliyuD.Usman
5
,NasirFaruk
6,7
,
ImamFulaniYusufOlayinka
1
,KayodeS.Adewole
8
,AbdulkarimA.Oloyede
1
,HarunaChiroma
9
,
OlugbengaA.Sowande
1
,LukmanA.Olawoyin
1
,SalisuGarba
10
,AgbotinameLuckyImoize
11,12,
*,
AbdulwaheedMusa
13,14
,YinusaA.Adediran
15
andLawanS.Taura
6
1
DepartmentofTelecommunicationScience,UniversityofIlorin,Ilorin240003,Nigeria
2
DepartmentofElectricalEngineering,AhmaduBelloUniversity,Zaria810107,Nigeria
3
DepartmentofElectricalandTelecommunicationsEngineering,KampalaInternationalUniversity,
Kansanga,KampalaP.O.Box20000,Uganda
4
DepartmentofElectricalandElectronicsEngineeringTechnology,NuhuBamalliPolytechnic,
ZariaPMB1061,Nigeria
5
DepartmentofElectronicsandTelecommunicationEngineering,AhmaduBelloUniversity,
Zaria810107,Nigeria
6
DepartmentofPhysics,SuleLamidoUniversity,KafinHausaPMB048,Nigeria
7
DirectorateofInformationandCommunicationTechnology,SuleLamidoUniversity,
KafinHausaPMB048,Nigeria
8
DepartmentofComputerScience,UniversityofIlorin,Ilorin240003,Nigeria
9
CollegeofComputerScienceandEngineering,UniversityofHafrAlBatin,
HafrAlBatin39524,SaudiArabia
10
DepartmentofComputerScience,SuleLamidoUniversity,KafinHausaPMB048,Nigeria
11
DepartmentofElectricalandElectronicsEngineering,FacultyofEngineering,UniversityofLagos,Akoka,
Lagos100213,Nigeria
12
DepartmentofElectricalEngineeringandInformationTechnology,InstituteofDigitalCommunication,
RuhrUniversity,44801Bochum,Germany
13
DepartmentofElectricalandComputerEngineering,KwaraStateUniversity,Malete241103,Nigeria
14
InstituteforIntelligentSystems,UniversityofJohannesburg,JohannesburgP.O.Box524,SouthAfrica
15
DepartmentofElectricalandElectronicsEngineering,UniversityofIlorin,Ilorin240003,Nigeria
*Correspondence:aimoize@unilag.edu.ng
Abstract:Radiowavesareattenuatedbyatmosphericphenomenasuchassnow,rain,dust,clouds,
andice,whichabsorbradiosignals.Signalattenuationbecomesmoresevereatextremelyhighfre
quencies,usuallyabove10GHz.Intypicalequatorialandtropicallocations,rainattenuationismore
prevalent.Someestablishedresearchworkshaveattemptedtoprovidestateoftheartreviewson
modelingandanalysisofrainattenuationinthecontextofextremelyhighfrequencies.However,
theexistingreviewworksconductedoverthreedecades(1990to2022),havenotadequatelypro
videdcomprehensivetaxonomiesforeachmethodofrainattenuationmodelingtoexposethe
trendsandpossiblefutureresearchdirections.Also,taxonomiesofthemethodsofmodelvalidation
andregionaldevelopmentaleffortsonrainattenuationmodelinghavenotbeenexplicitlyhigh
lightedintheliterature.Toaddressthesegaps,thispaperconductedanextensiveliteraturesurvey
onrainattenuationmodeling,methodsofanalyses,andmodelvalidationtechniques,leveraging
theITURregionalcategorizations.Specifically,taxonomiesindifferentrainattenuationmodeling
andanalysisareasareextensivelydiscussed.Keyfindingsfromthedetailedsurveyhaveshown
thatmanyopenresearchquestions,challenges,andapplicationscouldopenupnewresearchfron
tiers,leadingtonovelfindingsinrainattenuation.Finally,thisstudyisexpectedtobereference
materialforthedesignandanalysisofrainattenuation.
Keywords:attenuation;rain;frequency;communication;millimeterwave;microwave;ITUR
Citation:Alozie,E.;Abdulkarim,A.;
Abdullahi,I.;Usman,A.D.;
Faruk,N.;Olayinka,I.F.Y.;
Adewole,K.S.;Oloyede,A.A.;
Chiroma,H.;Sowande,O.A.;etal.A
ReviewonRainSignalAttenuation
Modeling,AnalysisandValidation
Techniques:Advances,Challenges
andFutureDirection.Sustainability
2022,14,11744.https://doi.org/
10.3390/su141811744
AcademicEditor:
ManuelFernandezVeiga
Received:15August2022
Accepted:13September2022
Published:19September2022
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2022bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Sustainability2022,14,117442of67
1.Introduction
Theincreasingdemandforhighdatarateandcapacity,andtheinabilityofprevious
generationstomeetthesedemands,havemotivatedtheresearchanddevelopmentofthe
5Gcommunicationnetwork[1,2].The5Gwirelessnetworkhaspromisedtoprovidea
multiGigabitpersecond(Gbps)dataratewithextremelylowlatencyandbetterquality
ofservice(QoS)thatwouldsupportcriticalservices.Theseservicescomprise,butarenot
limitedto,theprovisionofehealth,especiallyinruralareas[3–5],equitableandinclusive
education[6–8],smartfarming[9,10],andbridgingofthedigitaldivide[11–13].
Millimeterwave(mmWave)communicationwithinthefrequencyrange30–300GHz
hasbeenproventobethecandidatebandfor5Gcommunicationnetworksandbeyond
duetothescarcityofspectrumfrequencybelow5GHz(sub6GHz)[14–18].The
mmWavebandoffersthesecurityofcommunicationtransmissionsandsupportsthelarge
bandwidthrequiredtoprovidehigherdataratesforfronthaul,backhaulandshortbuild
ingtobuildinglinks[2,19–22].However,themajordrawbackofthemillimeterwavesig
nalisitsinabilitytotraveloveralongdistanceduetoitssusceptibilitytoattenuationby
variousatmosphericphenomenasuchasrain,foliage,andotheratmosphericabsorption
[23–30].
Rain,amongallotheratmosphericphenomena,isthemajorsourceofmicrowaveand
millimeterwavesignalattenuationthroughabsorptionandscatteringinterrestrialand
satellitecommunicationlinks.Whentheoperatingfrequencyexceeds10GHz,theatten
uationeffectbecomesverysevere,particularlyinthetropics,withtendenciesofheavy
andthunderousraindropletsanddepths[31–34].Rainfallisacomplexmeteorological
phenomenonduetoitsinhomogeneousbehaviorintermsofduration,frequencyofoc
currence,andlocation.Theinhomogeneousnaturemakesithighlyunpredictableand
challengingwhenestimatingitseffectonlinkdesign.However,iftherainfallratevaria
tionthroughouttheentiresignalpathisknown,therainattenuationcanbeestimated
fromtheintegrationofthespecificattenuationandpathlength[35,36].Conventionally,
rainratesaremeasuredusingraingauges,disdrometers,andweatherradars.Thedata
obtainedfromsuchmeasuringinstrumentsareusuallyusedtodevelopmodelsthathelp
inpredictingand,insomecases,mitigatingtheeffectofrainattenuationonthelinks.
Severalresearchersovertheyearshavedevelopednovelmodelsandmethods,in
someinstancesmodifyingexistingonesforestimatingrainratesacrossvariousfrequen
ciesandclimaticlocations[37–43];notably,theITURhasalsodevelopedacoupleofmod
els[44,45].Itisworthytonotethatsomeoftheclimaticvariablessuchaswindspeed,
rainfallintensity,frequency,polarization,pathlength,temperature,humidity,etc.,have
impendingeffectsonrainattenuation.Thesethusexposethelimitofvalidityofmostof
theaforementionedmodelsasthesemodelsattempttoevaluatetherelationshipbetween
rainrateandpathlengthtoobtainrainattenuation[46].
Thispaperaimstoconductasystematicreviewofrainattenuationmodels.Thedif
ferentpredictionandmitigationmodelsarebroached,includingthetaxonomiesindiffer
entareasofrainattenuationmodelingandanalysis,notingresearchgapsandrecom
mendingfurtherdirectionsofresearch.Thenoteworthycontributionsofthisreviewpaper
areoutlinedasfollows:
Anextensive,systematicreviewofrainattenuationmodelsforthepast30years
(1990–2022)isprovided.
Apanoramicviewofrainattenuationmodelsandanexhaustivereviewofstudies
thathaveutilizedthesemodelsispresented,includingataxonomythatfollowedthe
workof[47].
Acomprehensiveanalysisofthetotalandspecificattenuationbasedonvariousat
mosphericconditionsandotherimpairments,includingtheradome,isdiscussed.
Anexhaustivereviewofrainattenuationpredictionusingmachinelearningmodels
ispresented,includingaproposedtaxonomyofthesemodels.
Anindepthanalysisandreviewoffademitigationtechniquesispresented.
Sustainability2022,14,117443of67
Criticalopenresearchissuesandfutureresearchdirectionsareidentifiedforrainat
tenuationandelaborated.
Thestructureofthepaperisasfollows:The“ReviewofPreviousRainAttenuation
Models”Section2reviewspriorreviewworksonrainattenuationmodels.The“Back
groundonRainAttenuation”Section3summarizesthetheoryofrainattenuation,rain
attenuationfactors,andthevariouswaystoobtainrainratedata,aswellasthesurveyof
rainattenuationacrossregions.The“RainAttenuationModels”Section4discussesand
reviewsthevariousexistingrainattenuationmodels.Furthermore,signalattenuationdue
tovariousatmosphericimpairmentsandtotalpropagationattenuationisexaminedinthe
“TotalAttenuation”Section5.Similarly,thespecificattenuationscenariosarepresented
inthe“SpecificAttenuation”Section6.The“ReviewofDifferentMethodsofModelVali
dation”Section7summarizesthevariousmodelvalidationtechniques,includingthe
propertiesoftheexistingrainattenuationmodels.Thevariousmachinelearningbased
modelsarepresentedandreviewedinthe“MachineLearningBasedRainAttenuation
PredictionModels”Section8.Thevariousfademitigationtechniques,includingtheweak
nessesoftheITURmodelforshortdistances,arediscussedandreviewedinthe“Fade
MitigationTechniquesFor5G”Section9.The“FurtherResearchDirection”Section10
providesaclearpathforfurtherresearchinrainattenuation.Finally,aconciseconclusion
isdrawninthe“Conclusion”Section11.
2.ReviewofPreviousRainAttenuationModels
Thissectionpresentsasystematicreviewofpreviousworksonrainattenuation,cov
eringthelastthreedecades,1990to2022,withabinocularfocusonreviewarticlesonly.
TheacademicdatabasesemployedforthisreviewincludeIEEEExplore,MDPI,ACMDig
italLibrary,Springer,ScienceDirect,andGoogleScholar.Thesedatabasesarecomprised
ofreliableandgoodqualitypeerreviewedpublicationssuchasreviewarticles,research
articles,andconferencepapers.Thesearchterm“rainattenuationreview”wasusedto
querythesedatabasestoobtainrelevantliteraturereviewarticlespublishedbetween1990
and2022,fromwhich16,668reviewpublicationswereobtainedacrossalltheselected
databases,allwrittenintheEnglishlanguagewhichhadbeenchosenasoneoftheinclu
sioncriteria.Toavoidduplicates,papersfoundonagenericdatabasesuchasGoogle
Scholarweretracedbacktotheirrespectivepublishingjournalandcountedunderthat
journal,ratherthanbeingcountedunderGoogleScholar.Figure1showsthearticleselec
tionprocessusedtoscreenthepoolofarticlestofurtherreducethesearchresults.Table
1summarizesthenumberofarticlesobtainedfromthedifferentdatabasesconsulted,in
cludingthepercentageindescendingorderintermsofrelevancetothesubjectofinterest.
Table2presentsanoverviewofpreviousrainattenuationmodelreviewswhichincludes
theirobjectivesandfindings.Table3providesasummaryofthecomparisonbetweenthe
currentsurveyandtheexistingones.
Figure1.ArticlesSelectionProcess.
Sustainability2022,14,117444of67
Table1.SearchDatabasesandNumberofArticles.
S/NArticleSourcesURLNo.ofArticlesPercentage(%)
1GoogleScholarhttps://scholar.google.com/637.50
2IEEEExplorehttps://ieeexplore.ieee.org/531.25
3MDPIhttps://www.mdpi.com/ 425.00
4Springerhttps://www.springer.com/
gp 16.25
5ACMDigitalLibraryhttps://dl.acm.org/ 00.00
 Total=16100
Table2.SummaryofPreviousRainAttenuationReviewPublications.
Ref.TitleofPublicationObjectivesFindingsYear
[48]
Developmentofrain
attenuationandrain
ratemapsforsatellite
systemdesigninthe
KuandKabandsin
Colombia
Topresentthereviewofsomeofthe
mostimportantrainrateandrain
attenuationmeasurementcam
paigns.
Theaveragedeviationbetweenmodelsand
measurementsisapproximately30%,andno
modelissuitableforallclimatezonesofthe
world.
2004
[49]
ReviewofRainAttenu
ationStudiesinTropi
calandEquatorialRe
gionsinBrazil
Toprovideareviewofrainattenua
tionresearchworksbasedonmeas
urementsperformedintropicaland
equatorialregionsofBrazil.
Basedonthereviews,itwasfoundthatthe
availablemodelsareonlysuitablefortemper
ateclimatesandnotsuitablefortropicaland
equatorialclimates.
2005
[50]
EffectofRainonMilli
meterWavePropaga
tion—AReview
Toreviewtheimpactofrainonmil
limeterwavepropagation.
ThestudybrieflyreviewedtheMietheory,
variousdropsizedistributionsbasedonthe
pointrainrate,crosspolarization,statistical
models,rainattenuationmodels,andfre
quencyandpathlengthscalingforrainatten
uationstatistics.
2007
[51]
Variabilityofmillime
terwaverainattenua
tionandrainratepre
diction:Asurvey
Toreviewtheliteratureonrainat
tenuationandrainrateprediction
methodsproposedbyresearchers
aroundtheglobetoevaluatethe
performanceundervaryingmeteor
ologicalandtopographicalcondi
tionswithafocusonthereports
madeintheIndiansubcontinent.
Amongthecontendingmodels,Garcia
Lopez’smodelissuitableforpredictingrain
attenuationinthenorthernregionofIndiadue
toitssimplicityandlesscomplexity.
2007
[52]
Analysisandparame
terizationofmethodol
ogiesfortheconver
sionofrainratecumu
lativedistributions
fromvariousintegra
tiontimestoonemi
nute
Reviewthemainmodelsusedfor
convertingrainstatisticsfromvari
ousintegrationtimestooneminute.
Onlyconversionmodelswithamaximumof
twoparametersaresuitableforworldwideap
plication,ofwhichtheLavergnatGolemodel
isrecommendedasthebestforanyintegration
timesandclimateregions.
2009
[53]
AReviewonRainAt
tenuationofRadio
Waves
Tounderstandrainattenuationoc
currences,howtheycanbemeas
ured,andreviewallmeasurement
methodsdevelopedsofar.
Rainattenuationismostlycalculatedusing
empiricalformulationsrelatingtherainrate
withspecificattenuation.Thismethodissig
nificantonlywhenthefrequencyexceeds5–10
GHz,andalso,raindropbasedmodelingis
mostaccurateintermsofexactness.
2012
Sustainability2022,14,117445of67
[54]
ReviewofRainAttenu
ationStudiesin
TropicalandEquatorial
RegionsinMalaysia:
AnOverview
Toreviewallpreviousresearch
workrelatedtoraininducedattenu
ationformicrowavepropagationin
Malaysia’stropicalclimate.
Rainratevalueandtheregressionfactorfor
theraindropsizedistributionvaryinMalaysia
basedontheregionformeasuringtherainat
tenuation.
2013
[55]
Precipitationandother
propagationimpair
mentseffectsmicro
wave
andmillimeterwave
bands:aminisurvey
Toreviewanddiscussrainattenua
tionmodelsdevelopedworldwide
usingvariousmeasurementcam
paignsformicrowaveandmillime
terwavefrequencies.
TheITURmodel,whencomparedtoother
predictionmodels,eitherunder‐oroveresti
mates,especiallyfortropicalregionmeasure
mentsites.
2019
[32]
AtmosphericImpair
mentsandMitigation
TechniquesforHigh
FrequencyEarthSpace
CommunicationSys
teminHeavyRainRe
gion:ABriefReview
Tobrieflyreviewpreviousworkson
theatmosphericeffects,particularly
rainandclouds,onhighfrequency
satellitecommunication.
Thestudypresentedresearchworkstodistin
guishscintillationfromrainattenuation.Then
discussedandrevieweddifferentrainattenua
tionmodelsandtheircharacteristicsinheavy
rainregions.Alsopresentedwerecloudand
watervaporattenuationmodelsandthendis
cussedthedifferentpropagationimpairment
mitigationtechniques.
2019
[56]
EarthtoEarthMicro
waveRainAttenuation
Measurements:ASur
veyontheRecentLit
erature
Researchchallengesandfuture
trendsaretoconductasystematic
reviewofrainfallmeasurementus
ingearthtoearthmicrowavesignal
attenuationfrombackhaulcellular
microwavelinksandexperimental
setup.
Microwavepathattenuationisapromising
andreliablemethodforestimatingtherain
rate.Also,factorssuchasthewetantennaef
fectsandjitterscausedbywindonantennas
mayleadtosignificanterrorstoo.
2020
[57]
ExperimentalStudies
ofSlantPathRainAt
tenuationOverTropi
calandEquatorialRe
gions:ABriefReview
Reviewandsummarizetheperfor
manceofvariousrainattenuation
modelsvalidatedagainstsatellite
signalmeasurementintropicaland
equatorialregions.
Amongthe33modelsreviewed,nonewas
suitableforalllocationsandpercentageex
ceedancelevels.Still,theITURandDAH
modelsaresuitableforlowrainratescom
paredtoothermodels.
2021
[58]
Anoverviewofrainat
tenuationresearchin
Bangladesh
Toreviewrainattenuationresearch
works,globalresearchtrends,and
researchscopeinBangladesh.
Rainattenuationmodelsthatcanbeusedfor
tropicalandsubtropicalregionscannotbedi
rectlyusedoverBangladeshwithoutappropri
atetestingandverification.
2021
[59]ScalingofRainAttenu
ationModels:ASurvey
Todeveloparainattenuationscal
ingtechniquetaxonomyandreview
researchworkaccordingtothetax
onomyandperformacomparative
studyonthesetechniques.
Thestudyreviewedmorethan17rainattenu
ationscalingmodels.SAMmodelcanestimate
thespatialdistributionwhentherainrateand
radiolinkaredistributeduniformly.However,
amoresophisticatedspatialrainfalldistribu
tionisrequired.
[47]
ASurveyofRainAt
tenuationPrediction
ModelsforTerrestrial
Links—CurrentRe
searchChallengesand
StateoftheArt
Toconductacomprehensivereview
ofthedifferentrainattenuationpre
dictionmodelsforterrestriallinks
Thisstudyreviewed18rainattenuationmod
elsbasedonthesurvey.Itfoundthatnorain
predictionmodelcansolelysatisfyallthegeo
graphiclocationsandclimaticvariationsover
time.
[60]
ASurveyofRainFade
ModelsforEarth–
SpaceTelecommunica
tionLinks—Taxonomy,
Toreviewdifferentslantpathrain
attenuationpredictionmodelsbased
Thisstudyreviewedmorethan23rainattenu
ationmodelsforsatellitelinks,anditfound
thatmodelsworkwellforlocationswhere
Sustainability2022,14,117446of67
Methods,andCompar
ativeStudy
ondifferentaspectssuchasrainre
gions,rainstructure,rainfallrate,el
evationangle.
theyaredevelopedandmightnotfunction
wellforotherlocations.
[61]
RainAttenuationPre
dictionModelsinMi
crowaveandMillime
terBandsforSatellite
CommunicationSys
tem:AReview
Toreviewtherainrateintegration
time,rainheight,andrainattenua
tionmodelsformicrowaveandmil
limeterbandssatellitesystems.
Thestudyreviewedthreeclassesofrainrate
integrationtimeconversionmethodsandthen
reviewedsixrainattenuationpredictionmod
elsforsatellitetoearthcommunication.
Table3.SummaryofComparisonbetweentheCurrentandExistingSurveys.
Ref.
Empirical
Models
Statistical
Models
Optimiza
tionBased
Models
Physical
Models
FadeSlope
Models
Mitigation
Models
Machine
Learning
Models
[48]××××
[49]×××××
[50]××××
[51]×××××
[52]××××
[53]××××××
[54] ×××××
[55] ××××
[32]× ××××
[56]× ×××××
[57] ××××
[58]×× ×××××
[59]× ×××××
[47] ××
[60] ××
[61] × × ××
CurrentSur
vey
FromTable3,itcanbeseenthatmostreviewworksfocusedmoreonempiricalandsta
tisticalmodelswithoutconsideringmitigationmodelsaswellasmachinelearningbased
modelsforrainattenuation.Also,mostofthereviewworkthatincludedtherainattenuation
predictionmodelsdidnotconsidertherainfademitigationtechniquesandviceversa.From
theoverallsystematicreview,itcanbeseenthatthereisverylittlereviewworkdoneonrain
attenuationthatshowsthetrendofworkdoneintheresearchareaandproffersfurtherdirec
tion.Hence,thispaperaimstoextensivelyreviewandanalyzethedifferentexistingprediction
andmitigationmodelsforrainattenuation,includingmachinelearningbasedmodels,aswell
asprovidefurtherdirectionstobridgetheseexistinggaps.
3.BackgroundonRainAttenuation
Thissectionprovidesapreliminarydiscussiononrainattenuation,whichincludes
thetheorybehindrainattenuation,rainattenuationfactors,raindatagatheringmethods,
andspatialinterpolationmethodsforestimatingrainrate.
Sustainability2022,14,117447of67
3.1.TheoryofRainAttenuation
Ingeneral,electromagneticwavestransportphotons,whichcarryenergy𝐸ℎ𝜈
wherehisPlanck’sconstantand𝜈isthefrequencyoftheemittedelectromagneticwave.
Absorptionanddispersionoccurasthewavetravelsthroughmatter.Absorptionisthe
capacityofanatomandmoleculetoretaintheenergyconveyedbythephotons.Inthe
caseofdispersion,theretainedenergyofthephotonsisreemittedout,takingvarious
pathswithvaryingconcentrations.Thespatiallydispersedwavesareresponsibleforscat
tering[56].Theseactivitiescausedelectromagneticsignalstobeattenuatedbyrain.Inthis
regard,theenergyofthemoleculescanbeexpressedasEquation(1):
𝐸𝐸󰇛∧󰇜𝐸󰇛𝑣󰇜𝐸󰇛
𝑗
󰇜𝐸(1)
where𝐸istheenergyofthemolecule,𝐸󰇛∧󰇜istheelectronenergyofthemolecule,
𝐸󰇛𝑣󰇜isthevibrationalenergyoftheatomaroundtheequilibriumpositionofthemole
cule,𝐸󰇛𝑗󰇜istherotationalenergycorrespondingtotherotationofthemoleculeabout
itssymmetryaxis,and𝐸isthetranslationalmotionenergyofthemolecule.Thediffer
enceinenergybetweenamolecule’sinitialandexcitedstatesissaidtobeequaltothe
absorbedenergyofthephotonwhenthemoleculechangesitsquantumlevel.Figure2
illustratesthatraindropscancauseelectromagneticsignalstobeabsorbed,scattered,dif
fracted,anddepolarized.
Figure2.ImpactofRainonElectromagneticWavePropagation[62].
Asthefrequencyincreases,thewavelengthbecomessmaller.Whenthewavelength
oftherainisafewmmlessthanthefrequency,theattenuationincreases.TheAverage
RaindropSize(ARS)hasadiameterof1.67mmwhile10–100GHzsignalshavewave
lengthsof30–3mm.Araindrophasanaveragediameterof0.1–5mm.InthecaseofRay
leighscatteringbyraindrops,knownasthescatteringfunctionasgiveninEquation(2),
thedropletsizeissubstantiallylessthanthewavelength,whichissatisfiedforfrequencies
upto3GHz.Thefunctionspecificallyappliestotheraindropscatteringpropertiesandis
affectedbytheradiusoftheraindrop,theshapeoftheraindrop,thecomplexpermittivity,
andthefrequencyofthetransmittedsignal.
𝑓
𝜉1
𝜉2 𝜋
λ
𝐷(2)
where𝜉isthecomplexpermittivityofthedroplet,𝐷istheraindropsize,and𝜆isthe
wavelength.Mie’sapproximationforthescatteringfunctionisgivenasEquation(3):
𝑓

󰇟󰇛2𝑛1󰇜󰇛𝑀󰇜
 󰇠 (3)
Sustainability2022,14,117448of67
where𝑗istheimaginaryunitand𝑀𝑥 𝑦istheMie’scoefficientswhicharecon
stitutedofBesselfunctionsoforder𝑛.Theverticalandhorizontalpolarizationforthe
specificrainattenuationcanbeexpressedasEquation(4):
𝛾,8.686 102𝜋
𝑘∙𝑙𝑚
𝑓
,󰇛𝐷󰇜∙𝑁󰇛𝐷,𝑅󰇜𝑑𝐷(4)
where𝑘isthepropagationconstant,𝐷istheraindropsize,and𝑁󰇛𝐷,𝑅󰇜istheraindrop
sizedistributionwhichcanbecalculatedusingEquation(5)as:
𝑁󰇛𝐷,𝑅󰇜8000 ∙𝑒.∙
.
(5)
where𝑅denotestherainrateinmm/h.
3.2.RainAttenuationFactors
3.2.1.PathLength
ThepathlengthiscriticalindeterminingRainAttenuation𝐴whichcanbeesti
matedbymultiplyingtheeffectivepropagationpathlength(𝐿)andspecificrainattenu
ation󰇛𝛾)asshowninEquation(6)[2].Figure3depictsaconventionalexperimentalsetup
tomeasurerainattenuation,whichconsistsoftransmitterandreceiverstationsseparated
byadistanceorpathlength𝐿
𝐴
𝛾𝐿(6)
Figure3.AConventionalExperimentalSetuptoEstimateRainAttenuation[56].
Specificattenuationiscalculatedusinga1mincumulativedistributionrainrateex
pressedindecibelsperkilometer(dB/km).Thepathlength,typicallydeterminedatone
end,canbeestimatedbymultiplyingthepathadjustmentfactorbytherealdistance.
However,itcanbedeterminedfromEquation(6)withrespecttothepointrainrate[62].
Accordingto[47],manymodelscomputetheeffectivepropagationpathlengthbyem
ployingacompensatoryfactorknownasthepathreductionfactororpathadjustment
factor.
3.2.2. FrequencyandPolarization
Thespecificattenuation,𝜸(dB/km),expressedintermsoftherainrate,frequency,
andpolarization,canbeeasilyestimatedusingthepowerlawrelationshipasshownin
Equation(7):𝜸𝒂𝑹𝒑
𝒃(7)
Sustainability2022,14,117449of67
where𝑹𝒑denotesrainfallrateexceededatp%ofthetime,𝒂and𝒃arethefunctionsof
frequencythatdependsonthepolarization,whichcanbeempiricalvaluesandcanbe
obtainedexperimentally[21,63].TheITURP.8383[44]includesalookuptableforvalues
of𝒂and𝒃forfrequenciesrangingfrom1to100GHzinverticalandhorizontalpolari
zation.
3.3.DifferentSourcesandProceduresofRainRateDataCollection
Duetothedependenceofrainattenuationonraindata,availableproceduresforrain
datacollectionaredefinedinthissection.Thesemethodsrangefromavailabledatabases,
experimental,synthetic,anddataloggedmethods,topredictiontechniquesbasedonin
terpolationmethods.
3.3.1. RainDatafromDatabases
TheITURStudyGroup3databanks(DBSG3)[64]raindatabaseisoneofthemost
extensivelyutilizeddatabasesasitcontainsanextensivesetofmeasurementdataofat
tenuationduetovariousweatherconditions.Furthermore,severalweatherdatabases
fromEuropeaninstitutions,suchastheEuropeanCenterforMediumRangeWeather
Forecasts,areavailableandarealternativesourcesofrainratedata.Unfortunately,the
centersdonotgiveinformationorhaverainattenuationequipmentfortropicallocations.
Ithasthereforebeenestablishedthatthosetropicalcountriesneedmodelsthatcouldassist
indevelopingtheirdatabasesforraindatawhichcouldbeusedtopreparethecorre
spondingrainattenuationdatabases.Otherdatabanksholdweatherdatathatarelocalto
theirlocation;forexample,inNigeriathereistheNigerianMeteorologicalAgency
(NiMet)thatcanproviderecentweatherdatathatcanbeusedbyresearcherstoeasily
developandevaluatemodelsaswellasestimatetheeffectoftheseweatherconditionson
communication.
3.3.2. SyntheticandDataLoggedMethodofRainRateEstimation
Amathematicalmethodthatcanbeusedtogeneraterainattenuationtimeseriesac
curately,knownastheSyntheticStormTechnique(SST),convertsarainratetimeseries
ataspecificlocationintoarainattenuationtimeseries[65].Thistechniqueisusedinplace
oftheloggeddatatechniquetosavetimeandcost.
3.3.3. ExperimentalSetup
Thebestwaytoobtaintherainrateisbymeasurementthroughweatherinstruments
andfacilities,forinstance,adisdrometeroraraingauge,atareducedintegratingtime.A
disdrometerisadevicethatdetectsraindropsizedistributions(DSD).Insomeinstances,
theterminalvelocityoffallinghydrometeorscanalsobeusedtodistinguishbetweenvar
iouskindsofprecipitationsuchasraindrops,snowflakes,graupel,orhailovertime
[66,67].Figure4depictsatypicalsetupforrainratemeasurementusingadisdrometer.
Sustainability2022,14,1174410of67
Figure4.MeasurementSystemforaDisdrometer[68].
Manystudieshaveemployedvariouskindsofdisdrometers,suchastheJWRD80
disdrometer[69],oropticaldisdrometerswhichuseimageorlasertechnology[70,71],to
obtainrainfalldatausedinpredictingtherainattenuationwithinaparticularregion.
However,theyaresubjecttowindandevaporationerrors.
Theamountofrainfallwithinaparticularlocationoveraperiodoftimecanbemeas
uredaccuratelyusingameteorologicalinstrumentknownasaraingauge.Raingauges
arefrequentlyutilizedbecauseoftheireaseofuseanddependability,thusloweringin
stallationandmaintenancecosts.Theyalsoprovidereliableinplaceobservations[66].
However,duetotheirsparsedistribution,raingaugesareinadequateforestimatingarea
rainfall,especiallyinareaswithmanyspatialvariabilities,likemountainranges.Thetip
pingbucketraingaugeisapopularraingaugeinwhicheachtipcorrelatestoaspecific
amountofrainfall[72].Figure5showsatippingbucketraingauge.
Figure5.TippingBucketRainGauge[73].
Atmosphericparameters—airpressure,humidity,temperature,winddirection,and
speed,aswellasprecipitation—canbemeasuredusinginstrumentsandequipment
housedinafacilityknownasaweatherstation.Informationobtainedcanbeemployedto
studyandforecastweatherandclimate.Aweatherradarisaremotesensingdeviceused
byhydrologicalandmeteorologicalcommunitiestoestimateareaprecipitationwithhigh
spatialandtemporalprecision[74].Tomeasuretherainrateinsomeinstances,therain
Sustainability2022,14,1174411of67
cell’sradarinformationcanbeusedbysendingoutanelectromagneticsignalthatinter
actswiththeraindropsattheatmosphericlevel,whichwouldreflecttheintercepted
powertowardstheradar—backscattering.Accordingto[75],usingradartocomputethe
rainrateprimarilyinvolvesthreesteps:(1)Calibratingtheradar,whichinfluencesthe
accuracyoftherainratesasamiscalibrationcanleadtobiasintherainrateresults.(2)
Qualitycontrol,whichisthescrutinizationoftheradardatatoreducetheeffectsofnon
meteorologicalscattersbothonthegroundandintheatmospheresuchasaircraft,etc.(3)
Rainrateestimationusingthecalibratedreflectivityvalues,whichdescribesthesize,
shape,state,andconcentrationofthehydrometeoraswellastheazimuth,distance,po
larization,intensity,phase,etc.,whichcanbeusedtothencomputetherainrate.Most
researchdidnotutilizeaweatherradar,butratherusedeitheradisdrometerorarain
gaugeand,inmostcases,usedthecombinationofbothtogetrainfalldata.
3.3.4. SpatialInterpolationMethodforRainRatePrediction
Theuseofspatialdistributionmethodsforrainratepredictioniscriticalduetothe
impossibilityofmeasuringrainrateseverywhereinagivenlocation.Whenexperimental
methodscannotaccuratelycalculaterainrates,thespatialdistributionmethodisem
ployedtoensureaccuracy.Somemathematicalmodelshavebeendevelopedtoimprove
theaccuracyofthismethod.OnesuchmodeliscalledtheInverseDistanceWeighting
(IDW)method,andtheexpressionforthedeterminationoftherainrateatalocationup
to30kmisasshowninEquation(8):𝑅𝑤𝑅
  (8)
where𝑅 istherainrate,𝑁isthenumberofraingauges,𝑅istheweightedsumofthe
raingauges’readings,and𝑤istheweightofeachraingaugereading.TheMultiEXCELL
methodcanbeusedinasituationwherelocalraindataareavailable.Severalkindsof
literaturehaveusedthismethodtoobtainrainrates.Thecalculationandestimationof
rainattenuationbasedonthethreefactorshavebeendiscussedinthissection.Thefour
differentdatacollectionmethodswerealsopresentedanddiscussed,aswellasthespatial
interpolationmethodsofrainratepredictionusedtoensureaccuracy,basedonmathe
maticalmodels,inlocationswhereanexperimentalsetupcannotaccuratelymeasurethe
rainrate.
3.4.SurveyacrossRegions
Rainasanaturaleventisdefinedusingdifferentrateintensitythresholds.Themost
generallyusedtermintheliteratureisbasedontheintervalwhentherainrateexceeds
0.2mm/h.Basedonanapproachthatseekstoexploittheinhomogeneousnatureoftrop
icalraindistribution,calledSiteDiversity,arainfalleventcaneitherbeconvective(CV),
stratiform(ST),orstormwind[76].
ACVraineventisanintenserainstormwithinasmallgeographicalareaforashort
duration.ST,ontheotherhand,isamildshowerthatlastslongerandismorewidespread.
Stormwindrainisarainstormcharacterizedbyintensecloudsandsevereaftereffectsin
somelocallocationsforbriefperiods[77,78].Hence,sincealltheraintypesaredefined
withinthedistancedomaincalledraincells,anytwolinkslocatedatdifferentplaces(or
cells)willexperiencedifferentlevelsofattenuationwhilereceivingsignalsfromthesame
source[79].CVandSTaremoreprevalentinthetropicsandintemperateregions,respec
tively[80].
RainfallisacrucialclimaticcomponentinatropicalenvironmentlikeNigeriawhere
itcanseverelyinfluencebothearthspaceandsatellitecommunicationlinksoperatingat
frequenciesexceeding10GHz,thusmakingitacriticaldesignfactorforwirelesscommu
nicationsystems.Thisimpairmentistermedrainattenuationandisfoundtovarydirectly
withboththeraindropsizeandtherainrate[81].Thetwoexistingapproachesforesti
matingrainattenuationbothusemeasuredrainfallratestatistics,namely,(1)empirical
methodswhereattenuationduetorainisestimatedusingrealmeasuredraindatafrom
Sustainability2022,14,1174412of67
databasesacrossvarioustropicalareas,and(2)physicalmethodswhichdealwiththe
physicalcharacteristicsinvolvedintheestimationofattenuationprocess[54,82].How
ever,theresourceimplicationsforanempiricalapproachtobeadopted,particularlyin
thetropics,haverendereditlessrealistic,significantlyimpactingtheavailabilityofthe
muchneededrainmeasurementdatatobuildappropriatephysicalmodelsforthedesign
ofabundantwirelesschannels[83].
Overtheyears,theITURsectorhasbeenabletodevelop,throughresearchefforts,
aunifiedglobalmodelthatcanbeusedtoestimatetheattenuationduetorainforboth
LOSandNLOSenvironmentscorrespondingtothemajorglobaldividethathasdivided
theworldintotemperateandtropicalregions.ThenewITUR53016resultsfromongoing
workanddevelopmentstosolveperformanceproblemsassociatedwithpriormodels.
However,measuredraindatafromtheequatorialandtropicalareashavenotbeenem
ployedtovalidatethismodel[84].Table4showsthesummaryofdifferentworkcarried
outacrossregionsbasedontheITU,includingthemodelproposed,findings,andsite
locations.
Table4.SummaryofRainAttenuationacrossRegions.
ITURegionCountryRef.ModelRemarksLocation
Asia
Region3
India
[85]
MillimeterWavePropaga
tionmodel(MPM),ITUR
frequencyscalingmodel
Dataonradiometricmeasurements
werepresentedinthisstudyforat
mosphericattenuationatatropicallo
cation,demonstratingthatwaterva
por,aswellasrainrate,isanim
portantcauseofattenuationatKa
bandfrequencies.
Kolkata/Tropical
location
[86]Salonenmodel
Theobtainedcumulativedistribution
ofliquidwatercontentdeviatesfrom
ITUR.TheITURmodeleventually
overestimatescloudattenuationata
frequencybelow50GHzandunder
estimatesatafrequencyabove70
GHz.
Kolkata/Tropical
location,India
[87]
Raindropsizedistributionin
fivedifferentlocationsinIn
diawasassumedtobe
lognormaldistribution.
ThedependencyoftheDSDoncli
maticconditionsleadstoattenuation
disparityandindifferentlocationbe
tweenITRRandDSDmodels.
Shillong(SHL),
Ahmedabad
(AHM),Trivan
drum(TVM)for
threeyearseach,
Kharagpur(KGP),
andHassan(HAS)
for2yearseach
Malaysia
[88]
TheITURmodelwasevalu
atedagainstthefrequency
diversitymodel.Also,a
higherfademarginisused
from12dBto16dB.
Thedevelopedmodelcanminimize
signalattenuationinheavyrainfallar
eas.Furthermore,themodelissuita
bleforhigherfademargins.
SoutheastAsia
[62]
TheAbdulRahmanmodel,
ITURmodel,modifiedSilva
Mellomodel,modified
Moupfoumamodel,andLin
modelwerecomparedfora
Theresultsshowedthatallmodelses
timatedattenuationat1and11dBfor
both6and28GHz.
JohorBahru,Ma
laysia
Sustainability2022,14,1174413of67
horizontalvariationofrain
fall.
[89]
Themethodforconverting
rainfalldataissuitablefor
satelliteapplications.The
studyutilizedthreepredic
tionmodels.
Thepredictedresultsweregoodcom
paredtodirectobservationsandother
tropicalconditions.
4yeardatawere
collectedatUTM,
SkudaiCampus,
Malaysia
Asia
Region3
[90]
77locationsareusedtode
terminethebestfademargin
for5GHz.ITURP.8377,
ITURP.53017,andsyn
thetictechniqueswereem
ployedtoget1mindata
andlongtermrainattenua
tion.
Thefademarginfor26GHzisob
tainedtobe6.50to10dBfor99.99
linknetworkavailability.However,at
28GHz,thefademarginwasdeter
minedtobe7to11dB.
PeninsularMalay
sia
[91]
At26GHz,anddistancesof
0.3and1.3km,thepathre
ductionfactorwascom
paredusingtheITURP
53017,Abdulrahman,Lin,
anddaSilvaMellomodels.
Theresultsobtainedhaveshownthat
allthemodelsaccuratelypredicted
theattenuationduetorainat1.3km.
JohorBahrucityin
Malaysia
China
[92]NumericalMethod
IntheKaband,rainattenuationand
rainattenuationratiosoutperformthe
ITURmodelinChina.
58locationsin
China
[93]
Thecumulativelognormal
andGammadistributionsof
rainrateswerecomparedto
halfempiricalconversion
coefficientsforChina.
Thestudyderives1mincumulative
distributionsfrompiecewiseregres
siontoaGammadistributionthrough
halfempiricalconversioncoefficients.
Itfurthercomparesthetwodistribu
tionsandconcludesthatGammaout
performedthedatasets.
Hourlyrainrates
from333rain
gaugestationsin
Chinaweretaken
in1991tostudy
thepointrainrate
cumulativedistri
butions
Korea[94]
Thestudyevaluatedtheper
formanceofeachofthefol
lowingmodels:Abdulrah
man,ITURP.53016,Mello,
Moupfoumamodels,Lin
anddifferentialequation.
Theresearchproposednewpredic
tionmodelsbasedonthecorrelation
betweenthetheoreticalandeffective
specificattenuationvalidatedbyem
ployingtwolinksat38and75GHz.
Thestudyalsopresenteda1min
rainfallratederivationfromhigherin
tegrationtime.
SouthKorea
Africa
Region1Tanzania[95]
40yeardatafor22locations
spreadacrosstheentire
countrywereusedinthe
study.Hybridizationof
Chebilandrefined
MoupfoumaMartinmeth
odsusingdatacollectedfor
40yearsacross22locations.
Thecontourmapoftherainrateand
attenuationforKaandKubandswas
developedusingtheKriginginterpo
lationtechniqueat0.1and0.01%.The
mapsindicatedahigherrainratein
certainzonesthantheITUestimates.
Tanzania’sloca
tionsincludethe
CentralArea,Lake
Victoriabasin,
NorthernCoastin
cludingtheUn
gujaandPemba
Islands,Northern
Highland,South
ernCoast,South
Highland,South
Sustainability2022,14,1174414of67
western,and
WesternArea
Rwanda[96]
Abackpropagationneural
network(BPNN)wasused
fordynamicrainfading.
Markovmodelwasusedto
determinestorms’frequency
ofoccurrence,andrain
spikesfordifferentrain
stormswereanalyzedusing
queueingtheory.
Theresultshaveshownthatthemaxi
mumrainrateinRwandarangesfrom
150mm/hrandabovewithan11.42%
probabilityofoccurrence.Inaddition,
rainsizediameteriscriticalinrain
mitigationstrategydevelopment.
Butare(2.6078°S,
29.7368°E)
Africa
Region1
Kenya[97]
Thespecificattenuationfor
bothpolarizationsandthe
frequencyrangingfrom1to
100GHzwaspredictedus
ingtwoyearsofexperi
mentaldata.TheITURisa
standardforrainattenua
tion.
Accordingtothereport,thewestern
partofKenyaismorevulnerableto
raininducednetworkfailuresthan
therestofthecountry.Italsodemon
stratesthatthehorizontallypolarized
radiowaveisweakerthanitsvertical
counterpart.
Muranga,Kamus
inga,Mukumu,
Kebabii,andHa
basweni,Kenya
South
Africa
[98]ITUR
Findingsfromthisresearchcanbeap
pliedtonetworkplanninginSouth
Africaforwirelessnetworkssuchas
microwaveandmillimeterbroad
band.Thestudydemonstratesthat
rainfallattenuatesterrestrialandsat
elliteLOSconnectivityintheSHFand
EHFbands.
Datawerecol
lectedatonemi
nuteintervalsover
2yearsat139.7m
abovesealevelby
theDepartmentof
Electricaland
Electronicsand
ComputerEngi
neeringoftheUni
versityofKwa
ZuluNatal
[99]
ITUR,KrigingInterpolation
method.Oneminuterain
rateandrainattenuation
contourmapsmodelswere
developedfortheselected
locations.
Thestudyprovidesusefulresultsfor
terrestrialandsatellitesystemdesign
erstodeterminetheappropriateEIRP
andreceiverpointcharacteristicsover
thedesiredcoveragearea.
EasternCape,Free
State,Gauteng,
KwazuluNatal,
Limpopo,Mpu
malanga,North
west,Northern
Cape,Western
Cape
[69]
Arainratemodelhasbeen
developedsuitablefor10lo
cationsinSouthAfrica,com
paredtothemodelpro
posedbyITUusinga
powerlawregression
model.
Theresearchwascarriedoutatthree
differentfrequencies:12,30,and60
GHzfor30sec,1min,and5minrain
rates.Thedevelopedmodelprovided
detailedinformationonthespecific
attenuationforbothmicro‐andmilli
meterwavefrequenciesinSouthAf
rica.
Thestudyloca
tionsareUp
ington,Polo
kwane,Mossel
Bay,Mafikeng,
Irin,EastLondon,
Durban,Cape
Town,Bloemfon
tein,andBethle
hem
Sustainability2022,14,1174415of67
Bot
swana[100]
TheMiescatteringapproach
wasutilizedtopredictspe
cificrainattenuation,and
manydistributions,suchas
lognormal,wereemployed
toforecastattenuation.
Theresultsrevealthattheextinction
coefficientsaremoretemperaturede
pendentatlowerfrequenciesforthe
lognormaldistribution.Furthermore,
atlowermicrowavefrequencies,the
absorptioncoefficientishighbutde
clinesexponentiallywithraintemper
ature.
4diverselocations
inBotswana
Nigeria
[33]
A12yearexperimentalrain
falldatasetwasemployedto
developarealisticpredictive
modelforrainrateintensity
levelswasperformed.
Resultsshowedthathorizontalpolari
zationhasa12%higherrainattenua
tionthanverticalpolarization.
Lokaja,KogiState,
Nigeria
[34]
Empiricalattenuationmodel
basedonprognosisfor
earthspacecommunication
frequencyinatropicalsa
vannaclimateregion.
Theresultsindicatedaconsistentin
creaseintheattenuationasthesignal
frequencyincreasedwherefreespace
ismoreprevalent.Theresultsalso
demonstratedthattheeffectofclouds
andgasesonsignalsislesswhen
comparedtorain.
Lokaja,KogiState
,
Nigeria
Africa
Region1Ghana[101]
TheMoupfoumaandITUR
modelsforKumasiwere
evaluatedagainstthelocal
1minmeasured.Thein
versedistanceweighting
methodandArcGISsoft
warewereusedtodevelop
geographicalmaps.
Theresultsfromthisstudywereem
ployedtochooseabestsuitedestima
tionmodelforthe22weatherstations
inGhana.Afterthat,theITURmodel
estimatedtheattenuationduetorain.
Kumasi,Ghana
NorthAmerica
Region2USA[102]
TwoITUR—P.530and
P.838—standardswereused
tocalculatethelossesin5
GHzwith99.9%linkavaila
bilityat24GHz,28GHz,
and38GHz.
Attenuationisproportionaltothe
rainfallrate,frequency,andpolariza
tion.
PaloAlto,Califor
nia
Europe
Region2Greece
[103]
Powerlawrainestimation
model,globalrainattenua
tionpredictionmodels
Theresearchproposedarainestima
tionmodelfortheSbandbasedon
observationsinaspecializedandpre
ciseexperimentalsetup,revealing
thatrainattenuationisnonnegligible
atfrequenciesabove6GHz.
Ioannina,north
westernGreece
[104]
ITURP.6189,ITURP.838
3,andITURP.8383,respec
tively,forAttenuation,Spe
cificAttenuation,andRain
Height.
Sixyearpointraindatacollectedby
theNationalHellenicMeteorological
Service(NHMS)wasemployedtode
rivestatisticsfor0.001%timeofthe
averageyear,whichwerethenused
tocreateprecisemapsofrainrateand
attenuationtoaidinthedesignof
Greece’ssatellitecommunicationssys
tems.
12locationswere
usedinthestudy:
Agrinio,Alexan
droupoli,Hellini
kon,Heraklion,Io
annina,Lamia,La
risa,Limnos,Mi
los,Pyrgos,Serres,
andChios
Sustainability2022,14,1174416of67
UK[105]
Tropicalrainmeasuring
missionsatellitetodeter
minetherainratedistribu
tioninthetropics.
Theresultshaveshownhowtherain
rateover5kmwasconvertedinto1
kmsquarewiththehelpofacorrec
tionfactor.Finally,theresultswere
comparedwithITURDBSG3and
Ref.ITURP.8377.
42siteswereused
inthestudies
4.RainAttenuationModels
Inthissection,thedifferentexistingrainattenuationmodelsclassifiedunderfive
categoriesarepresentedanddiscussedaswellasabriefreviewofpreviousresearchon
rainattenuationin5Gusingthesemodels.
4.1.EmpiricalModels
Thissectiondiscussessomeoftheempiricalmodelsandreviewsrelevantworkon
rainattenuationfor5Gusingthesemodels.Anempiricalmodelisbasedonexperimental
dataobservationsthatcanbedescribedmathematically.Eightempiricalmodelsareused
fortherainattenuationmodel,andareviewoftherainattenuationmodelingusingthese
modelsispresentedinTable5.
4.1.1. GarciaModel
Thismodel[106]isoneofthemodifiedversionsoftheLinmodelthatisbestsuited
fortemperateEuropeanlocationsandcanberepresentedmathematicallyexpressedas
showninEquation(9):
𝐴
𝑎𝑅𝐿
.󰇩.
 󰇪,for𝑅>10mm/h,𝐿>5km(9)
where𝐴denotesrainattenuation(dB),𝑅denotesrainrate(mm/h)averagedonagiven
timeintervalof1min,𝐿isthepathlengthinkm,and𝑎and𝑏arefunctionsoffre
quency.
4.1.2. CraneModel
Thismodel[37]predictshighattenuationinlowrainfalllocationsandoffersglobal
raindistribution.ItcanbeexpressedmathematicallyasshowninEquation(10):
𝐴
𝑎𝑅
󰇣
 
 
 󰇤, 𝑑≤D≤22.5km(10)
where𝐴denotesrainattenuation(dB),𝑅denotesrainrate(mm/h)exceededat%pof
thetime,and𝑎and𝑏arefunctionsoffrequency.Otherremainingcoefficientsareem
piricalconstantsofthemodel,expressedinEquations(11)–(14):
𝑢 󰇟󰇠
,(11)
𝑏2.3𝑅
.,(12)
𝑐0.026 0.03ln𝑅(13)
𝑑3.8 0.6ln𝑅(14)
4.1.3.MelloModel
Thismodel[40]wasdevelopedbyutilizingacompleterainfallratedistributionas
inputtopredicttherainattenuationcumulativedistributionduetotheinaccuratepredic
tionoftheITURmodel,wheretworegionshavingdifferentrainfallrateconditions
wouldhavesimilarvaluesofrainattenuation𝐴,andcanbeexpressedmathematically
asshowninEquation(15):
Sustainability2022,14,1174417of67
𝐴
𝑎󰇟1.763𝑅..
󰇠𝐿
1𝐿 119𝑅.
(15)
where𝐴denotesrainattenuationexceededatp%ofthetime,𝑅denotesrainfallrate
inmm/h,𝐿isthepathlength,while𝑎and𝑏arefunctionsoffrequency.
4.1.4. MoupfoumaModel
Inthismodel[39],𝐿isthedistancebetweengroundstations,thatis,theactual
propagationpathlength;itsequivalentpropagationpathlength𝐿 canbedetermined
usinganadjustmentfactorthatensurestheuniformityoftherainontheentirepropaga
tionpathandcanberepresentedmathematicallyasshowninEquation(16):
𝐴
𝑎𝑅
𝐿󰇛𝑅,𝐿󰇜(16)
where𝐴istherainattenuationexpressedindBexceededatp%ofthetime.Thespecific
attenuationintermsoftherainrateexpressedindB/kmis𝑎𝑅
,𝑅istherainrateex
ceededp%ofthetime,and𝐿istheequivalentpathlengthforwhichtherainpropaga
tionisassumedtobeuniform.
4.1.5. PericModel
Accordingto[47],thisdynamicmodelhasnorealnetwork–environmenttestand
application.Rather,itisbasedonthecumulativedistributionfunctionforaparticulararea
ofinterest,thenumberofrainoccurrencesthatexceedtherainintensitythreshold,the
rainadvectionvectorintensity,andtherainadvectionvectorazimuth.
4.1.6. AbdulrahmanModel
Usingavarietyofnonlinearregressionapproaches,thismodel[107]investigatesthe
correlationbetweenpathadjustmentfactorsanddifferentphysicalpathlengths.Therain
attenuation,basedonthismodel,canbeexpressedmathematicallyasshowninEquation
(17):
𝐴
𝜇󰇟𝑆𝑅󰇠(17)
where:
𝜇󰇩 𝑅
𝛼𝑏1𝑟󰇪(18)
𝐴istherainattenuation(dB)exceededatp%ofthetime,𝑅denotesrainrate
(mm/h)exceededatp%ofthetime,and𝑆𝑅istheslopewhichcanbeexpressedin
Equation(19):𝑆𝑅 𝛽𝑅
(19)
where:𝛽𝑘𝛼𝑏1𝑟𝐿(20)
4.1.7. DaSilvaModel
Thismodel[108]wasprimarilydevelopedtoestimatetherainattenuationinearth–
spaceandterrestriallinks.Themodelutilizedacompleterainfallratedistributionasinput
andcanbeappliedforterrestrialandslantlinks.Amoregeneralpredictionmethodthat
includesslantlinksbutismoresuitableforterrestriallinkscanberepresentedmathemat
icallyasshowninEquation(21):
𝐴𝑎󰇣󰇡𝑅𝑅,𝐿,𝜃󰇢󰇤.𝐿
1𝐿𝑐𝑜𝑠𝜃 𝐿
(21)
Sustainability2022,14,1174418of67
where𝐴denotesrainattenuationexceededatp%oftime,𝑅denotesrainrate(mm/h)
exceededatp%oftime,𝑎and𝑏arefunctionsoffrequency,𝑅denotestheapproxi
mateeffectiverainrateandcaneachbeexpressedmathematicallyasshowninEquation
(22):
𝑅1.74𝑅../(22)
Forslantlinks,𝐿󰇛ℎ󰇜/sin𝜃.However,forterrestriallinks,𝜃0and
𝐿𝑑,whichdenotescelldiameterexpressedasshowninEquation(23):
𝑑119𝑅.(23)
4.1.8. BudalalModel
Thismodel[43]isbestsuitedforshortrangeoutdoorlinksina5Gnetworkwith
frequenciesabove25GHz.ItcanbeexpressedmathematicallyasshowninEquations(24)
and(25):
𝐼 
..
.,for
𝑓
≤40GHz,𝐿<1km(24)
𝐼 
..
..,for
𝑓
>40GHz,𝐿<1km(25)
where𝐿isthepathlength,𝑅denotesrainrate(mm/h)exceededatp%oftime,𝑓is
thefrequencyinGHz,and𝐼istheproposedIncrementFactor.
Table5presentsthesummaryofworksthathaveutilizedtheseempiricalmodels
includingthemethodologyadopted,methodofvalidation,andfindings.
Table5.SummaryofRainAttenuationUsingEmpiricalModels.
Ref.ObjectiveofResearchMethodologyAdoptedMethodofValidationResultObtainedYear
[43]
Toinvestigateandmod
ifytheITURP.53017
rainattenuationpredic
tionmodelforterres
triallineofsightat
shortdistancefor26
and38GHzatmm
wavefrequenciesinMa
laysia.
Twolinksoperatingat26
and38GHzwereusedto
collectweatherdataem
ployingaCasellarain
gaugefor1yearwitha1
minintegrationtimeand
pathlengthof300m.
Thestudyvalidatedtheproposed
modelbyemployingtwolinksoper
atingat25GHzwithapathlength
of223minJapanand75GHzwitha
pathlengthof100minKorea.
Theresultsreveal
thatallestimations
areclosetothe
suggestedpredic
tionmodel.
2020
[2]
Tocomparefivediffer
entpredictionmodelsto
findtheoptimalrainat
tenuationmodelfor5G
inMalaysia.
Theresearchutilizeda1
yearprecipitationdata
collectedfromatipping
bucketraingaugeovera
linkof0.2kmpath
lengthoperatingat6and
28GHz.
Therainattenuationwascalculated
fromtheproductofthespecificat
tenuationandthepathlengthata
rainrateof0.01%asshownbelow:
𝐴
𝛾𝐿
Resultsrevealed
thatthemodified
Mellomodelesti
matedalower
valuefortheatten
uationforlowand
highoperatingfre
quencies.
2020
[20]
Toinvestigatetheeffect
ofrainonshortrange
fixedlinks,thatis,
buildingtobuilding
transmission.
Datautilizedforthisre
searchwereobtainedus
ingaPWS100highper
formancedisdrometerat
25.84and77.52GHz.
TheITURandDSDmodelswere
employedtopredicttheattenuation
duetorainexpressedmathemati
callyas:
𝛾𝑎𝑅
𝛾4.343 10𝛿
󰇛𝐷󰇜
𝑁󰇛𝐷󰇜𝑑𝐷
Theresultsshowed
thattheITUR
modeloveresti
matestheattenua
tionforlowerrain
rates,whereasfor
higherrainratesit
2019
Sustainability2022,14,1174419of67
estimateslowerat
tenuationthanthe
DSDmodel.
[21]
Toinvestigatetheeffect
ofprecipitationandwet
antennasonmillimeter
wavetransmissionlinks
operatingat28GHz
and38GHzLineof
Sight(LOS).
Thestudyuseda700m
pathlengthmillimeter
wavelinkoperatingat28
and38GHzincentral
Beijing.Adisdrometer
andraingaugewasem
ployedtomeasurerain
fallandthereceivedsig
nallevelwasgathered
every15s.
Apowerlawequationwasusedto
calculatetheexpectedsignalattenu
ation(theoretical)andthencom
paredwiththemeasuredsignalat
tenuation(practical):
𝐴𝑎𝑅
Resultsshowed
thatthemeasured
signalattenuation
was1–1.5dB
greaterthanex
pectedfor28GHz,
1.6–2.5dBgreater
thanexpectedfor
38GHzduetothe
wetantenna,anda
signallossof4.2dB
wasrecordedover
the700mlink.
2019
[62]
Toinvestigatetheeffect
ofrainusingrealworld
observationsonmm
wavepropagationat26
GHzfrequency.
Thestudyusedamicro
wave5Gradiolinktech
nologywitha1.3km
pathlengthtocollect
measurementslogged
daily.Then,everyyear,
MATLABwasutilizedto
processandanalyze
data.
TwoITURmodels—P.53016and
P.8383—wereemployedtomeasure
theeffectofrainonthepropagation
ofelectromagneticsignals.
Resultsshowed
thatthespecificat
tenuationat0.01%
was26.2dB/kmat
120mm/hr.The
rainrateandthe
estimatedrainat
tenuationacross
1.3kmwas34dB.
2018
[109]
Improverainattenua
tionestimatesfor5G
wirelessnetworksoper
atinginheavyrain
zonesat28GHzand38
GHz.
Thestudyused3year
raindropsizedistribu
tiondatagatheredin
KualaLumpur,Malaysia,
utilizinga“Josstype”
RD69disdrometer,
whichcomprised100,512
rainydatawitha1min
integrationtime.
Gammaandnormalizedmodels
wereusedtoevaluatetheperfor
manceandcanrespectivelybeex
pressedmathematicallyas:
𝑁󰇛𝐷󰇜 𝑁𝐷𝑒󰇛⋀󰇜
𝑁󰇛𝐷󰇜 𝑁
𝑓
󰇛𝜇󰇜󰇛𝐷
𝐷󰇜𝑒󰇛󰇜
Theresultsdemon
stratedthatthelo
callydetermined
powerlawsappear
tobethemostac
curatelinkbetween
specificattenuation
andrainfallinten
sity.
2017
[94]
Tocomparesixalterna
tivemodelstofindthe
bestrainattenuation
modelforhighermicro
wavebandsinIcheon,
SouthKorea.
Thestudyused3year
rainfalldatagatheredvia
lineofsightterrestrial
linksat38and75GHz,
withpathlengthsof3.2
and0.1km,respectively,
andanaveragesampling
rateof1min.
Therelativeerrormargin,𝜀,was
employedtoevaluatethemodels
andcanbeexpressedmathemati
callyas:
𝜀𝑅󰇛𝑃󰇜𝑅󰇛𝑃󰇜
𝑅󰇛𝑃󰇜 100%
Theanalyticalre
sultsshowedthat
theITURP.53016
modelpredicted
accuratelyforboth
38and75GHz,
whereastheAb
dulrahmanmodel
predictedaccu
ratelyforjust38
GHz.
2017
[19]
Toinvestigatetheim
pactofrainonshort
rangeradionetworks
operatingatthe35GHz
mmWavefrequency.
Themeasurementwas
experimentallyobtained
froma35GHzradiolink
withapathlengthof230
Experimentsofrainattenuationat
103GHzwithapathlengthof390m
atdifferentrainfallrateswerecon
ductedtovalidatetherainratedis
tribution.
Resultsaftercom
parisonshowed
thatWellbuldistri
butionfor
2006
Sustainability2022,14,1174420of67
mtomeasurerainspe
cificattenuationandrain
ratedistribution.
raindropsisfol
lowingtheexperi
ments.
4.2.StatisticalModels
Thissectionintroducesanddiscussesthevariouspredictionmodelsinthestatistical
modelcategoryandreviewspreviousworksbasedonthesemodelsonrainattenuation
forthe5Gnetwork.Astatisticalmodel,asopposedtoanempiricalmodel,isbasedon
statisticalmeteorologicaldataanalysis,andresultsarederivedbyregressionanalysis.
Twostatisticalmodelsareconsidered:theITURmodelandtheSinghmodel.
4.2.1.ITURModel
Thismodelcanestimaterainattenuationforfrequenciesrangingfrom1to100GHz
withpathlengthsupto60km.Itisbasedonthedistancefactorthatdependsontherain
rate𝑅,linklength,frequency,andthecoefficientofthespecificattenuation𝛾[47,110].
TheInternationalTelecommunicationUnion’sRadiocommunicationSector(ITUR)is
suedsomerecommendationsthathavebecomethemostgenerallyusedgloballyinesti
matingrainattenuation[63].TheITUmodelisbasedonaparameterof0.01%ofthean
nualrainrate.Rainattenuationiscausedbytheoverallrainfallcrossingthepropagation
path,typicallydescribedastheintegrationofthespecificattenuationalongthepath.The
modelgives99.99%fadedepthattenuationasexpressedinEquation(26):
𝐴
𝑎𝑅𝑑𝑟(dB)(26)
where𝑅istherainratemeasuredinmm/handdefinedas99.99%oftherainratefor
aspecificlocation,𝑎𝑅ismeasuredindB/kmandgivesthespecificattenuation,𝐿is
thelengthofthelinkmeasuredinkm,𝑎 and𝑏arefunctionsoffrequencyat20°𝐶,while
pathadjustmentfactor𝑟isexpressedasinEquation(27):
𝑟 1
1 𝐿𝐿
(27)
where𝐿givestheeffectivepathlengthandismathematicallyexpressedasshownin
Equation(28):𝐿 35.(km)(28)
Themodelhasbecomeaworldwidebaselineforevaluatingresearchfindings,
thoughnotwithoutflaws,suchasfocusingontheeffectofrainwhileignoringtheeffects
ofothermeteorologicalelementssuchassnowflakesorhail[84].Themodelhasfurther
beenreportedtoindicateapoorcorrelationwithexperimentaldata,especiallyinthetrop
ics[111].Furthermore,itsuseoutsideitsprescribedlimitedfrequencyandrainrateranges
couldinflictuptoawhopping10%error[112].Italsofeaturesmorecomplexcomputa
tionsinvolvinghighfrequencyasymptoticexpansionbecauseoftheinhomogeneousna
tureoftropicalraindropsizedistributions[113–115].Lastly,forwiderapplications,the
modeldependsonextrapolationinrespectofcomputationsforrainspheresandrain
rates,whichcouldbeapotentsourceoferrorinthetropics[116].Becauseoftheabove
limitationsoftheITURP6189,thelatestmodification—ITURP53016—featuresthein
clusionoflocationtuningparameters[84].Thepathreductionfactorcanbeexpressedas
giveninEquation(29):
𝑟 1
0.477𝐿
.𝑅
.
𝑓
.10.5791exp 󰇛0.024𝐿󰇜(29)
Theequationsofinterpolationforvariouspercentagesoftimerangingfrom0.001to
1%areexpressedinEquations(30)–(34):
Sustainability2022,14,1174421of67
𝐴
𝐴
. 𝐶𝑃|.|(30)
𝐶 󰇛0.07󰇜0.12󰇛 󰇜(31)
𝐶0.855𝐶0.546󰇛1𝐶󰇜(32)
𝐶0.139𝐶0.043󰇛1𝐶󰇜(33)
𝐶 󰇱0.12 0.4 log󰇛
𝑓
10󰇜.
𝑓
10 GHz
0.12
𝑓
10 GHz
(34)
where𝑅 denotestherainrate(mm/h)exceededatp%ofthetime,𝑟denotesthepath
adjustmentfactorexceededatthesamepercentageofthetime,𝐿denotestheradiopath
length(km),Cndenotestheinterpolationconstantwheren=1,2,3,while𝑎and𝑏are
functionsoffrequencyobtainedfrom[44].ThelatestmodificationtotheITURmodelline,
theITUR53016,hasbeenreportedtohaveshownsignificantimprovementinhandling
attenuation,eventhoughpointaccuracyisstillfarfetched,andthereisaneedformore
sustainedeffortsonamorerealisticestimationofattenuationinthetropicalandequato
rialregions.
4.2.2. SinghModel
Forthefrequencyrangeof1GHzto100GHz,theSinghmodeladoptstheanalytical
methodofITUtodeterminespecificattenuation,dependingonthepolarizationtype,ver
ticalorhorizontal.However,formostofthecomputationalsystemrequirements,the
SinghmodelissimplerthantheITUmodelasittriestodoawaywiththerequirementof
determiningthefrequencydependentregressioncoefficients,𝑎and𝑏.Duetotheintri
cacyoftheotherpredictionmodels,thisisasimplemathematicalmodelthathasonly
squareandcubicequationsthataresolelyreliantonthefrequencyandrainrates.Asa
result,calculatingtheattenuationinducedbyhigherfrequenciesatanygivenfrequency
andrainrateisrelativelysimple[63].Themathematicalrepresentationofthismodelis
giveninEquation(35):𝛾𝑤
𝑓
𝑥
𝑓
𝑦𝑓𝑧(35)
where𝛾denotesthespecificattenuation(dB/km),𝑓denotesthefrequency,andtheco
efficients𝑤,𝑥,𝑦,𝑧 forhorizontalpolarizationintermsoftherainrate𝑅aregivenin
Equations(36)–(39):𝑤 1.422 10𝑅2.03 10𝑅1.21(36)
𝑥 1.963 10𝑅8.618 10𝑅0.0019(37)
𝑦 2.114 10𝑅0.01𝑅0.036(38)
𝑧 3 10𝑅0.040𝑅 0.031(39)
andEquations(40)–(43)areforverticalpolarization:
𝑤 5.520 10𝑅 3.26 10𝑅1.21𝑅10610(40)
𝑥810𝑅4.552 10𝑅3.03𝑅10 0.001(41)
𝑦 5.71 10𝑅 6 10𝑅 8.707𝑅100.018(42)
𝑧 1.073 10𝑅1.068 10𝑅0.0598𝑅0.0442(43)
Table6presentsthesummaryofworksthatutilizedthesestatisticalmodelsinclud
ingthemethodologyadopted,methodofvalidation,andresultsobtained.
Sustainability2022,14,1174422of67
Table6.SummaryofRainAttenuationUsingStatisticalModels.
Ref.ObjectiveofRe
searchMethodologyAdoptedMethodofValidationResultObtainedYear
[117]
Tostudyrainattenu
ationformmWave
5Gapplicationsutiliz
inglongtermstatis
ticsacrossshort
rangefixednetworks.
Thisstudyutilized3dif
ferentexperimentallinks
tocollectprecipitation
data.Thefirsttwolinks
haveapathlengthof36
moperatingat25.84and
77.54GHz,whilethe
thirdlinkhasapath
lengthof200moperat
ingat77.125GHz.
TheITURandDSDmodelswere
employedtopredicttheattenuation
duetorainexpressedmathematically
as:
𝛾𝑎𝑅
𝛾4.343 10𝛿
󰇛𝐷󰇜
𝑁󰇛𝐷󰇜𝑑𝐷
Theinvestigationre
vealedthattheDSD
requiredmorethan
rainfallratestoesti
mateattenuationef
fectively,butthe
ITURP.53018per
formsbetterwitha
limiteddistancefac
tor.
2022
[72]
Toextensivelypro
videanalysisonthe
1minrainrateand
attenuationforecast
for5Gcommunica
tionlinksbyevaluat
ingrainfalldataat26
GHzand38GHz
propagationfrequen
cies.
Thestudyusedatipping
bucketraingaugecon
nectedtoadataloggerto
collect2yearrainfall
dataattheBossocampus
oftheFederalUniversity
ofTechnologyinMinna.
ITURP53017modelwasusedto
evaluatetherainrateat0.01%and
canberepresentedmathematically
as:
𝐴γ𝐿
Resultsshowedthat
attenuationisdi
rectlyproportional
tobothfrequency
andpathlengths;
therefore,there
wouldbeahigh
valueattenuationfor
apathlengthabove
1km.Hence,thereis
aneedtoincrease
theoutputpower
abovethecomputed
attenuationvalue.
2021
[118]
Tostudytheeffec
tivenessofseveral
ITUmodelsinpre
dictingrainratesand
attenuationinMalay
sia’stropicalclimate
withtheworstmonth
parameterestimation.
Thestudyusedthreeda
tasetsfromvarioustimes
andlocationsinMalaysia
thatwerecollectedovera
LineofSightscenarioat
26GHzand1.3km.
Theworkmeasuredtheperformance
ofITUmodels.Thestudyutilizedthe
absoluteerrorat0.01%andRoot
MeanSquareError(RMSE)model
validationtechniques.
Resultsshowedthat
ITUR8371ismore
appropriatethan
otherITURmodels
inpredictingclimate
propertiesbasedon
theabsoluteerror
andthecomputed
RSME.ITUmethod2
outperformsother
ITUmodels.
2021
[91]
Toevaluatethepath
adjustmentfactorof
theITUR,Abdul
Rahman,Lin,and
Mellomodelsforrain
attenuationestima
tion.
TwoEricssonlinksat26
GHzanddifferentdis
tancesof1.3kmand0.3
kmwereemployedto
collectdatafortwoyears
atasampleperiodofone
second.
Therainattenuationwascalculated
fromtheproductofthespecificat
tenuationandthepathlengthata
rainrateof0.01%,asshownbelow:
𝐴
𝛾𝐿
Atapathlengthof
0.3km,noneofthe
modelssuccessfully
predictedrainatten
uation;however,at
1.3km,allmodels
accuratelyestimated
therainattenuation.
2020
[119]
Toevaluatethestatis
ticsoftheattenuation
duetorainfor5Gin
heavyrainzonesof
equatorialMalaysia.
Theresearchutilized3
yeardatacollectedbe
tweentheyears1992–
1994inKualaLumpur,
ITURmodelandthesyntheticstorm
technique(SST)wereemployedto
estimatetheattenuationduetorain
basedonvaryingpathlengths,fre
quency,andmonsoonimpacts.
Theresultsshowed
thatfor0.2km,the
estimatedattenua
tionwaslessthan5
dB,implyingthatthe
2020
Sustainability2022,14,1174423of67
Malaysia,witha1min
samplinginterval.
shorterthedistance
b
etweenthebasesta
tions,thesmallerthe
influenceofrainat
tenuation,therefore
improvingthelink’s
performance.
[71]
Tostudyrainattenu
ationanditsrelation
shiptooperational
frequencyandDrop
SizeDistribution
(DSD).
Alaserbaseddisdrome
terwasemployedtocol
lectraindatafor1year
overtworadiolinksof
325moperatingat73
and83GHz.
Theworkevaluatestheaccuracyof
thepredictionmodel.Themeasured
dataobtainedfrombothlinkswere
comparedtoanITURmodel.
Resultsshowedthat
theSCEXCELLand
Linmodelsaccu
ratelyestimateshort
linksirrespectiveof
thefrequency.
2020
[22]
Tostudytheinflu
enceoftheattenua
tionduetorainatten
uationonbothdirect
LOSandindirect
NLOSsidelinksfor
shortdistancebuild
ingtobuildingtrans
mission.
Thestudycollected
weatherandchannel
dataovertwommWave
bandsusingahighper
formancePWS100dis
drometerandacustom
madechannelsounder,
respectively,between
25.84and77.52GHz.
Theworkutilizedtherainrate,and
theattenuationduetorainfromboth
linkswascomparedtoanITUR
modelandtheDSDmodelusingMie
scattering.
Theresultsshow
thattheindirect
NLOSsidelinkex
periencesagreater
amountofattenua
tionthanthedirect
LOSlink.
2020
[120]
Toinvestigatetheef
fectofrainfallinten
sityonradiopropa
gationat21.8and73.5
GHzintheKandE
bands,respectively.
TwoEbandlinksat73.5
GHzwithdistancesof1.8
and0.3kmandoneK
band21.8GHzlinkata
distanceof1.8kmwere
utilizedtoobtaindataat
asampleintervalof15
min.
TheempiricalCDFforthehighest
rainattenuationwasevaluated
againstthe1minestimatedrainat
tenuationCDFandalsowithsome
otherpredictionmodels.
Theresultsobtained
atarainrateof
140mm/hrandtime
percentagesof0.03%
and0.01%showed
thattheEbandhas
10dBattenuation
morethantheK
band.
2020
[110]
Todeterminewhich
rainattenuationmod
els,ITURP.53017
andMelloand
Ghiani’smodel,pro
videtheaccurateesti
mationfor5Gnet
worksinthetropical
environmentofMa
laysia.
Theresearchemployed
twoexperimentalmilli
meterwavelinksrun
ningat26and38GHz,
withapathlengthof301
mbetweenantennas,as
wellasadatagathering
systemandasamplepe
riodof1s.
Theworkvalidatesthemodels.The
relativeerrorfigure𝜀wasem
ployed,whichismathematicallyrep
resentedas:
𝜀𝑅󰇛𝑃󰇜𝑅󰇛𝑃󰇜
𝑅󰇛𝑃󰇜 100%
Theresultsshowed
thattheITURmodel
gavetheclosestesti
mationtothemeas
uredattenuation;
hence,itisbest
suitedfortropical
environments.
2019
[121]
Tostudytheimpact
oftheattenuationdue
torainon26GHz
mmwavesignalina
wettropicallocation.
Thestudyutilizeda5G
microwavelinkoperat
ingata26.2GHzfre
quencybandasatest
bedwithapathlengthof
1.3kmtocontinuously
collectmeasurementsfor
oneyearforasampling
intervalof1min.
Thelinearregressionmethodwas
usedtocalculatetherainrateofthe
worstmonthandthestatisticsofthe
rainattenuation:
𝑄𝑄𝑝𝛽
Theresultsshowed
thattheITURmodel
inaccuratelyesti
matedtherainrate
andattenuationup
toapercentagevalue
of143%and159%,
respectively,forthe
studyarea.
2019
Sustainability2022,14,1174424of67
[122]
Toinvestigatethe
rainattenuationcu
mulativedistribution
andrainfallratein
Ukraine.
Thestudyutilizedrain
falldatacollectedfora
timeintervalof5min
witha15dB/kmattenua
tionthresholdfora1km
horizontalchanneloper
atingatfrequencies28,
38,60,and94GHz.
RadiophysicalMPMmodelwas
usedtodeterminethewarmand
worstmonthsoftheyear.
Theresultsshowed
thatreliablecommu
nicationatzenith
rangeandaverage
anglesofviewisat
tainableforallstud
iedfrequencyranges
witha99.99%proba
bilityfora1yeares
timationterm.
2019
[123]
Toinvestigatevarious
uplinkanddownlink
frequencybands,the
overallatmospheric
absorptioncausedby
dryair(oxygen)and
watervaporonthe
earthspacepath.
Thisstudyutilized7year
meteorologicaldatagath
eredfromAtmospheric
InfraredSounder(AIRS)
satellitesbetweenthe
years2002and2009.
TheRec.ITURP676modelwasuti
lizedtovalidatetheresults.
Theresultsshowed
thattherewas99.9%
availabilityinCand
KubandsinWest
Africawithlowfad
ingbetween0.04–
0.09dBand0.01–1
dB,respectively.
2018
[84]
Tovalidateanew
ITURrainattenua
tionpredictionmodel
overMalaysia’sequa
torialregion.
Thestudyutilizedradar
andraingaugedataob
tainedfromMMDand
DIDMoversixdifferent
linksinsixdistinctloca
tions.
Theproposedmodelwascompared
withfourotherrainattenuation
modelsintermsoftheRMS,stand
arddeviation,andmeanerror.
Resultsshowedthat
thenewITUR
modelwasableto
addresstheproblem
ofunderestimation
facedbytheexisting
ITURmodel.
2019
[70]
Toestimatetherain
specificattenuationof
horizontallyandver
ticallypolarizedmilli
meterwavesusingT
matrixcalculations.
A2dimensionalvideo
disdrometer(DVD)was
usedinthisresearchto
collect1yearrainfall
dataacrossterrestrial
linksoperatingat38GHz
inPeninsularMalaysia.
Thepowerlawfitrelationshipwas
usedtocomparetheestimatedval
uesfromthe2DVDdatasetwithval
uesfromtheITURP.8383:
𝛾𝑎𝑅
Theresultsshowed
thatthepowerlaw
fitexcellentlycorre
spondswiththelo
callawsfit.How
ever,therearenu
merousinconsisten
cieswiththeITUR
recommendation.
2017
[94]
Tostudyhowlocal
environmentpropa
gationaffectsthe
slantpathattenuation
forbothKuandKa
bands.
Thisresearchutilized3
yearrainfalldatacol
lectedusingtwoexperi
mentalsetupsoperating
atdualbandfrequencies
of12.25and20.73GHz
and6and19.8GHz,re
spectively.
TwoITURmodelswereemployed
foranalysiswithexperimentallyde
rivedcoefficientsets.
Theresultsdemon
stratedtheim
portanceofthere
gressioncoefficients
forspecificattenua
tionbasedonITUR
recommendations.
2017
[124]
Toinvestigaterainat
tenuationestimation
inbothmillimeter
andmicrowavebands
inEthiopiaforterres
trialradionetworks.
Thestudyutilizedtwo
yearrainintensitydata
collectedfromEthiopia’s
nationalmeteorological
agencywitha15minin
tegrationtimeforvarious
yearpercentages.
TheITURmodelwasalsoemployed
toestimatetherainfallattenuation
fortendifferentsitesaroundthe
countryoverterrestrialradiolinks.
Accordingtothe
findings,Bahirdar
andDubtiareex
pectedtoreceivethe
mostandleast
amountofrainatten
uation,respectively.
2015
Sustainability2022,14,1174425of67
[125]
Tostudy1minrain
rateinformationcol
lectedovertwoyears
inAkure,Nigeria.
Anelectronicweather
stationandaselfempty
ingtippingspoonwere
employedtoobtain
measurementsand
gatherraindatawhich
werethenstoredusinga
datalogger.
Theworkvalidatestheresult,the
predictionerror,RMSE,SCRMSE,as
wellastheSpearman’srankcorrela
tionwereemployed.
Findingsrevealed
thatnosinglemodel
wouldprovideade
centfitwhileoutper
formingallothers.
2014
[126]
Tohighlightthedis
paritybetweenrec
ordedattenuation
duetorainfortropi
calMalaysiaaswell
asITURprojections.
Fourlinkswereem
ployed,eachoperatingat
adifferentfrequency,
14.6,21.95,26,and38
GHz,withapathlength
of300manda1minin
tegrationperiod.
Therainattenuationestimationof
theITURwasevaluatedagainstthe
measuredrainattenuationCDF.
Resultsshowedthat
thepathlengthis
proportionaltothe
deviation,andthe
ITURprediction
modelwasunderes
timatedfortropical
regions.
2013
[81]
Toanalyzeonemi
nuteraindatacol
lectedinSouthAfrica
fromJanuarytoDe
cember2009.
Thestudymeasured1
minraindatausingaJD
RD80disdrometerfora
totalperiodof1yearto
obtain729rainratesam
ples.
Thechisquaredstatistics,aswellas
theroot,meansquaretests,wereem
ployedtovalidatetheresultsaccu
rately.
Theresultsshowed
thatthegamma
modelperformedthe
bestforthedifferent
classesofraintaken
underconsideration.
2011
[127]
Toproposeamodi
fiedITURrainatten
uationmodelintropi
calclimates,particu
larlyforMalaysia.
Theresearchutilized3
yearsofrainrateand
rainattenuationdataob
tainedfromsatelliteSu
perCwherefrequency,
cumulativerainrate,and
elevationanglewerethe
majorparameters.
Comparisonbetweentheproposed
modelandtheexistingITURmodel
intermsofrainpredictionerrors
suchasRMSandpercentageerror.
Resultsshowedthat
theproposedmodel
performedbetter
thantheexisting
ITURmodel,;hence,
itissuitablefora
tropicalclimatesuch
asMalaysia.
2011
4.3.FadeSlopeModel
Thissectiondiscussesthedifferentmodelsinthefadeslopemodelscategoryand
reviewspreviousworksonrainattenuationfor5Gnetworksusingthesemodels.Thefade
sloperepresentsthevariationintheattenuationduetorainintermsoftheattenuation
level,sampletime,andenvironmentalconditionssuchasdropsizedistributionandrain
type.Toestablishthefademitigationmeasures,afadeslopeisnecessary.Thetwofade
slopemodelsdiscussedherearetheAndrademodelandtheChebilmodel.
4.3.1. AndradeModel
Thefadeslopevariance[128]isproportionaltotheattenuationandcanbeexpressed
mathematicallyasshowninEquation(44):
𝑓
󰇛
𝑓
|
𝐴
󰇜1.38
𝐴
󰇟1
𝑓
𝐴
󰇠.(44)
where𝑓isthefadeslope,𝐴denotestherainattenuation,andΚistheconstantofpro
portionality.Thenextlevelattenuation𝐴󰇛𝑡𝑡󰇜canbeestimatedfromthecurrentat
tenuationvalue𝐴󰇛𝑡󰇜andfadeslope𝑓randomlybythepredictorusingEquation(45):
𝐴
𝑡𝑡
𝐴
󰇛𝑡󰇜
𝑓
𝑡(45)
where𝑡denotesthepredictiontime;𝑡 10canbeconsideredtheminimumpredic
tiontimeorthetimeofexperimentalsamplingdata.
Sustainability2022,14,1174426of67
4.3.2. ChebilModel
Thismodel[129]canbeexpressedmathematicallyasgiveninEquation(46):
Ρ 1
𝜎
2𝜋exp 0.5 󰇧
𝑓
𝜎󰇨(46)
whereΡistheconditionaldistributionofthefadeslope,𝑓isthefadeslope,and𝜎is
thefadeslopestandarddeviationexpressedinEquation(47):
𝜎0.00012
𝐴
0.003
𝐴
0.027
𝐴
0.0016(47)
where𝐴istherainattenuation.
Table7presentsthesummaryofresearchworksthathaveusedthesefadeslope
modelsincludingthemethodologyadopted,methodsofvalidation,andresultsobtained.
Table7.SummaryofRainAttenuationUsingFadeSlopeModels.
Ref.ObjectiveofResearchMethodology
AdoptedMethodofValidationResultObtainedYear
[130]
Toinvestigatesthe
propagationofthemm
wavesatthe38GHz
linkbasedonrealmeas
urementdatainMalay
sia.
Thestudyused1year
rainfalldatagathered
overa38GHzlineof
sightlinkwithapath
lengthof300manda
sampleintervalof1
min.
Thedistributionsoftheattenuation
duetorainwasevaluatedagainst
themodifiedITURdistancefactor
modelatdifferenttimepercentages
tovalidatetheaccuracyofthe
model.
Theresultsshowed
excellentcorrespond
encebetweenthe
modifiedmodel’sesti
mationandthemeas
uredrainfadeinMa
laysiaaswellasother
availabledatafrom
variouslocations.
2022
[90]
Toexaminetheimpact
ofattenuationdueto
rainfor5GinMalaysia
andproposeanoptimal
rainfademargin.
Atippingbucketrain
gaugeandRD69dis
drometerwereused
toobtainthreesepa
ratedatasetsforvari
ousperiods.
Thepredictionmodelerror,𝜀,was
usedtovalidatethemodelsandis
representedmathematicallyas:
𝜀𝑅󰇛𝑃󰇜𝑅󰇛𝑃󰇜
𝑅󰇛𝑃󰇜 100%
Theresultsshowed
theoptimumattenua
tionmarginfor5G
shouldrangefrom6.5
to10dBfora26GHz
linkand7to11dBat
the28GHzlink.
2021
[129]
Tostudytheproperties
ofthemeasuredrain
fadeslopedistribution
fordifferentattenuation
levels.
Threeexperimental
microwavelinkswere
employedforthis
studyat300m.
Tovalidatethemodel,thechi
squaregoodnessoffittestwasem
ployed:
𝑋 󰇛𝑂𝐸󰇜
𝐸

Theresultsshowed
thattheITURmodel
evaluatedagainstrele
vantmeasureddistri
butionscouldnotbe
generalizedforall
cases.
2020
[131]
Tostudyandevaluate
fadeslopeforrain
stormswithspeeds
greaterthan40mm/hat
variousraintype
boundaries.
Thestudyused2year
rainratedatafrom
Durban,SouthAfrica,
usingaRD80dis
drometeranda30sec
samplingtime.
Therateofchangeofattenuation,𝑅
,
andtheattenuationthreshold,𝑇,
haveapowerlawrelationship,
whichisgivenby:
𝑅𝑢𝑇
Theresultsrevealed
thatthefadeslopeis
relatedtotheattenua
tionthresholdandis
affectedbythetypeof
rain.
2019
[21]
Tostudytheeffectof
rainintensityonsignal
levelmeasurementsfor
mmwaveradiolinks
acrossshortdistances
andquantifythefading
LOSscenarioswere
measuredusingback
haulnetworksduring
rainydaysinBeijing,
China.Thereading
At25GHz,awettestrevealedupto
4dBlossduetothethicknessofthe
watercoatingontheantenna.After
therainended(onehourlater),the
attenuationwasstillhigherdueto
thewetresidueontheantenna.
Itwasconcludedthat
ifthereceivedsignal
wasmonitoredfor
longer,thefadingpat
terncouldbequanti
fied.
2019
Sustainability2022,14,1174427of67
biastoachieveamore
accurateestimateofthe
rainrateoverthelink.
wascomparedtolo
calrainmeasure
mentsfromadis
drometerandarain
gauge.
[132]
Toresearchtheimpact
ofheavyrainonlink
performancetoaccu
ratelyestimatetheat
tenuationusingdy
namicrainfade
measurestosustainlink
connectivity.
Thestudyutilized17
yearrainfalldatacol
lectedusingtwodif
ferenttypesofmeas
urementtools,JW
RD80disdrometer
andraingaugewith
threedifferentsam
plingtimes.
Theworkaimstodeterminewhich
dynamicfademitigationtoemploy;
thebackpropagationneuralnetwork
(BPNN)modelwasutilizedtoantici
patetheconditionofthelink.The
modelwasvalidatedusingrainfall
eventsofvariablemagnitudesfrom
severalrainfallregimes.
Thebackpropagation
neuralnetwork
(BPNN)modelpre
dictedrainattenuation
andoutperformed
othermodelsinthe
decisionmakingpro
cessbetweenrainfade
mitigationap
proaches.
2018
4.4.PhysicalModels
Thephysicalmodelsandareviewofpreviousworksonrainattenuationthatutilized
thesemodelsfor5Gnetworksarediscussedinthissection.Thephysicalmodelswere
developedbasedonthecorrespondencebetweentheformationoftherainattenuation
modelformulationandthephysicalstructureofrainevents.Therearethreephysical
models,whichinclude:
4.4.1.CraneTwoComponent(TC)Model
ThemodelwasproposedprimarilyforWesternEuropeandtheUnitedStates;how
ever,ithasdifficultyestimatingrainfallfeaturessuchasthefrequencyofoccurrenceand
meanrainfallforweakandpowerfulraincells.Thisrainattenuationpredictionmodel
presentsseparateproceduresforheavyandmildrainstatisticstoaccountforthecontri
butionsofareaswithheavyrainstorms(alsoknownasvolumecells)andlargerareasof
lesserrainintensityenclosingtheshowers(alsoknownasdebris),asforastratiformrain
eventassociatedwithEuropeandAmerica[133].Foraparticularpropagationpath,the
modeladoptstheexistenceofeitherasolevolumecell,debris,orboth.Itistargetedat
calculatingtheprobabilitythatacertainattenuationlevelissurpassed,whosevaluemight
beproducedbyeithercomponentoftherainprocess(volumecellordebris).Theseprob
abilitiesarecalculatedindependentlyandsummeduptoproducethedesiredestimate.
Atitssimplest,themodelinvolvesthefollowingsteps:(a)propagationpathdetermina
tionfortheglobalclimate;(b)establishmentofamathematicallinkbetweentheantici
patedpathlengthinvolumecellanddebrisregions;(c)determininationoftheexpected
amountofattenuation;(d)calculationoftherequiredrainratetoproducerainattenua
tion;and(e)calculationoftheprobabilitythatthegivenattenuationissetinstep(c)above,
givenbytheexpressioninEquation(48):
𝑃󰇛𝛾󰇜𝑃
1𝐿
𝑊𝑒/𝑃󰇧1𝐿
𝑊󰆒󰆒󰇨𝜂󰇧𝑙𝑛𝑅󰆒󰆒𝑙𝑛𝑅
𝜎󰇨(48)
where𝑃󰇛𝛾󰇜isthedesiredprobabilitythatthespecificattenuationisexceeded,𝑃isthe
probabilityofacell,𝑃denotestheprobabilityofdebris,𝜂isthenormaldistribution
function,𝜎isthestandarddeviationofthenaturallogarithmoftherainrate,𝑊and
𝑊arethelengthscale(inkilometers)forthecellanddebris,respectively,𝐿and𝐿are
thecellanddebrisrespectivepathlengths,and𝑅and𝑅aretherainratesfordebris
andcell,respectively.
Sustainability2022,14,1174428of67
Themodelhasbeenreportedtoworkforbothsatelliteandterrestriallinks.However,
ithasexhibitedrelativedifficultyindeterminingsomeparameters,suchastheprobabili
tiesofoccurrenceandaveragerainfallforbothvolumecellsanddebris.
4.4.2. GhianiModel
Thismodel[41]isbasedonMultiEXCELLderivedrainattenuationstatisticsandisa
correctionbasedpathreductionfactormodelforterrestrialnetworks.Itcanbeexpressed
mathematicallyasshowninEquation(49):
𝐴
𝛾𝑅󰇛𝑙󰇜𝑑𝑙𝑎𝑅󰇛𝑙󰇜𝑑𝑙
(49)
Calculatingtherainattenuation𝐴assumingtherainrate𝑅isconstantthroughout
thetransmissionlinkintermsofthepathreductionfactor𝑟givenbyEquation(50):
𝐴
𝑎𝑅𝐿𝑟(50)
Derivingthepathreductionfactor𝑟fortherainmapsgeneratedbytheMultiEX
CELLmodel:𝑟
𝐴
𝑎𝑅𝐿
(51)
Itwasalsonotedthattheaveragepathreductionfactor(PF)trendsfollowedanex
ponentialfunctionexpressedinEquation(52):
𝑟 𝑥
𝑓
,𝐿𝑒,𝑧󰇛
𝑓
,𝐿󰇜(52)
wherethesymbols𝑥,𝑦,and𝑧areregressioncoefficientsofthepathlengthandfre
quency.Byneglectingtheeffectoffrequency,therainattenuation𝐴canbeexpressedin
Equation(53):
𝐴
𝑎𝑅𝐿𝑥𝐿𝑒𝑧𝐿(53)
wherethecoefficients𝑥,𝑦,and𝑧canbeexpressedasEquations(54)–(56),respectively:
𝑥0.8743𝑒.0.9061(54)
𝑦0.0931𝑒.0.1002(55)
𝑧0.6613𝑒.0.3965(56)
4.4.3. CapsoniModel
Thismodel[134]ismadeupofmultipleraincellformationsknownaskernels,in
whichtherainfallintensityvarieswithdistancefromthecenterintermsofthepeakin
tensityasexpressedinEquation(57):𝑅𝑅𝑒
(57)
where𝑅istherainfall,𝜌isthedistancefromthecenter,𝜌istheconditionalaverage
radius,and𝑅isthepeakintensity;thecumulativeprobabilityofattenuation𝑃󰇛𝐴󰇜can
beexpressedmathematicallyinEquation(58):
𝑃󰇛
𝐴
󰇜𝑥.󰇟0.5𝐼𝑛󰇛
𝑅 𝑅󰇜

𝐼𝑛󰇛𝑅 𝑅󰇜󰇠󰇟𝑃󰇛𝑅󰇜′′′
󰇠𝑑󰇛𝐼𝑛𝑅󰇜 (58)
where𝑅istheeffectiverainrateand𝑥𝑒
.
TheraindistributioncanbecomputedusingtheEquation(59):
𝑃𝑅𝑃
𝐼𝑛󰇧𝑅
𝑅󰇨(59)
Thismodeldoesnotprovideattenuation.However,itcanbeeasilyestimated
throughasyntheticrainrateemployinganappropriateestimationmodel.TheCOST205,
Sustainability2022,14,1174429of67
1985databasewasusedtovalidatethemodel.EXCELLhasbeenwidelyusedtoinvesti
gatetheperformanceoftelecommunicationslinks.However,twodrawbacksassociated
withitare,ontheonehand,thechoiceofexponentialdistributionofrainrate,whichis
notobservedinnature,andontheotherhand,theoverestimationof𝑅.Theenhanced
EXCELLissaidtoworkforbothstratiformandconvectiverain.Table8presentsasum
maryofworkthathasutilizedthesephysicalmodelsincludingthemethodologyadopted,
themethodsofvalidation,andtheresultsobtained.
Table8.SummaryofRainAttenuationUsingPhysicalModels.
Ref.ObjectiveofResearchMethodologyAdoptedMethodofValidationResultObtainedYear
[135]
Tostudytheeffectofthe
propagationpropertiesof
THzwavesinfalling
snowandasnowlayer.
Theoreticalinvestiga
tionbetween100–400
GHzbandbetween0–
20.
Miescatteringtheoryis
employedtofitthemeas
ureddata.
ResultsshowedTHzwave
suffershighersignallossin
snowthanintherainunder
anidenticalfallrate.
2019
[41]
Todevelopamodelfor
predictingrainattenua
tionaffectingterrestrial
linksbasedonaphysical
approach.
Theresearchconsidered
andutilizedexperi
mentaldatacollected
worldwide.
Therelativeerrormargin
𝜀wasusedtovalidatethe
modelsandcanbeex
pressedmathematicallyas:
𝜀𝑅󰇛𝑃󰇜𝑅󰇛𝑃󰇜
𝑅󰇛𝑃󰇜
100%
Resultsobtainedafteranal
ysisshowedthatthemodel
abletopredicttheMultiEX
CELLderivedrain
attenuationstatisticswith
verysatisfactoryaccuracy
butrequiresmorevalida
tion.
2017
[136]
Toprovide1minrainfall
ratesforuseinestimating
theeffectofrainonthe
propagationofradio
wavesthroughtheearth
spaceinMalaysia.
Thestudyusedrainfall
datafromtwoTRMM
satellitedatasetsandes
timatedthunderstorm
ratioover57locationsin
Malaysia.
Thepercentageerrormet
ricwasusedtovalidatethe
resultswithseveralground
datasourcesfromNOAA,
GPCC,andNASA.
ForMalaysia,thecorrela
tioncoefficientwas0.79–
0.89,andtheaveragebias
errorbetweenTRMMand
GPCCwas±50mm.
2013
4.5.OptimizationBasedModels
Theoptimizationbasedmodelsemphasizetheuseoftheoptimizationprocessinthe
formulationofinputparametersforadditionalfactorsaffectingrainattenuation,suchas
theminimumerrorvalue.Thissectionpresentsanddiscussesthreedifferentmodelsin
theoptimizationbasedmodelscategoryaswellasprovidesareviewofpreviouswork
doneusingthesemodels.
4.5.1. PintoModel
ThismodelisanimprovedvariantoftheITURP.53017rainattenuationprediction
model,whichislikewisebasedonthedistancecorrectionfactor𝑟asusedintheITUR
model,aswellastheeffectiverainfallratedistribution(𝑅)[137].Thismodelcanberep
resentedmathematicallyasshowninEquation(60):
𝐴
𝑎󰇣𝑥𝑅
󰇤𝐿1
𝑥𝑑𝑅
𝑓
𝑥󰇛𝑥𝑒󰇜(60)
where𝐴istherainattenuationat%poftime,𝑅denotestherainrateat%poftime,𝐿
denotesthepathlength,and𝑎and𝑏arefunctionsoffrequency.
ThemodelemploysthequasiNewtonapproachandparticleswarmoptimization
(PSO)toreducetheRMSE.ThequasiNewtonmultiplenonlinearregression(QNMRN)
andGaussianRMSE(GRMSE)algorithmsareusedtogeneratethecoefficients𝑥,𝑥,…,𝑥
whicharethenfinetunedusingthePSOmethod.
Sustainability2022,14,1174430of67
4.5.2. LivieratosModel
ThisregressionmethodreliesonSupervisedMachineLearning(SML)thatleverages
Gaussianprocess(GP)compatiblekernelfunctionsderivedusingtheITUStudyGroup
Databank[42].Crossvalidationwasemployedtoevaluatetheperformanceofthemodel
basedonfourkernelfunctions;however,therainattenuationalgorithmmustbetrained
inaspecificareaofinteresttopredictrainattenuationinacertaingeography,weather,or
carrierfrequency.
4.5.3. DeveliModel
Thismodel[38]wastestedutilizingtheDifferentialEvolutionApproach(DEA)op
timizationtechniqueat97GHzonaterrestriallinkintheUnitedKingdom(UK).The
modelwasusedtoshowthenonlinearrelationshipbetweentheinputs(rainfallrateand
percentageoftime)andoutputs(rainfallrateandpercentageoftime)(rainattenuation)
giveninEquation(61):
𝐴
󰇛𝑡󰇜𝑎𝑥󰇛𝑡󰇜
 𝑏R
󰇛𝑡󰇜
 (61)
where𝐴denotestherainattenuation,𝑅 denotestherainfallrate,𝑥󰇛𝑡󰇜denotesthetime
percentage,andthesumoftheparameters𝐻and𝑁determinesthenumberoftheinput
termsinthemodelwhiletheparameters𝑎𝑎and𝑏𝑏arethemodelparameters.
Equation(61)canberewritteninclosedformasshowninEquation(62):
𝐴
󰇛𝑡󰇜
𝑓
󰇛𝑥󰇛𝑡󰇜,𝑦󰇛𝑡󰇜,𝑎,𝑎,…,𝑎,𝑏,𝑏,…,𝑏󰇜(62)
wherethefunction𝑓󰇛∙󰇜denotesthenonlinearrelationshipbetween𝐴󰇛𝑡󰇜,𝑅󰇛𝑡󰇜,and
𝑥󰇛𝑡󰇜.Themeanabsolutemodelerror(𝐸)canbedefinedasEquation(63):
𝐸
|𝑚󰇛𝑡󰇜
𝐴
󰇛𝑡󰇜|
 (63)
where𝑀denotestheamountofinformationinthemeasurementset.SubstitutingEqua
tion(62)intoEquation(63)givesEquation(64):
𝐸
|𝑚󰇛𝑡󰇜
𝑓
󰇛𝑥󰇛𝑡󰇜,𝑦󰇛𝑡󰇜,𝑎,𝑎,…,𝑎,𝑏,𝑏,…,𝑏󰇜|
  (64)
Thecostfunctionforthisequationisthemeanabsoluteerror,whichisemployedto
derivetheoptimizederrorusingtheDEAalgorithm.Themutationoperationiscrucialto
theDEalgorithm.ThemutantvectorcanbewrittenasshowninEquation(65):
𝜍,𝜍, 𝑃󰇛𝜍,𝜍,󰇜, 𝑖𝑝 and 𝑖𝑝(65)
where𝑛denotesthegenerationindex,𝑃denotesthemutationvariable,𝑝,𝑝and𝑖
arethreearbitrarilychosenindividualindexes,andthe𝑀and𝑜𝑝𝑡refertothegenepool
andtheoptimalentityinthepopulation,respectively.Differentworksthathaveutilized
theseoptimizationbasedmodelshavebeenreviewedandpresentedinTable9including
themethodologyadopted,thevariousmethodofvalidationused,aswellastheresults
obtained.
Sustainability2022,14,1174431of67
Table9.SummaryofRainAttenuationUsingOptimizationBasedModels.
Ref.ObjectiveofRe
searchMethodologyAdoptedMethodofValidationResultObtainedYear
[42]
Todevelopanovel
rainattenuationpre
dictionmodelusing
SupervisedMachine
Learning(SML)and
theGaussianprocess
(GP)forregression.
Thestudyusedexperi
mentaldataretrievedfrom
theITURdatabank,which
includes89experimental
linkslocatedinvarious
countrieswithoperational
frequenciesrangingfrom7
to137GHzat0.5to58km.
A5foldCrossvalidation
approachwasemployedto
evaluatethemodel.How
ever,theRMSwascalcu
latedtocomparethemodel
toothermodels:
𝜌
𝜇
𝜎
Themodeloutperformed
thefourpredictionmodels
underconsideration,in
cludingtheITUR,Silva
Melo,Moupfouma,andLin
models.
2019
[138]
Toestimaterainrate
usingmeasuredrain
attenuationforTokyo
Techmmwavemodel
network.
Thestudyutilizedafixed
wirelessaccesslinkwithan
antennahavingahighgain
of29dBi,whererainrate
datawasrecordedevery5
seconds.
Therainattenuationiscal
culatedusingtheestimated
clearweatherlevel.
Fromthemeasurementand
estimation,itwasshown
thattheerrorbetweenthem
wasbetween0.1–0.3dB.
2010
Table10presentsandclassifiesthevariousrainattenuationpredictionmodelsin
termsoftheirinputparametersorfunctionssuchaspathlength,frequency,rainrate,etc.
Table10.InputParametersoftheExistingTerrestrialRainAttenuationModels.
Model
Category
Models
References
Parameters
PathLength
Frequency
RainRate
Polarization
RainRate
Exceeded
Effective
PathLength
EffectiveRain
fallRate
TimeSeries
Empirical
Models
Garcia [106]××××
Crane [37]×××
Mello [40]×
Moupfouma [39]××
Perić [139]××××
Abdulrahman[107]××
DaSilva [108]×
Budalal [43]××
Statistical
Models
ITUR [140]××
Singh [63]×××××
FadeSlope
Models
Andrade [128]×××
Chebil [129]×××
Physical
Models
CraneTC [133]××××
Ghiani [41]×××
Capsino [134]××××
OptimizationBasedMod
els
Pinto [137]××
Livieratos [42]×××
Develi [38]××××××
Thissectionhasreviewedthevariousexistingmodelsusedinmodelingrainattenu
ation.Eventually,itgroupedthemintofivecategories:empirical,statistical,physical,
Sustainability2022,14,1174432of67
fadeslope,andoptimizationbasedmodels,whichcanbeemployedtoestimateattenua
tionduetorainintropicallocations.Accordingtothereviews,itcanbeconcludedthat
noneofthepredictionmodelscanbeconsideredacompletemodelsufficienttoaccurately
meetalldemandsforvariousinfrastructuresetupcharacteristics,geographicregions,or
climatevariations.Fromthetaxonomytable,itcanbeseenthatmostofthemodelstook
intoconsiderationthepathlength,frequency,andpolarization,excepttheDevelimodel,
whichonlyconsideredtherainrateandtimeseriesparameters.
5.TotalAttenuation
Thissectionexaminessignalattenuationduetothecloud,rainfall,atmosphericgases,
andthetotalpropagationattenuationloss,aswellasprovidingasummaryofthesemod
elsandtheirinputparameters.
5.1.PropagationthroughCloud
Cloudliquidwatercontentisanotheratmosphericelement,apartfromrain,thatab
sorbsandscatterselectromagneticsignals,especiallyforfrequenciesabove10GHz,prop
agatingfromthesendertothereceiver,causingattenuationofthesignal.Theimpactofa
cloudonsignalsislessthanthatofrainsincetheattenuationisdeterminedbythecloud’s
properties,suchasitswidth,depth,andthermalreadings(temperature),unlikerain
whichtakesintoconsiderationthecommunicatingsystem’sparameters[141].According
to[142],cloudattenuationcanbemeasuredorquantifiedusingtheliquidwatercontent
andcanbemathematicallyexpressedasshowninEquation(66):
𝐴
 𝛾
 (66)
where𝐿istheliquidwatercontent,𝜃istheangleofelevation,and𝛾 cloudspecific
attenuationcoefficient,whichcanbeexpressedmathematicallyasshowninEquation(67):
𝛾0.819
𝑓
𝜀′′1󰇡2𝜀𝜀′′
󰇢(67)
where𝜀isthecomplexdielectricpermittivityofwatercontentswithinthecloud.
𝜀󰆒𝜀𝜀
1
𝑓
𝑓
𝑟
𝜀𝜀
󰇡
𝑓
𝑓
𝑟
󰇢
𝜀(68)
𝜀󰆒󰆒
𝑓
󰇛𝜀𝜀󰇜
𝑓
𝑟󰇩1
𝑓
𝑓
𝑟
󰇪
𝑓
󰇛𝜀𝜀󰇜
𝑓
𝑟1󰇡
𝑓
𝑓
𝑟
󰇢
(69)
𝜀77.6 103.3 300
𝑇1(70)
𝑓
𝑟 20.09 142 300
𝑇1294 300
𝑇1(71)
𝑓
𝑟 590 1500 300
𝑇1(72)
where𝑓𝑟and𝑓𝑟denotetheprincipalandsecondaryrelaxationfrequencies,respec
tively,𝑇isthetemperature,andthevaluesof𝜀and𝜀are5.48and3.51,respectively.
5.2.PropagationthroughRain
Rain,oneofthemaindynamicnaturaloccurrences,reducesthepoweroftransmitted
electromagneticsignalsduetoabsorptionanddispersiondependingontherainfallrate
andthephysicalstructure,suchasthewidth,height,andnumberofdropletsthatthe
signalpassesthrough[34,142].Theuniversalpowerlawmodelusedtodescribetherain
Sustainability2022,14,1174433of67
attenuationandspecificattenuationareprovidedinEquations(6)and(7).Therelation
shipbetweenthepathlength(𝐿)andthepathreductionfactor(𝑟)isalsoprovidedin
Equation(29).Thepowerlawparameters𝑎and𝑏canbederivedusingthefollowing
Equations(73)and(74):
log 𝑎󰇭𝑥𝑒󰇧
󰇨󰇮
 𝑚log
𝑓
𝑧(73)
log 𝑏𝑥𝑒
 𝑚log
𝑓
𝑧 (74)
Therainrate𝑅canbederivedintermsofthetotaldepthofwaterdropletscaused
byrain(mm)andthetotaltimeofrainfall(hrs.)asexpressedinEquation(75):
𝑅Total depth o
f
rainfall
Entire rainfall duration(75)
5.3.PropagationthroughAtmosphericGases
Numerousgases,includingoxygenandwatervapor,arepresentintheatmosphere.
Thesegaseshavevaryingheights,loftiness,andbreadths,resultinginvaryingdegreesof
multipathattenuationofelectromagneticsignals[34].Theattenuationcausedbyoxygen
canbedistinguishedfromallotheratmosphericimpairments.Itsimpactisconsistent
acrossallregionsanditisnotdependentonanymeteorologicalparameters,unlikethe
attenuationduetowatervaporwhichabsorbsandscattersthesignalandisbasedonme
teorologicalpropertiessuchastemperature,watervaporcontent,andheightabovesea
level[143].Accordingto[144],theattenuationcausedbywatervapor(for𝑓350 GHz)
andoxygen(dryair)canbecalculated,respectively,asshowninEquations(76)and(77):
𝐴
3.27 10𝑟1.67 10𝜌𝑟
𝑟7.7 10𝑓.3.79
󰇛𝑓22.235󰇜9.8𝑟𝑟⋯
3.79
󰇛𝑓183.31󰇜11.85𝑟𝑟4.0𝑙𝑟
󰇛𝑓325.153󰇜10.44𝑟𝑟
𝑓𝜌𝑟𝑟10(76)
𝐴
  .
.
.
󰇛󰇜.
𝑓
𝑟𝑟10for
𝑓
57 GHz(77)
where𝐴denotestheattenuationcausedbywatervapor,𝑓denotesthefrequency
(GHz),𝑟𝑝/1013,𝑟288/󰇛273 𝑇󰇜,𝑝ispressure,𝑇istemperature,and𝐴 isthe
attenuationcausedbyoxygen.Thetotalattenuationduetoatmosphericgasesforboth
uplinkanddownlinktransmissioncanbeexpressedasshowninEquation(78):
𝐴
 
𝐴
ℎ
𝐴

𝑠𝑖𝑛𝜃 (78)
whereandaretheequivalentheightforoxygen(dryair)andwatervapor,re
spectively,and𝜃denotestheangleofelevation.
5.4.PropagationthroughRadome
Aradome,coinedfromthetwowordsradaranddome,isaweatherproofenclosure
constructedofstructuralplastictoprotectthesurfaceofanantenna,suchasamicrowave
orradarantenna,fromexternalenvironmentaldisturbanceslikewind,rain,ice,sand,and
ultravioletrays,andalsotoconcealtheelectronicequipmentoftheantennafromthepub
lic[145,146].Theradomecanattenuatethereceivingandtransmittingsignals,especially
whenwet;hence,itshouldbeconstructedusinglowpermittivitymaterials,shapedto
achievegoodtransparencyforthedesiredfrequency,andhydrophobiccoatedtoavoid
additionalattenuationduetothewetradomesurface[147,148].Attenuationduetora
domeoccursbyreflectionandabsorptionbasedonthesignalfrequencyaswellasthe
thermalreading(temperature)andwidthofthewaterslab[149].Asimplemodelwas
Sustainability2022,14,1174434of67
utilizedby[150]tocalculatetheoverallradomeattenuationthroughatwolayerstructure
andexpressedasinEquation(79)
𝐴
 10 log 󰇩𝑇𝑇𝑇𝑒󰇛󰇜
1ΓΓ𝑒ΓΓ𝑒ΓΓ𝑒󰇛󰇜󰇪(79)
where𝜏and𝜏denotetheelectricalthicknessoftheradomeandwaterlayers,respec
tively,expressedasgiveninEquations(80)and(81):
𝜏𝑘
𝜀𝑑(80)
𝜏𝑘
𝜀𝑑(81)
where𝑘denotesthefreespacewavenumber,𝜀denotesthecomplexrelativedielectric
constantsoftheradomematerial,𝜀denotesthecomplexrelativedielectricconstantsof
thewaterattheXband,while𝑑and𝑑denotethephysicalthicknessoftheradome
andwaterlayer,respectively.
𝑇,,andΓ,,denotetherespectivetransmissionandreflectioncoefficientsforthe
electricfieldatthe(1)air–radome,(2)radome–water,and(3)water–airinterfaces,and
expressedasshowninEquations(82)–(85):
Γ1
𝜀
1
𝜀(82)
Γ
𝜀
𝜀
𝜀
𝜀(83)
Γ
𝜀1
𝜀1
(84)
𝑇,,1Γ,,(85)
Thethicknessofwater,accordingto[149],canberelatedtotherainfallrateusing
Gibble’sEquation(86):
𝑡3𝜇ð𝑅
2𝑔/(86)
where𝑡isthethicknessofthewaterlayer,𝜇denotesthekinematicviscosityofwater
(kg/m/s),ðdenotestheradiusoftheradome,𝑅denotestherainfallrate,and𝑔denotes
thegravitationalacceleration.
5.5.TotalPropagationAttenuationLoss
Thetotalattenuationisacriticalparametertoconsiderasitprovidesthenecessary
informationforeffectivelydesigningcommunicationlinkssuchasEarth–satelliteandter
restrialcommunicationlinks.Thetotalattenuation,asdefinedby[45],isthesumofthe
individualattenuationparameters,includingattenuationcausedwhenthesignalpropa
gatesthroughfreespace,clouds,rain,atmosphericgases,radome,etc.Hence,thetotal
attenuationcanbemathematicallyexpressedasshowninEquation(87):
𝑇
𝐴

𝐴

𝐴

𝐴
𝐴

𝐴
(87)
where𝐴istheattenuationlossduetononlineofsight,𝐴denotesthefreespaceat
tenuationasexpressedin[151],𝐴denotestheattenuationduetocloudEquation(66),
𝐴attenuationduetorainEquation(6),𝐴 attenuationduetoatmosphericgases(dryair
andwatervapor)Equation(78),and𝐴attenuationduetoradomeEquation(79).
Table11presentsthevariousinputparametersofthedifferentatmosphericimpair
mentsmodelsaswellasradomefortotalattenuation.
Sustainability2022,14,1174435of67
Table11.InputParametersoftheAtmosphericImpairmentsModelsforTotalAttenuation.
AtmosphericIm
pairments
References
Parameter
Frequency
Distance
Temperature
DielectricCon
stant
Pressure
Thickness
Polarization
Equivalent
Height
Angleof
Elevation
RainRate
Wavelength
Gain
FreeSpace[152]×××××××
Rain[34]××××× ×
Cloud[142]××××××
AtmosphericGases[144]×××××××
Radomes[150]×××××××××
5.6.ReviewofTotalAttenuationModels
Thissectionreviewsvarioussignalpropagationmodelsusedtocalculateattenuation
assignalstravelthroughvariousmedia,includingfreespace,clouds,rain,radomes,and
atmosphericgases(watervaporanddryair).ThesearesummarizedinTables12–14for
propagationthroughthecloud,atmosphericgases,andradome,respectively.
Table12.SummaryofAttenuationthroughtheCloud.
Ref.Freq.LocationMethodofValidationGeneralComments/FindingsYear
[153]20–200
GHz
14locationsinEu
rope(notspeci
fied)
Theaverageerrorcoupled
withtheRMSwasusedtovali
datethemodel’saccuracy.
Theresultsshowaverygoodpredictionper
formancewithanoverallRMSoftheapproxi
mationerrorof3.4%,slightlydependentonthe
frequencybetween60and170GHz.
2014
[154]32GHzCebreros,Spain
Thecloudspecificattenuation
contributionwasmodeledwith
astochasticprocesswellde
finedinbothamplitudeand
timedomains.
Thetimevariationsofthesimulatedstochastic
processcansimulatethebehaviorofareal
cloudattenuationcontributioninagoodman
ner,eveninthetimedomain.
2019
[155]30–300
GHz
Northern(So
dankyla,
Finland)and
Southern(Tra
pani,Italy)Eu
rope
Theaverageerrorcoupled
withtheRMSwasusedtovali
datethemodel’s(SMOC)accu
racy.
Highresolutionthreedimensionalcloudfields
weredevelopedusingthismodel.Results
showedthat,whentakingintoaccountallsites,
theaverageRMSoftheerrorontheCCDFof
thecloudliquidwatercontentisequivalentto
0.09mm,whichdemonstratedgoodagreement
withtheotherestimationmadeusingother
data.
2014
[156]
60GHz
and
above
DurbanandCape
TowninSouthAf
rica
Thisstudyutilizedtwosepa
ratesitesandevaluatedtheco
efficientofthespecificattenua
tionagainstthewaterdroplets
atvarioustemperaturesasa
functionofthefrequency.
Resultsbasedonseveralnotablecloudcharac
teristicsrevealedthatspecificattenuationcoef
ficientsandcloudattenuationincreasewith
frequency,demonstratingtheinfluenceofthe
LWConsignals.
2021
[157]18.9
GHz
NanyangTechno
logicalUniversity
(NTU),Singapore
Thevariousmodelswerevali
datedusingtheyearly(2014
and2015)cloudinducedatten
uationCCDF.
TheITURmodelunderestimatesthecloudat
tenuationintropicalregions,accordingtothe
resultsoftheyearlyCCDF,whichindicated
thatat0.01%timepercentage,theattenuation
2017
Sustainability2022,14,1174436of67
duetocloudcouldrangeupto4.2dBintropi
calregions.
Table13.SummaryofAttenuationthroughAtmosphericGases.
Ref.Freq.LocationMethodofValidationGeneralComments/FindingsYear
[158]20–100
GHz
24sitesworld
wide
Theaverageerrorcoupled
withtheRMSwasusedtovali
datethepredictionaccuracy
followingITURstandard
P.31115.
Resultsindicatedthatthemodel’sprediction
accuracyimprovessignificantlyforthecurrent
recommendationandislessdependentonthe
operationalfrequency(20–100GHzrange)and
theconsideredsite.
2016
[159]1–350
GHz
24sitesworld
wide
Theaverageandrootmean
squareoftheerrorfigurewere
usedtovalidatetheprediction
accuracyfollowingITUR
standardP.31115.
Theproposedmethodoutperformstheother
methodslistedinITURAnnex2(P.67610)
Rec.,accordingtotheresultsofanevaluation
againstalargesampleofradiosondedata.
2017
[160]10–350
GHz
24sitesworld
wide
Theproposedmodelwaseval
uatedagainsttheRAOBSdata
sampleforpredictingthepath
oxygenattenuationintermsof
theaverageestimationerroras
wellastheRMS.
Theobtainedresultsdemonstratedaveryex
cellentlevelofaccuracyintermsofoverallpre
dictionerrorandperformancestability,which
turnsouttobeslightlyfrequencydependent
andalmostsiteindependent.
2017
[79]1–350
GHz
Spinod’Adda,It
aly
Themeanandrootmean
squarevaluesoftheprediction
errorcalculatedevery5swere
usedtovalidatethemodel’s
accuracy.
Resultsindicatedthatversion11ofITUR
P.676significantlyunderestimatestheattenua
tionduetogases,whilethepreviousversionis
accurateenoughtobeusedtoestimatethe
troposphericattenuation.
2019
[123]4–40
GHz
Nigeria,WestAf
rica
Thegaseousattenuationfor
WestAfricawasestimatedand
validatedusingtheITURP
676model.
ResultsshowedthatCandKubandshavelow
signalfade,whereastheKaandVbandshave
highersignalfadeforbothoxygenandwater
vapor.Additionally,thewesternsectionof
WestAfricashowedalargerincreaseinattenu
ationduetogasthanthesouthernpartofWest
Africa.
2018
Table14.SummaryofAttenuationthroughRadome.
Ref.Freq.MethodologyAdoptedMethodofValidationGeneralComments/FindingsYear
[161]150–300
GHz
Theresearchuseda
SteppedFrequencyRa
dar(SFR)andaFre
quencyModulatedCon
tinuousWave(FMCW)
Radartocollectmeas
urements.
Themeasuredresultswerecom
paredtotheFresneltheoryof
transmissionandreflectionfor
multilayerstructuresinthestudy.
Theobtainedresultswereingood
agreementwiththetheoreticalmodel
thatexplainsthesignallosscaused
bylayersofwateronaradome.The
resultsalsorevealedasignificantcor
relationbetweenconsistentwater
layerthicknessandsignalreduction.
2016
[149]
8–12
GHz
(X
band)
Anantennawasem
ployedinthestudyasa
timedomainreflec
tometerandprobe.
Alaboratorythatmeasuresthere
flectanceproducedbyradomepan
elsattheXbandwasdesignedto
evaluatethedesignedsystem.
Theresultsrevealedthatwhenab
sorptionisnegligible,thenovelin
strumentforcharacterizingtheinflu
enceofaradomeindryandwetcon
ditionscanbeusedtoproviderelia
bleresults.
2018
Sustainability2022,14,1174437of67
[146]1–14
GHz
Theproposedmulti
layerradomedesign
methodologyisbased
onmultiplestructures,
asandwich,whichwas
notemployedintypical
radomeswithmulti
layers.
Aradomewithmultilayersandul
trawidebandfeaturesoperating
between1to14GHzwaspro
posed,constructed,andassessedto
validatetheproposeddesignmeth
odology.
Theresultsdemonstratedastrong
correspondencebetweenthecalcu
latedandmeasuredresultswithless
than0.1dBabsoluteerrorforall
scanningangles.
2020
[147]
8–12
GHz
(X
band)
ThestudyusedARPA
Piemontepolarimetric
Xbandradar(ARX)
dataandtwovalidation
procedures.
Thefirstmethodestimatedtwo
waywetradomelossesusingan
empiricalmodelbasedonselfcon
sistency,whereastheothermethod
evaluatedtheradaraccumulations
againsttherainfallgaugemeasure
mentswithandwithoutradome
adjustment.
Resultsobtainedbasedontherainfall
comparisonsshowedthattheself
consistencymethodisanefficient
realtimecorrectionoftheeffectsin
troducedbyawetradome.
2013
6.SpecificAttenuation
Thissectionpresentsanddiscussesthespecificattenuationmodelscalculationbased
onrainfall,atmosphericgases(oxygenandwatervapor),andclouds.
6.1.SpecificAttenuationModelDuetoRainfall
Asdescribedearlier,Equations(6),(7),(29),and(73)–(75)providedetailedrelation
shipsofspecificattenuation(dB/km)duetorainfallacrossterrestrialcommunication
channelsandalsotherelationshipbetweenthespecificattenuationandrainfallrate,fre
quency,andpolarizationcharacteristics.
6.2.SpecificAttenuationModelDuetoAtmosphericGases
Thespecificattenuationduetoatmosphericgases,accordingto[144],canbeprecisely
calculatedasthesumoftheindividualspectrallinesfromoxygenandwatervaporatany
valueofpressure,temperature,andhumidityalongwithafewadditionalparametersas
showninEquation(88):𝛾𝛾𝛾0.1820
𝑓
󰇛𝑁
󰆒󰆒󰇛
𝑓
󰇜𝑁
󰆒󰆒 󰇛
𝑓
󰇜󰇜(88)
where𝛾and𝛾denotethespecificattenuation(dB/km)foroxygenandwatervapor,
respectively,𝑓denotesthefrequency(GHz)while𝑁
󰆒󰆒󰇛𝑓󰇜and𝑁
󰆒󰆒 󰇛𝑓󰇜aretheimagi
narypartsofthefrequencydependentcomplexrefractivityexpressedasinEquations(89)
and(90):𝑁
󰆒󰆒󰇛
𝑓
󰇜𝑆𝐹𝑁
󰆒󰆒󰇛
𝑓
󰇜
󰇛󰇜  (89)
𝑁
󰆒󰆒 󰇛
𝑓
󰇜𝑆𝐹󰇛󰇜  (90)
where𝑆denotesthestrengthofthe𝑖thoxygenorwatervaporline,𝐹denotestheoxy
genorwatervaporlineshapefactor,and𝑁
󰆒󰆒󰇛𝑓󰇜denotesthedrycontinuumduetopres
sureinducednitrogenabsorptionandtheDebyespectrumasgivenbyEquation(91).That
is,
𝑁
󰆒󰆒󰇛
𝑓
󰇜
𝑓
𝑝𝜑.
󰇣
󰇤..
.. (91)
where𝜕denotesthewidthparameterfortheDebyespectrumexpressedinEquation(92):
𝜕5.6 10󰇛𝑝𝑒󰇜𝜑.(92)
Sustainability2022,14,1174438of67
Thelinestrength𝑆canbeobtainedforbothdryairandwatervaporusingthefol
lowingEquations(93)and(94):
𝑆𝑎10𝑝𝜑𝑒󰇛󰇜Fordryair(oxygen)(93)
𝑆𝑏10𝑒𝜑.𝑒󰇛󰇜Forwatervapor(94)
where𝑇isthetemperatureinKelvin,𝜑300/𝑇,𝑝denotestheoxygenpressure(hPa),
and𝑒isthewatervaporpartialpressure(hPa).Hence,thetotalbarometricpressurecan
beexpressedinEquation(95):𝑝 𝑝𝑒(95)
6.3.SpecificAttenuationDuetoClouds
Ithasbeenshownin[162]thattheRayleighScatteringApproximationisaccuratefor
frequenciesupto200GHzforcloudsorfogthatcontainpredominantlysmalldropletsof
diameterlessthan0.01cmandthespecificattenuationduetothecloudcanbeexpressed
inEquation(96):𝛾󰇛
𝑓
,𝑇󰇜𝐾󰇛
𝑓
,𝑇󰇜𝑀(96)
where𝛾denotesthespecificattenuationwithinthecloud(dB/km),𝑓denotesthefre
quency,𝑇denotesthecloudliquidwatertemperature(Kelvin),𝑀denotestheliquid
waterdensityinthecloudorfog(g/m3),and𝐾denotesthecloudliquidwaterspecific
attenuationcoefficient,whichcanberepresentedmathematicallyasEquation(97):
𝐾𝛾
𝑀 (97)
Table15presentsthevariousinputparametersofthedifferentatmosphericimpair
mentsmodelsforspecificattenuation.
Table15.InputParametersoftheAtmosphericImpairmentforSpecificAttenuation.
AtmosphericIm
pairment
References
Parameters
Frequency
Distance
Temperature
Pressure
Polarization
DropSizeDistri
bution
RainRate
Dielectric
Permittivity
EffectivePath
Length
Density
Rain[44]××××
DryAirandWaterVapor[144]×××× × ×
CloudorFog[162]××××××
6.4.ReviewofTotalAttenuationModels
Thissectionreviewsvarioussignalpropagationmodelsusedtocalculatespecificat
tenuationassignalstravelthroughvariousmedia,suchasclouds,rain,andatmospheric
gases(watervaporanddryair).Table16presentsthesummaryofspecificmodels.
Table16.SummaryofSpecificAttenuationModels.
Ref.ObjectiveofResearchMethodologyAdoptedFrequencyMethodofValidationYear
[112]
Toestablisharepositoryof
𝑘 and𝛼valuesforthefre
quenciesupto1000GHz.
Logarithmicregressionwasap
pliedtoMie’sscatteringcalcula
tions,LawsandParsons,and
Marshall–PalmerDSDonwide
spreadandconvectiverain.
1–1000
GHz
Comparisonwithdirectmeas
urementvalues.1978
Sustainability2022,14,1174439of67
[163]
Toestablisharelationship
betweentheregressionco
efficientsofattenuation(𝑎
and𝑏)andfrequency.
Thestudyemployedthepower
lawtoestimatetherelationship
betweentheregressioncoeffi
cientsandthefrequencyanalyt
icallywitharainraterangeof
5–100mm/h.
1–400GHz
Theworkvalidatesthemodel;
theITURdatabasewasuti
lized.However,tocomparethe
modeltoothermodels,their
absoluteandrelativeerrors
werecalculatedandcompared.
2001
[54]
Toreviewworksdonein
attenuationandinvestigate
predictionmodels.
Thestudyutilizedthereduction
factorandfrequencyscalingto
predicttotalattenuation.
15GHz,23
GHz,26
GHzand
38GHz
TheITURdatabaseisusedto
validate.2013
[164]
Toproposeanovelmeth
odologyusingstandard
equipmentforthecalibra
tioninrealtimeofthe
powerlawparameters.
Realmeasurementsloggedby
CMNsandastandardrain
gaugewereemployedtocali
bratetheparametersofthe
powerlaw.
10–100
GHz
Calibratedpowerlawparamet
ricvalueswerevalidatedusing
theITURvalues.
2016
[42]
Todevelopanenhanced
rainattenuationprediction
modelwithauniversal
perspective.
Thestudyemployedsupervised
machinelearning(SML)tofor
mulateenhancedmodels.
30–300
GHz
The𝑅measureisusedtoex
presstheefficacyoftheregres
sion.
2019
Thepowerlawhasbeenusedtocalculaterainattenuationsincethe1940sandisstill
beingusedtoestimatetheattenuationbynetworkdesignersandoperators.TheITUR
standardhasprovidedasimplifiedtechnicalstandardthatguidestheestablishmentof
thepowerlawbasedcorrelationbetweentheattenuationduetorainandtherainfallrate
(P.8383).Morerecently,thepowerlawwasexploredformonitoringrainfalloccasioned
bytheavailabilityofattenuationdatacollectedfromtheCommercialMicrowaveNet
works(CMNs)backhaulinfrastructure.Thisadvancementhaspavedthewayforoppor
tunisticsurveillanceinstrumentsthatrequirelittleornoadditionalhardwareorcost.Also,
morerecently,supervisedmachinelearning(SML)isgainingtractioninthequestforcal
ibratingthepowerlawparameters.
7.ReviewofDifferentMethodsofModelValidation
Thissectionpresentsareviewofdifferentmodelvalidationmethodsandsumma
rizesmodelvalidationtechniques.
Intheliterature,whennewmathematicalmodelsaredeveloped,thereisusuallya
meanstovalidatethemodel.Forrainattenuation,themodelsaresubjectedtodifferent
validationteststodeterminetheirabilitytopredictrainattenuation.AccordingtotheITU
R,therearestandardproceduresfortestingthevalidityofmathematicalmodelsdevel
opedforrainattenuationpredictions.Asaresult,itisnecessarytoanalyzesomeofthese
modelstodeterminethecurrentandfuturedevelopmentsinthisarea.Someoftheworks
ofliteratureinthisfieldwerenotedin[165].Inthiscontext,thisstudyhasexecutively
selectedfourmodelvalidationmethodologiesbasedontherecommendationoftheITU
R[166]whichareavailableintheliterature.Themethodologiesare(I)aninputtooutput
correlationorcoefficientofdetermination,(II)RootMeanSquareError(RMSE)andRMS
functions,(III)goodnessoffitfunction,and(IV)Chisquaremodels.
Thecoefficientofdeterminationfunctionisdefinedasthetotalvariationsinapro
posedmodelor,insomecases,multipleregressionmodels.Mathematically,itisdefined
inEquation(98):
𝑅Explained Variation
Total Variation (98)
RootMeanSquareError(RMSE)isutilizedtomeasurethedifferenceinnumerical
estimationandcanbeexpressedmathematicallyasgiveninEquation(99):
Sustainability2022,14,1174440of67
RMSE 󰇛𝑂𝑃󰇜
 𝑁(99)
AnothervariantoftheRMSEfunctionistheSpreadCorrectedRMSE(SCRMSE)as
expressedinEquation(100):
SC_RMSE
𝜺𝒑󰆒
 (100
)
where:
𝜀󰆒𝜀𝜎(101
)
Thegoodnessoffitfunction𝜀󰇛𝑝󰇜canbeusedtotesthowwellthedeveloped
modelobserveddatafitsthepredicteddataandthiscanbeexpressedinEquation(102):
𝜀󰇛𝑃󰇜
𝐴
,
𝐴
,
𝐴
, 100 󰇟%󰇠(102)
Insomecases,thisiscalledthePearsongoodnessoffitfunction,andtheexpression
forthisisdefinedinEquation(103):
𝑋󰇛󰇜
 (103
)
where𝑂istheobservedcountincell𝑗and𝐸istheexpectedcountinthecell𝑗when
0.001% 𝑝1%.
Chisquarecanalsobeusedtovalidatedevelopedmodelsandcanbeexpressed
mathematicallyasdefinedinEquation(104).TheChisquarestatisticswereemployedto
evaluatethemethod’sperformance.
𝑋󰇛,,󰇜
,,
 (104)
Thedifferencebetweenthepredictedrainratevalueandthemeasuredrainratevalue
isgivenbyrelativeerror(𝜀)expressedinEquation(105):
𝜀ℛℛ(105)
where:isthepredictedvalueandisthemeasuredrainrateestimatedfor
0.001% 𝑝1%.Themaximumerrorandthemeanerrorcanbeexpressedmathemati
callyasshowninEquations(106)and(107),respectively:
Maximumerrormax 󰇛𝜀󰇜(106)
MeanerrorE
𝜀
(107)
RankCorrelation,𝜌
Thismeasuresthestrengthoftherelationshipofrelateddata.Itdoesnotassume
measurementforstatisticaldependencebetweenthemeasuredandpredicted;hence,itis
nonparametric.Mathematically,itcanbeexpressedasshowninEquation(108):
𝜌 󰇛ℛℛ
󰇜󰇛ℛℛ
󰇜
󰇛ℛℛ
󰇜
󰇛ℛℛ
󰇜
1𝜌1(108)
where
&
aremeanmeasuredandpredictedrainratesfor0.001% 𝑝1%.
Table17presentsthepropertiesofthevariousexistingrainattenuationmodelsbased
onthethresholdsforeachparameterconsideredwhendevelopingthemodelsincluding
thepredictedrainattenuationvaluerange.
Sustainability2022,14,1174441of67
Table17.PropertiesoftheExistingRainAttenuationPredictionModels.
Model
Category
Models
References
PathLength(km)
Frequency(GHz)
Percentageoftime
(%)
Rainrate(mm/h)
Rainrate(min)
Attenuation(dB)
Numberofyears
Empirical
Models
Garcia [106]12–5810.8–360.0001–0.1140110–602
Crane [37]0–22.511–36.50.001–2140510–6024
Mello [40]0.5–580.001–0.1140
Moupfouma[39]0.1and
3.2380.001–0.133115.65–64.543
Perić [139]2–4800.001–0.130&4515–302
Abdulrah
man [107]0.1and
3.2380.001–0.10–10016.03–40.663
DaSilva [108]0.5–587–1370.001–0.114081
Budalal [43]0.325–750.001–10110–501
Statistical
Models
ITUR [140]0.1and
3.2750.001–0.10–10013.22–15.713
Singh [63]10–10010–3005–60
FadeSlope
Models
Andrade [128]12.8–4314.52–14.551–301–2
Chebil [129]0.315–3821–1516months
Physical
Models
CraneTC [133]1.3–587–820.001–0.11401–30
Ghiani [41]1–2010–500.001–0.15410–151–10
Capsino [134]12–18459
OptimizationBased
Models
Pinto [137]0.5–581–1000.001–0.10–70
Livieratos [42]0.5–587–1370.001–0.14.5–2300–50
Develi [38]6.526970.1–11.3–6.867.85–24.791
FromTable17,itcanbeseenthatrainattenuationincreaseswithincreasingrainfall
rates.Furthermore,asthetimepercentageincreases,therainattenuationvaluesdecrease.
Forexample,atp=1%,theattenuationvaluecanbeaslowas1.01dB,whereastheatten
uationcanbeashighas40.48dBat0.001%[94].However,accordingtoITUrecommen
dations,alowvalueforthestandarddeviationandrootmeansquare(RMS)forthema
jorityoftimepercentagesindicatethattheproposedmodelishighlyaccurate[167].
Table18presentsasummaryofsomeworksthathavesuccessfullyutilizedanyof
theaforementionedmodelvalidationtechniquestoevaluatetheperformanceoftheirre
spectiveproposedmodels.
Table18.SummaryofModelValidationTechniques.
Ref.ValidationTech
niqueComments/FindingsYear
[165]Percentageerror
andRMS
Fourrainattenuationmodelswerecomparedintermsofthepercentageerrorandroot
meansquaretoevaluatetheperformanceoversixoperationalpointtopointmicro
wavelinks.
2014
[71]MeanErrorand
MeanRMS
Ithasbeenestablishedthattheenhancedsyntheticstormtechniqueshowsbetteraccu
racyandreliabilityforrainattenuationpredictionEHFonastatisticalbasis(direct)
andeventbasis(frequencyscaling).
2020
Sustainability2022,14,1174442of67
[41]MeanErrorand
MeanRMS
TheproposedmodelwastestedagainsttheBrazilianmodelandtheITURmodel.
ThereisaneedtoincludethedatasetintheITURDBSG3databaseforoptimalorsu
perioraccuracyoftherainattenuation.
2017
[168]MeanErrorand
MeanRMS
Thisworkproposedanovelmodelbasedonanexponentialprofileoftheraincellbe
causetherainattenuationmodelconsistentlyincreaseswithbothtimepercentage,rain
rate,andelevationangle.Eventuallythenewmodeloutperformsthepreviousmodels
intermsofpredictionandanomalousbehavior.
2018
[39]RMSTheproposedmodelcanpredictwhenrainattenuationwouldbeexceededonboth
SHFandEHFradiowaves.2009
[137]RMS
Nonlinearregressionisusedtoderiveamodelforrainattenuation.Theresultwas
basedonexperimentsinbothtemperateandtropicalregions.Also,modelfinetuning
wascarriedoutusingPSO.
2019
[94]
Thegoodnessof
fitsandPearson
goodnessoffits
Differentmatriceswereusedtoevaluatetheperformanceofthepermanentmodels.
Furthermore,ITURP.53016andAbdulrahmanmodelsoutperformat38GHz.How
ever,ITURP.53016yieldsabetterestimateat75GHzwithalowererrorprobability.
2017
[134]Chisquare
Theproposedrain,sitediversity,andrainscatteringpredictionsweredeveloped,and
themodelwastestedondatacollectedinEuropeusingasatelliteSIRIOandOTS.The
resultswereexcellent,andtheefficacyofthestatisticalmethodwasdeveloped.
1987
FromTable18,itisclearfromthemethodofvalidationthatrootmeansquare(RMS)
isthemethodthatmostoftheresearchersareusingtotesttheaccuracyofthedeveloped
models.SomemethodsthathavenotbeengivenattentionaretheKolmogorov–Smirnov
andtheAnderson–Darlingtests
8.MachineLearningBasedRainAttenuationPredictionModels
Thissectionpresentsthereviewsofmachinelearningbasedrainattenuationpredic
tionmodelsthathavebeenproposedtodate(August2022)andataxonomy.Also,abrief
reviewoftheissueswithaerialcommunicationisprovided.Table19summarizesthema
chinelearningbasedrainattenuationmodels.
Table19.SummaryofMachineLearningBasedModels.
Ref.Objectives MethodologyAdoptedMethodofValidationComments/FindingsYear
[169]
Topredictrainattenua
tionformultiplefre
quenciesusingama
chinelearningbasedes
timationapproachand
tocomparewithother
models.
Thestudyutilizedaradi
ometerandlaserprecipi
tationmonitortoobtain
dataforfrequencies
22.234,22.5,23.034,
23.834,25,26.234,28,and
30GHz.
MinimumMeanSquared
Error(MMSE)andRoot
MeanSquare(RMS)were
usedtocomparethepro
posedmachine,thelearn
ingbasedadaptivespline
model,tothepowerlaw
model.
Resultsshowedthatthees
timationvaluesobtained
bytheproposedmodelare
moreaccuratethanthose
obtainedbythepowerlaw
model.
2021
[170]
Toproposeanovel
deeplearningarchitec
turethatpredictsfuture
rainfadeusingsatellite
andradarimagerydata
aswellaslinkpower
measurement.
Thestudychose7collo
catedlocationsforEchos
tar19and24andutilized
datafromthe4thquarter
of2018tothe1stquarter
of2021.
Theproposedmodelwas
comparedwithotherma
chinelearningbasedap
proachesandevaluatedin
termsofaccuracy,preci
sion,recall,andf1scorefor
bothlong‐andshortterm
prediction.
Resultsshowedthatthe
proposedmodeloutper
formstheothermodelsin
termsofaccuracy,recall,
precision,andf1score,es
peciallyforlongtermpre
diction.
2021
[171]Toaccuratelypredict
rainattenuationusing
Thestudyutilizeddata
fromthreeterrestrialmi
crowavelinksoperating
Theproposedmodelwas
validatedusing38GHz
Resultsshowedthatthe
BPNNmodelisefficientfor2021
Sustainability2022,14,1174443of67
BackpropagationNeu
ralNetwork(BPNN)
technique.
at23and38GHzfre
quencies.
fadeslopedataaswellasa
chisquarefitnesstest.
thepredictionofrainatten
uationinNigeria.
[172]
Tocomparevarious
modelsandperform
realtimepredictionof
rainattenuationdatafor
theEarth–Spacecom
municationlink(ESCL).
Thestudyutilized12year
dataobtainedfromthe
SouthAfricaWeatherSer
vice,wherethedatawas
splitintotwofortraining
andtestingtheproposed
network.
Comparisonbetweenthe
ANNraininducedattenua
tionwithexistingmodels
suchasITURand
Moupfoumamodelswere
usedtovalidatetheperfor
manceofthemodel.
Theresultshowedthatthe
ANNbasedmodelpro
ducedmoreaccuratere
sultswithminimumerrors
thantheITURand
Moupfoumamodels.
2020
[173]
Todesignanewmodel
forcalculatingthespe
cificattenuationdueto
rainatvariousrainrates
usingmachinelearning
techniques
Thestudygathereddata
fromtheITURmodelfor
definedvaluesof𝑎and
𝑏atdifferentfrequencies,
whichwasusedforthe
trainingofthemodelus
ingPython.
Acomparisonbetweenthe
proposedmodelandthe
ITURmodelwascon
ducted.
Resultsshowedthattheac
curacyobtainedinthepro
posedmodelwasapproxi
mately97%.
2020
[96]
Topredictrainrateand
attenuationusinga
trainedbackpropaga
tionneuralnetwork
(BPNN)inthesubtrop
icalregionofDurban,
SouthAfrica.
ThisstudyutilizedaJWD
RD80disdrometertocol
lect4yeartrainingand
1.5yearvalidationdata
forasamplingtimeof30
s.
Theperformanceofthe
trainedBPNNwasevalu
atedusingthemeansquare
errorandTANSIGtransfer
functionandvalidatedus
ingthe1.5yeardata,then
comparedwiththeITUR
model.
Resultsshowedarelatively
smallmarginoferrorbe
tweenpredictedrainatten
uationexceededat0.01%o
f
anaverageyear.
2019
[174]
ToshowhowANNcan
beemployedforrainat
tenuationprediction
andtocomparerainat
tenuationestimatedby
ANNwiththatofthe
ITUmodelinspecific
locationsinNigeria.
Thestudyutilized7year
datafrom6locationsto
traintheANNobject,cre
atedusingafeedforward
backpropagationneural
networklearningalgo
rithm.
Totestthepredictionper
formanceofthetrained
ANN,3yeardatawerefed
intoit.Thentoevaluatethe
ANN,acomparisonwith
theITURmodelwascar
riedoutintermsofthe
meansquarederror.
Resultsshowedthatthe
predictedvaluesofthe
ANNalmostcorrespond
withthecalculatedvalueof
theITURmodelwitha
meansquarederrorofless
than1dB.
2019
[175]
Toinvestigaterainat
tenuationmodelsthat
usedsimpleANNswith
asinglehiddenlayer
andproposeamethod
forexpandingdata
bases.
Thestudyutilizedastep
wisemethodologycom
prising6stepsforthe
methodofexpandingda
tabases,suchasdatase
lection,datavalidation,
etc.
Thephysicalconsistency
testwasusedtovalidatethe
resultsobtained.
Resultsshowedthatasim
pleANNbasedmodel
couldperformbetterthan
existingmodelsiftrained
properlyusingalargeda
tabase.
2019
[176]
Topresentanimproved
rainattenuationpredic
tioninsatellitecommu
nicationusingANN
modelsinfourprov
incesofSouthAfrica.
Thestudyutilized5min
integrationtimedataob
tainedfromtheSouthAf
ricaWeatherServices
basedon68.5EIntelsat20
(IS20)satellitefootprint
andadownlinkfre
quencyof12.75GHz.
Acomparisonwascarried
outbetweentheANNmod
els,ITURmodel,andthe
SAMmodelintermsof
RootMeanSquareError
(RMSE)andMeanSquare
Error(MSE).
Resultsshowedthatthe
ANNmodelswereableto
estimaterainattenuation
foralltheselectedlocations
accuratelyandoutper
formedboththeITURand
SAMmodels.
2019
[42]
Todevelopanovelrain
attenuationprediction
modelusingSupervised
Thestudyusedexperi
mentaldataretrieved
fromtheITURdatabank,
A5foldCrossvalidation
approachwasemployedto
Themodeloutperformed
thefourpredictionmodels2019
Sustainability2022,14,1174444of67
MachineLearning
(SML)andtheGaussian
process(GP)forregres
sion.
whichincludes89experi
mentallinkslocatedin
variouscountrieswith
operationalfrequencies
rangingfrom7to137
GHzat0.5to58km.
evaluatethemodel.How
ever,theRMSwascalcu
latedtocomparethemodel
toothermodels:
𝜌
𝜇
𝜎
underconsideration,in
cludingtheITUR,Silva
Melo,Moupfouma,and
Linmodels.
[177]
ToutilizeFeedforward
BackpropagationNeu
ralNetworkasatech
niqueforpredicting
rainattenuationinsatel
litelinksathigherfre
quencyinSouthAfrica.
Thestudyutilized5min
integrationtimerainfall
dataobtainedfromfour
provincesbytheSouth
AfricaWeatherServices
(SAWS)overtenyears.
RootMeanSquaredError
(RSME)andCorrelationCo
efficientwereusedtoevalu
atetheperformanceofthe
proposedmodelagainst
threeexistingprediction
models.
Resultsshowedthatthe
ANNmodelproducedac
curateresultsinallfour
provinceswithminimum
errorandbestcorrelation
coefficient.
2019
[178]
Topredictrainattenua
tionusingtheANN
modelandperforma
comparisonwiththe
ITURmodel.
ThestudyutilizedaPer
civaldisdrometerto
measureandrecordrain
ratedataata1mininte
grationtimeat25GHz.
Acomparisonbetweenthe
ANNmodelandtheITUR
modelwasconducted.
ResultsshowedtheANN
modelperformedbetter
thantheITURmodel.
2017
[179]
Todevelopaneuralnet
workbasedrainattenu
ationpredictionmodel
(BPNN)thatcanpredict
therainrateinadvance.
Thestudyutilized4year
dataobtainedusingJW
RD80Disdrometermeas
urementswithasampling
timeof30swhichwas
usedtotrainandtestthe
model.
Theaccuracyofthemodel
wasevaluatedintermsof
theRootMeanSquareError
(RMSE)andtheMean
SquareError(MSE)fordif
ferentrainfallevents.
Erroranalysisresultspro
ducedalowvalue,con
firmingthattheproposed
BPNNmodelcanbe
trainedandusedforrain
attenuationprediction.
2017
[180]
Toproposenewma
chinelearningmethods
usingKNNandANN
forpredictingshort
termrainattenuation
forgroundwireless
communications.
Thestudyutilizedtime
seriesofrainfallradar
mapsdataobtainedfrom
theJMAwebpagetotrain
theKNNandANNob
jects.
Comparisonsbetweenthe
actualrainrateandthepre
dictedrainrate,between
ANNandKNNintermsof
thetotalattenuationwith
outdistance,andfinallybe
tweenANNandKNNin
termsofmoderaterainfall.
Resultsshowedthatthe
ANNmethodbecameless
accuratethantheKNN
methodafterthecompari
sonwithoutdistance,but
bothmethodsperformed
betterthanthoseproposed
intheliterature.
2015
[181]
Toproposetwonovel
rainattenuationpredic
tionmodelsbasedon
BPNNandLSSVMal
gorithmsfor60GHz
millimeterwave.
Thestudyrandomlyse
lectedsamplesfromex
perimentalresultsused
previouslyinresearchto
establisharelationship
betweentherainintensity
andrainattenuation,ex
cludingotherparameters.
Acomparisonbetween
theseproposedmodelsand
theITURmodelwascon
ductedintermsofaccuracy
andstability.
ResultsshowedthatBPNN
outperformstheITUR
modelintermsofaccuracy
andstability,buttheLS
SVMisamodeidealmodel
forrainattenuationpredic
tionfor60GHzfrequency.
2013
[182]
Todevelopamethodof
shorttermpredictionof
rainattenuationusing
anANNwithaselfad
aptationtechniqueto
varyingparameters.
ThisstudyutilizedKu
banddataobtainedfrom
3differentlocationsinIn
diaforthetestingand
validationofthemodel.
Toevaluatetheperfor
manceofthemodel,acom
parisonbetweenthepro
posedmodelandother
shorttermpredictionmod
elswascarriedout.
Resultsshowedthattheac
curacydecreaseswithpre
dictionintervalbutre
mainswithinanacceptable
range.
2012
[183]
TodevelopanANN
methodbasedonthe
extinctioncrosssection
dataforrainattenuation
Thestudyutilizedexten
sioncrosssectiondataob
tainedfromModified
PrupacherandPitter
Themeansquareerrorand
correlationcoefficientwere
Resultsshowedthatthe
ANNproducesaccuratere
sultsforestimatingtheex
tensioncrosssectionofa
2008
Sustainability2022,14,1174445of67
predictioninmicro
waveandmillimeter
wavefrequencies.
(MPP)usingtheFiniteEl
ementMethodforfre
quenciesrangingbetween
1–100GHz.
usedtoevaluatetheperfor
manceofthedeveloped
model.
raindrop,makingitasuita
bletoolforpredictingrain
attenuation.
[184]
Toproposeanewand
betterrainattenuation
modelknownasEPNet
evolvedartificialneural
networks(EPANN).
Thestudyutilizeddata
obtainedfromtheITUR
(CCIR)databank,which
containsearthspacerain
attenuationmeasurement
datawhichwasusedto
trainandtestthepro
posedmodel.
Acomparisonbetweenthe
proposedANNandITUR
modelswasconductedin
termsofthepredictioner
ror.
Resultsshowedthatthe
proposedmodelissuitable
forpredictingrainattenua
tionandperformsbetter
thanANNandITURmod
els.
2001
FindingsfromTable19indicatethatmachinelearningmodelsaresimpleandcan
accuratelypredictrainattenuation.However,itcanalsobeseenthattheperformanceof
mostofthemachinelearningbasedmodelsdevelopedwasevaluatedagainstastatistical
model,theITURmodelofwhichtheMLbasedmodelperformsbetter.
Table20presentsthevariousmachinelearningbasedmodelsconsideredintheliter
ature.
Table20.MachineLearningBasedModelsConsideredintheLiterature.
References
BPNN
SLANN
FFBNN
KNN
EPANN
LSSVM
LinearSplineRe
gression
CNN
LSTM
FFDTD
CFBP
AANN
EBP
SML
[184]××××××××××× × ×
[183]××××××× × × × × × ×
[182]×××××××××××××
[181]××××××××××××
[180]×××××××××××××
[179]×××××××××××××
[178]×××××××××××××
[42]×××××××××××××
[177]×××××××××××××
[176]××××××××××
[175]×××××××××××××
[174]××××××××××××
[96]×××××××××××××
[173]×××××××××××××
[172]××××××××××××
[171]×××××××××××××
[170]×××××××××××××
[169]×××××× ×××××××
FromTable20,itcanbeseenthatonlyafewMLbasedrainattenuationmodelshave
beendevelopedandevaluated;hence,therearestillgapstofillthisresearcharea.Figure
6showsthetaxonomyofthemachinelearningbasedrainattenuationmodelsconsidered
intheliterature.
Sustainability2022,14,1174446of67
Figure6.TaxonomyoftheMachineLearningBasedRainAttenuationModels.
AerialCommunication
UnmannedAerialVehicles(UAVs),popularlyknownasdrones,areselfcontained
andcanflyautonomouslyorbecontrolledbybasestations.Theseautonomousnodeap
plicationsofferintriguingnewapproachestocompletingamission,whetherrelatedto
militaryorcivilianoperationssuchasremotesensing,managingwildlife,trafficmonitor
ing,etc.[185].UAVcommunicationhasbecomeanintegralpartofthedevelopmentof
the5Gandbeyondnetwork;however,oneofthemajorapplicationchallengesfacedby
5GandbeyondUAVcommunicationisweatherandclimatechange.In[186],aerialchan
nelmodels,preciselytheairtogroundchannelmodelsfordifferentmeteorologicalcon
ditionssuchasrain,fog,andsnowwereinvestigatedwithinafrequencyrangefrom2–
900GHzbasedonthespecificattenuationmodelsforthedifferentmeteorologycondi
tions.TheresultsshowedthatrainandsnowareverysevereformmwaveandTHz
bands,respectively.TheeffectofrainonthedeploymentofaUAVasanaerialbasestation
inMalaysiawasstudiedin[187]wheretheantennaheightoftheuser,attenuationdueto
rain,andhighfrequencypenetrationlosswereconsideredforboththeoutdoortoout
doorandoutdoortoindoorpathlossmodels.Thestudyutilizedtwoalgorithmsknown
asParticleSwarmOptimization(PSO)andGradientDescent.Theresultsobtainedindi
catedthatthePSOalgorithmrequireslessiterationtoconvergecomparedtotheGOal
gorithmandthattheeffectofrainattenuationincreasesforhigherfrequencywhichresults
inacorrespondingneedfortheUAVtoincreaseitstransmitpowerbyafactorof4and
15foroutdoortooutdoorandoutdoortoindoor,respectively
9.FadeMitigationTechniquesfor5G
Fademitigationtechniques(FMTs)areadaptivecommunicationsystemsemployed
tocorrectinrealtimetheeffectofattenuationonslantpath[188].Fadinghasthreemajor
effects:rapidfluctuationsinsignalstrengthovershortdistancesorintervals,alterations
insignalfrequency,andmultiplesignalsarrivingatdifferenttimes.Signalsarespreadout
Sustainability2022,14,1174447of67
intimewhentheyareputtogetherattheantenna.Thiscanresultinsignalsmearingand
interferencebetweenreceivedbits.
Duetohighrainfallintropicalclimates,asignalisattenuated,andthissignalatten
uationcanbedecreasedutilizingFMT.ToregulateFMTapproachesinrealtime,thereis
theneedtofirstunderstandthedynamicandstatisticalfeaturesofattenuationduetorain,
whichisthemajorsourceofchannelorpathloss,especiallywhenthefrequencyexceeds
10GHz[189].Severalmethodstomitigateattenuationatthephysicallayerareclassified
asPowerControl,AdaptiveWaveform,Diversity,andLayer2.Thepowercontrol,adap
tivewaveforms,andLayer2techniquesbenefitfromthesystem’sidleexcessresources,
whereasthediversitytechniqueusesareroutemethod.Withthesharingofidlere
sources,themainaimistomakeupforthefadingofthelinktosustainoroptimizethe
performance.Thediversitytechnique,ontheotherhand,canpreservetheperformance
ofthelinkbyalteringthegeometryofthelinkorthefrequencyband[190].
9.1.TypesofFading
Thedifferenttypesoffading,asshowninFigure7,aregivenconsideringthevarious
channelimpairmentsandpositionsofthetransmitterandreceiver.
Figure7.DifferentTypesofFading.
9.1.1. LargeScaleFading
Pathlossproducedbytheimpactsofthesignaltravelingoverbroadareasisreferred
toaslargescalefading.Thepresenceofnoticeabletopographicalcharacteristicssuchas
mountains/hills,trees/forests,billboards,clumpsofbuildings,etc.,betweenthetransmit
terandreceiveraffectsthisphenomenon[191].Pathlossandshadowingeffectsarein
cludedinlargescalefading.
A. PathLoss
Assignalspropagatethroughthemediumoveralongdistance,thesignalstrength
decreaseswithanincreaseinthedistance.Thisisreferredtoaspathlossorattenuation
[151].Theamplitudeofsignalsspreadsastheypropagatethroughthemediumand,ifnot
compensatedfor,thesignalwouldbecomeunintelligibleatthereceivingend.Thislossis
independentofthecommunicatingparameterssuchasthetransmitter,thetypeofme
dium,orthereceiver,althoughitcanbemitigatedbyincreasingtheareaofthereceiver’s
capture[191].
B. Shadowing
Sustainability2022,14,1174448of67
Thisreferstosignalpowerlosscausedbyobstructionsinthepropagationroute.
Shadowingeffectscanbeusedtoreducesignallossinvariousways.Oneofthemost
effectiveisLOSpropagation.TheEMwavefrequencyalsoaffectsshadowinglosses.EM
wavescanpassthroughdifferentsurfacesbutlosepower,i.e.,signalattenuation.Thetype
ofsurfaceandthefrequencyofthesignaldeterminetheamountofloss.Ingeneral,asthe
frequencyincreases,thepenetrationpowerofasignaldecreases.
9.1.2. SmallScaleFading
Smallscalefadingdescribesthesubstantialvariationsinthephaseandamplitudeof
asignalthatcanoccurduetominorvariationsinthespatialseparationbetweenatrans
mitterandreceiver[191].Smallscalefadingoccurswhentheintermediatecomponentsin
thesignal’spathchange.Multipathpropagation,motionbetweensenderanddestination,
surroundingobjectspeed,andsignaltransmissionbandwidthareallphysicalelements
thatcausesmallscalefading.Smallscalefadingintheradiopropagationchannelisinflu
encedbythephysicalcauseshighlightedbelow:
1. Multipathpropagation
Thisisoneoftheelementsthatcontributetoradiosignaldeterioration.Becauseof
theirregularityintheatmosphere,thePointRadioRefractiveGradient(PRRG)varieswith
height,timeofday,andseason[192].Asaresultofthisphenomenon,radiowavesarrive
atthereceivingantennaviatwoormoreroutes.Becauseofthisintersymbolinterference,
thetimethesignaltakestoreachthedestinationbecomeslengthened.Effectsofmultipath
includeconstructiveinterference,destructiveinterference,andsignalphaseshifting.
2. Speedofthemobile
Theeffectofthevariousdopplershiftsonmultipathcomponentsisrandomfre
quencymodulationbetweenthebasestationandthemobile.Dopplershiftispositive
whenreceivingmobiletravelstowardthebasestation,anditisnegativeotherwise
[192,193].
3. Speedofsurroundingobjects
TheeffectofobjectsbeinginmotionintheradiochannelisaDopplershiftbasedon
varyingtimesonthemultipathcomponents.However,iftheneighboringobjectsmove
fasterthanthemobile,thiseffectprecedesfading[193].
4. Transmissionbandwidthofthesignal
Ifthebandwidthofthetransmittedsignalexceedsthe“bandwidth”ofthemultipath
channel—whichismeasuredbythecoherencebandwidth—distortionwilloccuronthe
receivingsignal,althoughfadingwouldnotoccuroverasmalldistance.However,ifthe
bandwidthofthetransmittedsignalislowerthanthebandwidthofthemultipathchannel
bandwidth,therewouldnotbeadistortionofthereceivedsignal,butitssignalpower
changesfrequently.Thecoherencebandwidth,relatedtothechannel’suniquemultipath
structure,isusedtoquantifythechannel’sbandwidth.Coherencebandwidthisdefined
astheestimateofthemaximumfrequencyforwhichthesignalisinrelationtotheampli
tude[192].
Thetypesofsmallscalefadingincludethefollowing:
A. Frequencyselectivefading:Thesignalistransmittedandreceivedviamultipleprop
agationpaths,eachwithrelativedelayandamplitudevariation.Multipathpropaga
tionoccurswhendifferentregionsofthetransmittedsignalspectrumareattenuated
differentially,resultinginfrequencyselectivefading.Thechannelspectralresponse
isnotflatinthiscase,butexhibitsdiporfadeinresponsetoreflectionscanceling
particularfrequenciesatthereceiver.
B. Frequencynonselectivefading:Frequencynonselectivefading,alsoknownasflat
fading,occurswhenallsignalcomponentfrequenciesexperiencenearlythesame
amountoffading.Suchfadingoccurswhenthetransmittedsignal’sbandwidthis
Sustainability2022,14,1174449of67
lessthanthechannel’scoherencebandwidth.Ifthesymbolperiodofthesignalis
greaterthantheRMSdelayspreadofthechannel,thenthefadingisflat.
C. Slowfading:Slowfadingcanoccurasaresultofoccurrencessuchasshadowing,
whichoccurswhenasignificantobject,forexample,amountain/hillorabillboard,
obstructsthepathofthesignalbetweenthesourceanddestination.Itoccursover
timeandaltersthereceivedsignalmeanvalue.Itismostlyconcernedwithmoving
awayfromthesourceandobservingtheestimateddecreaseintheintensityofthe
signal.
D. Fastfading:Inthiscase,thesignalsuffersfromfrequencydispersionduetoDoppler
spreading,whichcausesdistortion.Fastfadingisbasedonthespeedofthemobile
andthebandwidthofthetransmittedsignal.Duetotherapidchangesinthechannel,
whichismorethanthesignalperiod,thechannelaltersinoneperiod.
9.2.PowerControlTechnique(PCT)
ThePCTfedmitigationconceptisdividedintofour:(i)UpLinkPowerControl
(ULPC),(ii)EndEndPowerControl(EEPC),(iii)DownLinkPowerControl(DLPC),and
(iv)OnboardBeamSize(OBBS).However,incasetherainfadelastsalongtimeandis
expensive,thenthepowercontrolstrategydemandshighpowercapacitybecausethesat
ellitetransmitterthatprovidescoveragetoadiversesetofcustomersinvariousgeograph
icalregionsmustcontinuouslyoperateat,orcloseto,themaximumpowertomitigatethe
attenuationexperiencedbyjustoneofthegroundstations[190].
9.3.AdaptiveWaveform
Theprimaryideathatregulatesadaptivetransmissionistomaintainaconstant
Eb/Nobyadjustingtransmissionparameterssuchaspowerlevel,symbolrate,modula
tionorder,codingrate/scheme,oranycombinationoftheseparameters[194].Adaptive
Waveformisclassifiedintothreestages,whichare:(i)AdaptiveCoding(AC),(ii)Adap
tiveModulation(AM),and(iii)DataRateReduction(DRR)techniques[195–197].
9.4.DiversityReceptionTechniques
Thediversityreceptiontechniquecompensatesforfadingchannelimpairmentsand
istypicallyachieved,forexample,byusingtwoormorereceivingantennas.Thediversity
techniqueisemployedtomitigateorcompensateforfadesexperiencedbythereceiver.
Basestationsandmobilereceiverscanbothusediverseapproaches.Thesestrategiesaim
toreroutesignalswithinthenetworktomitigatenetworkdisruptionscausedbyatmos
phericperturbation.Diversityisofthreetypes:sitediversity(SD),satellitediversity
(SatD),andfrequencydiversity(FD)[188].Theseproceduresarequitecostlysincethe
relatedequipmentmustberedundant.Someofthesetechniquesareapplied[88]wherea
frequencydiversitymodelhasbeenusedtoreducesignalattenuationinheavyrainfall
zones.TheFDisusedtoovercometherainfadeinmicrowavepointtopointlinksasdis
cussedin[198].Figure8depictsthesitediversitytechniquewhichconsistsoflinkingtwo
ormoregroundstationsthatarereceivingthesamesignalsothatifthesignalisattenu
atedinonearea,anothergroundstationcancompensateforit.
Sustainability2022,14,1174450of67
Figure8.IllustrationofSiteDiversityScheme.
9.5.FrequencyVariationCorrectionFactor
Frequencyvariationperformancecanbedefinedintermsoftheoutagepercentage
oftime[88].Thevariationcorrectionfactor󰇛𝐼󰇜[189,193]canbeexpressedmathematically
asshowninEquation(109):
𝐼𝑃󰇛
𝐴
󰇜
𝑃󰇛
𝐴
󰇜(109)
where𝑃󰇛𝐴󰇜denotestheoutagepercentageofanexactfademarginwithnovariation,
and𝑃󰇛𝐴󰇜denotestheoutagepercentagewiththesamefademargininthevariation
frequency.
FromEquation(109),thecorrectionfactordependsontheoutagelevelattherequired
attenuation,frequencyseparation,anddiversityfrequency.Thespecificattenuationfor
thefrequencyisconsideredthestartingpointofthecorrectionfactordevelopment[189].
Adiversitycorrectionfactormodelwasproposedin[199]withafrequencyseparationof
5GHzbasedonthefadingmarginrequiredforsystemdesign.Theresultshowedasig
nificantimprovementwithinthefrequenciesrangingfrom5to15GHz,withnoimprove
mentabove15GHz.However,amodelforanyfrequencyseparationandpathlengthfor
microwavecommunicationsisrequired.
9.6.MitigationTechniquesatLayer2
Atthelayer2levels,FMTsdonottrytomitigateafadeoccurrencebutinsteadrely
onmessageretransmission.Atlayer2,twodistinctapproachesarepossible:Automatic
RepeatRequest(ARQ)andTimeDiversity(TD).
9.6.1. AutomaticRepeatRequest(ARQ)
ARQisadatatransmissionerrorcontrolsystemthatusesacknowledgments(orneg
ativeacknowledgments)andtimeoutstoachievereliabledatatransmissionacrossanun
stablecommunicationlink.ARQprotocolsareclassifiedintothreetypes:(i)StopandWait
ARQ,(ii)SelectiveRepeatARQ,and(iii)GoBackNARQ[200].ARQhasahigherspectral
efficiencythanrepetitioncodingsinceitrequiresseveraltransmissionsonlywhenthefirst
transmissionhappensinaseverefadingstate.However,theARQrequiresafeedback
channelbecauseoftheincreasedreliabilityrequirements,whichincreaseslatency.

Sustainability2022,14,1174451of67
9.6.2. TimeDiversity
Intimediversity,signalsofthesameinformationarebroadcastoverthesamechan
nelbutwithinatimeinterval Δ𝑡thatexceedsthecoherencetimeofthechannel.Themul
tiplesignalswouldbetransmittedwithadistinctfadingcondition,hencethediversity.
Beforethetransmission,aredundanterrorcompensatingcodeisinsertedintothesignal,
whichisthenspreadovertimeusingbitinterleaving.Asaresult,erroneousburstsare
avoided,simplifyingerrorcorrection.Thistechniqueemploysapropagationmidterm
estimationmodeltodeterminethebesttimetorebroadcastthesignalwithouttheneed
torepeattherequest[193,201].
Differenttypesoffadingmitigationtechniqueswereidentifiedandexplained.Itcan
beseenthattheirprinciplesofoperationsaredifferent;however,theycomplementone
another.Insomecases,hybridizationisinevitabletoimproveavailability/reliability,ca
pacityimprovement,andlimitinterferencewhenthereistheneedtomitigatehighim
pairments.Giventhese,Table21highlightssomerecentliteratureintheseregards.
Table21.SummaryofFadeMitigationTechniques.
Ref.ObjectiveofStudyMethodologyAdoptedResultObtained Year
[197]
Todevelopanadaptivecoding
modulationschemebasedona
neurofuzzysystemtoachievethe
requiredBERperformanceand
channeldata.
ThestudyusedMATLABtosimu
lateandanalyzetheneurofuzzy
inferencesystemtochoosetheopti
malmodulationcodingratepair.
Theresultsindicatedthatasystem
withaloworderQAMschemeand
alowconvolutionalcodingrateis
efficientatsustainingtheavailabil
ityofthelinkinseveretropicalre
gions.
2022
[202]
UsingtheMacroscopicDiversity
Scheme,theworkmitigatesrain
attenuationformmWave(30–300
GHz)andTHzfrequency(above
300GHz).
ThestudyusedtheDSDmodelto
estimatetheattenuationdueto
rain,andthenemployedthemacro
scopicdiversitytechniquetomiti
gateit.
Thestudyconcludedbyutilizing
macroscopicdiversity.Ifasignal
fromahubisattenuatedbyrain,a
handoverprocesstakesplacefor
anotherhubthatisnotaffectedby
raintotakeovertheservice.
2021
[203]
Anadaptiveperlinkpowercon
trolstrategybasedonapropor
tionalintegralderivative(PID)
controllerwasusedtoreduceat
tenuationduetorainforawire
lesscommunicationlink.
Thestudyusedthreeseparatesta
tions,eachwithMICAzasboththe
transmitterandreceiver,toinvesti
gatetherelationshipbetween
powertransmittedandlinkquality.
Comparedtoothercontrollersys
tems,thePIDcontrollerprovides
anoptimalresponseforadaptive
powercontrolduetoitsshorterris
ingandsettingtime.
2019
[204]
Toreduceattenuationduetorain
forawirelessfixedlinkinPort
HarcourtusingtheAdaptive
PowerControl(APC)technique.
Thestudyutilized5year(2012–
2016)rainfallreadingsformodel
ing,andmitigatingrainattenuation
analyzedusingMATLABsoftware.
Resultsafteranalysisshowedthat
2014wastheworstyearforrainfall
withthehighestattenuation,which
wassuccessfullymitigatedbythe
ATPCtechnique.
2018
[205]
Tomitigaterainattenuationfor
12.255GHzearthtosatellitelink
usingtimediversitytechniquein
Malaysia.
Theresearchutilized2yeardata
collectedusinga2.4msizeSUPER
BIRDCsatellitetransmittingata
frequencyof12.255GHz.
Theresultsshowedthatthegain
recordedat0.1%outageexceeded6
dB,whileat0.01%outagethegain
exceeded8dBforatimedelayof10
min.
2018
[189]
Todevelopanestimationmodel
employingthefrequencydiversity
correctionforFMTbetween50
and90GHz.
ThestudyemployedtheITUR
modeltoestimatetheattenuation
duetorainbasedonthecalculated
rainfallrateintheSouthEastAsia
tropicalregion.
Theresultsindicatedthattheim
provementdoesnotvaryforfre
quenciesupto70GHzbutchanges
forfrequenciesabove70GHz.
2017
Sustainability2022,14,1174452of67
[206]
Toevaluatetheinfluenceofrain
onlowerandhigheroperating
frequenciesandtodesignafade
mitigationtechniqueknownasa
switchingcircuit.
Thestudyusedatippingbucket
raingaugetocollect1yearrainfall
datautilizinganexperimentallink
wherethetransmitterandreceiver
operateintwofrequencybands,5.8
GHzand26GHz.
Resultsshowedanegligibleimpact
ofrainfallforthe5.8GHzlink,
whereastheeffectismuchstronger
for26GHz,henceswitchingtothe
lowerbandduringheavyrain.
2015
[199]
Toproposeanddevelopapredic
tionmodeltoreducerainfadebe
tween5and40GHz,knownas
thefrequencydiversityimprove
mentfactor.
ThestudyemployedtheITUR
modeltoestimatetheattenuation
duetorainusingmeasuredrain
ratesinMalaysia.
Resultsshowedthatrapidimprove
mentwasobservedwithinthefre
quencyseparationrangeof5–15
GHz,butnoimprovementwasob
servedforseparationabove15
GHz.
2015
9.7.WeaknessofITURModelforRainAttenuationResearchfor5GNetworksandBeyond
TheITURmodeldoesnotcorrectlypredictrainattenuationoverashortdistancefor
5Gnetworkorbeyond.Asaresult,theimpactsofrainovershortdistancescannotbe
accuratelyestimatedusingtheconventionalmodelsthatrelyontheITURmodel.The
inadequacyoftheITURmodeltoaccuratelyestimatetheattenuationduetorainalong
pathslessthan2kmwasshownin[71].Onesuchstudyintheliteratureshowedtheeval
uationoftheITURmodelinrainattenuationpredictioninthe33–45dBrange[207].The
researchwasdoneinBudapestforapathlengthof2.3kmat72.56GHz.Theauthors
demonstratedthattheITURmodeloverestimatedtheattenuationwhenevaluated
againstthemeasuredattenuation.Acomparableanalysispredicted26and38GHzavail
abilityas98.6%and99.5%,respectively.Anexperimentalinvestigationwasconductedin
Malaysiaatadistanceof0.3kmbetweensourceanddestination,withpredictionsmade
usingtheITURmodel[43].FurtherresearchhasfoundthattheITURmodelhasalarger
predictionerrorfordistanceslessthan1km[43,71,94,208–210].Table22presentsthesum
maryoftheweaknessoftheITURRmodelforshortdistanceapplications.
Table22.SummaryofWorksThatHaveShowntheShortDistanceInabilityoftheITURModel.
Ref.LocationTimeFrequency
(GHz)
Distance
(m)GeneralComments/FindingsYear
[94]Korea3yrs.38/75100Theydevelopedaregressionmodeltopredictattenuationat75
Hz,andthemodelwasbenchmarkedwithsixexistingmodels.2017
[43]Malaysia1yr.26/38300Thisresearchutilizedtheeffectivedistancetocalculatetheer
rorbetweenmeasuredandestimatedattenuation.2020
[71]Italy4
months73/83325Thepossibilityofusingexistingmodelsonattenuationpredic
tionsontheEbandhasbeenanalyzed. 2020
[20]United
Kingdom1yr.25.84/77.5235Effectsofrainonbuildingtobuildingalongwithwetantenna
effectsoverashortrangehavebeenanalyzed.2019
[209]Korea1yr.73/83500TheITURmodelwasdeemedunsuitableinKoreawitha100
mm/hrrainrate.2013
[210]Mexico3
months84560Manyexperimentswerecarriedouttodeterminetheattenua
tionunderstandardconditions2017
[208]Japan10
months120400Inthiscase,theresultsobtainedagreedwitheachotherata
maximumrainrate(600mm/hr).2009
[211]CzechRe
public5yrs.58850
Ithasbeenestablishedthattheannualaverageandworst
monthoftheyeardisagreedwithattenuationobtainedbythe
ITURmodel.
2007
Sustainability2022,14,1174453of67
[212]
Albuquer
que,
United
Statesof
America
1.5yrs.72/841700
Techniquesfordeterminingspecificattenuationwerepre
sentedsincetheITURmodelinaccuratelypredictedattenua
tioninthearea.
2019
10.FutureResearchDirections
Thesectiondiscussesfurtherresearchdirectionsforrainattenuationfor5Gmillime
terwaveandbrieflyexplainssomeoftheindustrialapplicationsofthe5Gtechnology.
10.1.ApplicationofMachineLearningTechniques
TheliteraturehasshownthatArtificialIntelligence(AI)isaveryvastfieldthaten
compassesbothmachinelearning(ML)anddeeplearning(DL),andalsofindsapplica
tionsinmanyareasofresearch,someofwhichareengineering,management,security,
medicine,science,environment,energy,andfinance[213,214].Inthesameway,AIbased
modelscanbeemployedtoaccuratelypredictrainattenuation,aswellasmitigateit,in
bothsatelliteandterrestrialcommunicationlinkswithminimumcomputationsanderrors
[169–172].BasedonthereviewprovidedinTable19,itcanbeseenthattheperformance
ofthesedevelopedAIbasedmodelswasmostlyevaluatedagainstastatisticalmodel—
theITURmodel—andmostofthesemodelsreliedontemporalraindataandcannotgen
eralizelargescalesystems[170].Also,therearestillfewdevelopedAIbasedmodels,par
ticularlyforthemitigationofrainattenuationforthe5Gnetworkandbeyond.Therefore,
forfuturedirections,thefollowingarerecommended:
1. MorenovelAIbasedmodelsthatcanpredictandparticularlymitigaterainattenua
tionforthe5Gnetworkandbeyondshouldbedevelopedthatarenotsolelybased
ontemporalraindata.
2. AnefficientandsimpleAIbasedpathlengthreductionmodelshouldbedeveloped
whichcanbeusedtodeterminethemostappropriatepathcorrectionfactor.
3. AnovelandrobustAIbasedmodelshouldbeproposedthatcanserveasabench
markfortheevaluationofothernewlydevelopedAIbasedmodelsatallfrequency
andrainrateranges.
10.2.RegularAccessibilitytoRainData
Itisknownthatrainbehaviorischangingduetoclimatechangeandweathercondi
tionsacrosstheglobe.Therefore,itiscriticaltoestablishaperiodiccheckofthenetwork
availabilityagainsttheexpectedsystemdesignavailabilitysothatifthedifferencebe
tweenthepredictedandtheactualsystemattenuationissignificant,thenthesystemcan
bemodifiedforrestorationtonormal.Inaddition,ifthemethodusedforrainattenuation
isdependentonadatabase,thenthereisaneedtofrequentlyupdatethedatabasewith
themostrecentrainratedata.However,oneofthemajorchallengeswiththisperiodic
checkingisthecost;therefore,forfutureworkacosteffectiveandeasywaytogenerate
andcollectraindatashouldbeproposed.
10.3.RainAttenuationResearchfor5GandbeyondUAVCommunicationNetwork
TheUnmannedAerialVehicle(UAV)hasbeenproventobeanintegralpartofthe
developmentofthe5Gnetworkandbeyond;however,rainisoneofthemajormeteoro
logicalconditionsthataffectsUAVcommunication,especiallyformmwave.Further
more,thereisverylittleresearchonhowweatherandclimateconditionscanaffect5G
andbeyondUAVcommunicationnetworksasitisdifficulttomeetQoSrequirements
underdynamicenvironmentswithvaryinglocations.Furtherworkrecommendsthat
adaptivebeamformingtechniquesforUAVcommunicationforbothmillimeterandTHz
bandsconsideringtheeffectsofvariousmeteorologicalconditionsshouldbestudiedand
modelsthatcanaccuratelypredictandmitigatetheseeffectsshouldbedeveloped.
Sustainability2022,14,1174454of67
11.Conclusions
Rainisasignificantsourceofattenuationforelectromagneticwavepropagation,par
ticularlywhenthefrequencyrangeexceeds10GHz.Thispaperconductedasystematic
reviewofresearcheffortsonrainattenuationmodels.Someoftheseinvestigationshave
resultedinnovelfindingsandmodels.Accordingtothestudy,existingrainattenuation
predictionmodelshavebeenclassifiedasempirical,statistical,physical,fadeslope,and
optimizationbasedmodels.Itcanbeseenthat,althoughtheCraneandITURmodelsare
themostwidelyusedmodelsforrainattenuationprediction,theyunder‐oroverestimate
theattenuationintropicalregions.Hence,noneoftheexistingmodelscanaccommodate
alltheenvironmentalfactorsconsideredinthedesignofawirelessnetwork.Thereisa
needformoreresearchindifferentenvironments.Also,RMSisthemostwidelycelebrated
methodfortestingtheaccuracyofthedevelopedrainattenuationmodelsfordifferent
environments.However,othermethodsthathavenotbeengiventheexpectedattention
arestillavailable.Thisstudyalsoexaminedexistingfadingmitigationapproacheswhere
itwasseenthattheadaptivewaveformtechniquesarethemostutilizedmethod.Machine
learningbasedmodelswerealsopresentedandfromthereview,itcanbeseenthatthis
researchareastillhasmanygapstofillintermsofdevelopingamodeltoaccuratelypre
dict,andparticularlytomitigaterainattenuation.Moreover,otherareasoffurtherre
searchthatcouldassistglobalcommunitiestoachievehigherpenetrationsofthenew
technologywerehighlighted.Ifallofthesearegiventheexpectedattention,thereis
roomforfurtherimprovementincost,reliability,andenergyconsumptionforfuturecom
municationnetworks.Thisstudycanserveasreferencematerialfornetworkdesigners
andfornewandexistingresearcherstoenhancetheirskillsindeveloping5Gandbeyond
5Gwirelessnetworks.
AuthorContributions:Themanuscriptwaswrittenthroughthecontributionsofallauthors.Con
ceptualization,E.A.,A.A.,I.A.,A.D.U.,andN.F.;methodology,I.F.Y.O.,K.S.A.,A.A.O.,andH.C.;
software,O.A.S.,L.A.O.,S.G.,andA.L.I.;validation,A.M.,Y.A.A.,andL.S.T.;formalanalysis,E.A.,
A.A.,I.A.,A.D.U.,andN.F.;investigation,I.F.Y.O.,K.S.A.,A.A.O.,andH.C.;resources,A.M.,
Y.A.A.,andL.S.T.;datacuration,O.A.S.,L.A.O.,S.G.,andA.L.I.;writing—originaldraftprepara
tion,E.A.,A.A.,I.A.,A.D.U.,andN.F.;writing—reviewandediting,O.A.S.,L.A.O.,S.G.,andA.L.I.;
visualization,A.M.,Y.A.A.,andL.S.T.;supervision,N.F.;projectadministration,Y.A.A.;funding
acquisition,N.F.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkisfundedbytheFederalRepublicofNigeriaundertheNationalResearchFund
(NRF)oftheTertiaryEducationTrustFund(TETFund)GrantNo.TETF/ES/DR&D
CE/NRF2020/SETI/64/VOL.1andbytheNigeriaCommunicationsCommission(NCC)underGrant
No.NCC/R&D/RG/SLU/001.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:TheworkofAgbotinameLuckyImoizeissupportedinpartbytheNigerian
PetroleumTechnologyDevelopmentFund(PTDF)andinpartbytheGermanAcademicExchange
Service(DAAD)throughtheNigerianGermanPostgraduateProgramundergrant57473408.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterestrelatedtothiswork.
Abbreviations
ACAdaptiveCoding
ACKAcknowledgement
ACMAdaptiveCodingandModulation
AM AdaptiveModulation
ARQ AutomaticRepeatRequest
ARS AverageRaindropSize
BERBitErrorRate
Sustainability2022,14,1174455of67
BPNNBackPropagationNeuralNetwork
CCDFComplementaryCumulativeDistributionFunction
CDF CumulativeDistributionFunction
CICloseIn
CMNCommercialMicrowaveNetwork
CRANCentralizedRadioAccessNetwork
CRCCyclicRedundancyCheck
CV Convective
DBSG3 DatabankStudyGroup3
DEADifferentialEvolutionApproach
DLPCDownlinkPowerControl
DRR DataRateReduction
DSD RaindropSizeDistribution
DVDDimensionalVideoDisdrometer
EEPCEndtoEndPowerControl
EIRP EffectiveIsotropicRadiatedPower
FDFrequencyDiversity
FECForwardErrorCorrection
FMT FadeMitigationTechnique
GPGaussianProcess
GPCC GlobalPrecipitationClimatologyCentre
GRSME GaussianRootMeanSquareError
ITUInternationalTelecommunicationUnion
IDWInverseDistanceWeighting
J
W
J
ossWaldvögel
LMDSLocalMultipointDistributedService
LOSLineofSight
mmWave MillimeterWave
MPM MillimeterWavePropagationModel
NACKNegativeAcknowledgement
NASA NationalAeronauticsandSpaceAdministration
NCCNigeriaCommunicationsCommission
NLOSNonLineofSight
NOAA NationalOceanicandAtmosphericAdministration
OBBS OnboardBeamShaping
PCT PowerControlTechnique
PL PathLength
PRRGPointRadioRefractiveGradient
QAMQuadratureAmplitudeModulation
QNMRN QuasiNewtonMultipleRegression
RMS RootMeanSquare
RMSE RootMeanSquareError
SatDSatelliteDiversity
SCRSME SpreadCorrectedRootSquareMeanError
SDSiteDiversity
SLANNSingleLayerArtificialNeuralNetwork
SML SupervisedMachineLearning
SSTSyntheticStormTechnique
STStratiform
TRMM TropicalRainfallMeasuringMission
ULPC UplinkPowerControl
Symbols
𝒂and𝒃Functionsoffrequency
𝑨
 Rainattenuation
𝒂𝒓Averagerainrate
𝑨
𝒄𝒍Attenuationduetocloud
𝑨
𝒅𝒓𝒚Lossesduetopath
Sustainability2022,14,1174456of67
𝑨
𝒆𝒇Effectiveaperturearea
𝑨
𝒈𝒔Totalattenuationduetowatervaporandoxygen
𝑨
𝒏𝑳Attenuationlossduetononlineofsight
𝑨
𝒐𝒙Attenuationduetodryair(oxygen)
𝑨
𝒑Rainattenuationexceededatp%ofthetime
𝑨
𝒓𝒂𝒅Attenuationduetoradome
𝑨
𝒘𝒆𝒕Lossesduetorain
𝑨
𝒘𝒗Attenuationduetowatervapor
CnInterpolationconstant
𝒅𝒄 Celldiameter
𝒅𝒓
Physicalthicknessofradome
𝒅𝒘
Physicalthicknessofwaterlayer
𝑫
Raindropsize
𝑬
Meanerror
𝑬𝑬󰇛∧󰇜
Electronenergyofthemolecule
𝑬𝒗󰇛𝒗󰇜
Vibrationalenergy
𝑬𝑹󰇛𝒋󰇜
Rotationalenergy
𝑬
𝒋
Expectedcountinacell𝒋
𝑬𝑴
Energyofthemolecules
𝑬𝑻
Translationalmotionenergy
𝒇
Frequency
𝑭𝒊 Oxygenorwatervaporlineshapefactor
𝒇
𝒓𝒑𝒓𝒊Principalrelaxationfrequency
𝒇
𝒓𝒔𝒆𝒄Secondaryrelaxationfrequency
𝒇
𝒔 Fadeslope
𝒈Gravitationalacceleration
𝑮𝒓𝒙Receivingantennagain
𝑮𝒕𝒙Transmittingantennagain
𝒉𝒐𝒙Equivalentheightfordryair
𝒉𝒘𝒗Equivalentheightforwatervapor
𝑰Variationcorrectionfactor
𝑰𝒇𝜸 Proposedincrementfactor
𝒋
Imaginaryunit
𝑳𝒄Pathlengthofthecell
𝑳𝑫Pathlengthofthedebris
𝑳𝒆𝒒Equivalentpropagationpathlength
𝑳𝒑Pathlength
𝑳𝑻Actualpathlength
𝑳𝒘𝒄Liquidwatercontent
𝑲Constantofproportionality
𝑲𝒍Cloudliquidwaterspecificattenuationcoefficient
𝒌𝒐 Freespacewavenumber
𝑴Amountofinformationinthemeasurementsetindex
𝑴𝒄Mie’sCoefficient
𝒏Generationindex
𝑵Numberofraingauges
𝑵󰇛𝑫,𝑹󰇜Distributionforraindropsize
𝑵𝒐𝒙
󰆒󰆒 󰇛
𝒇
󰇜Imaginarypartofthefrequencydependentcomplex
refractivityforoxygen
𝑵𝒘𝒗
󰆒󰆒 󰇛
𝒇
󰇜Imaginarypartofthefrequencydependentcomplex
refractivityforwatervapor
𝑵𝑫
󰆒󰆒󰇛
𝒇
󰇜 Drycontinuumduetopressureinducednitrogenab
sorptionandtheDebyespectrum
𝑶
𝒋
Observedcountinacell𝒋
𝒑Pressure
𝒑𝒕𝒐𝒕 Totalbarometricpressure
𝑷󰇛𝑨󰇜Cumulativeprobabilityofattenuation
Sustainability2022,14,1174457of67
𝑷𝒄Probabilityofacell
𝑷𝑫Probabilityofdebris
𝑷𝒅Powerdensity
𝑷𝒎Mutationvariable
𝑷𝑵𝑫󰇛𝑨󰇜Outagepercentageofanexactfademarginwithno
variation
𝑷𝑾𝑫󰇛𝑨󰇜Outagepercentagewiththesamefademargininthe
variationfrequency
𝑷󰇛𝜸󰇜 Probabilitythatspecificattenuationisexceeded
𝒓Pathreductionfactor
𝒓𝒂𝒗Averagepathreductionfactor
𝑹𝒄Rainrateforthecell
𝑹𝑫Rainrateforthedebris
𝑹𝒆Effectiverainrateforterrestriallinks
𝑹𝒇Rainfall
𝑹𝒊Weightedsumoftheraingaugesvalues
𝓡𝒎Measuredrainrate
𝓡𝒎
Meanmeasuredrainrate
𝑹𝒑Rainrateexceededat%pofthetime
𝓡𝒑Predictedrainrate
𝓡𝒑
Meanpredictedrainrate
𝑹𝒑𝒌 Peakintensity
𝑹𝒓Rainrate
𝑺𝒊Strengthofthe𝒊thoxygenorwatervaporline
𝑻Temperature
𝑻𝒂𝒕𝒕Totalattenuation
𝒕𝒑 Predictiontime
𝒕𝒘Thicknessofwaterlayer
𝒙󰇛𝒕󰇜 Percentageoftime
𝑾𝒄Lengthscaleforthecell
𝑾𝑫Lengthscaleforthedebris
𝒘𝒊Weightofeachraingaugevalue
𝒗Photonfrequency
GreekLetters
𝝏WidthparameterfortheDebyespectrum
ðRadiusoftheradome
𝜺Complexdielectricpermittivityconstant
𝜺𝒑Relativeerrormargin
𝜺󰇛𝒑󰇜𝑻Goodnessoffitfunction
𝝃𝒅Droplet’scomplexpermittivity
𝜼Normaldistributionfunction
𝜽Elevationangle
𝝈𝑫 Standarddeviationofthenaturallogarithmoftherain
rate
𝝈𝒇𝒔Fadeslopestandarddeviation
𝝀Wavelength
𝚸Conditionaldistributionofthefadeslope
𝝆Rankcorrelation
𝝆𝒅Distancefromthecenter
𝝆𝒅𝒐Conditionalaverageradius
𝝉𝒘Electricalthicknessofwaterlayer
𝝉𝒓Electricalthicknessofradome
𝝁𝒌Kinematicviscosityofwater
𝑿
Pearsongoodnessfitfunction
𝜸Specificrainattenuation
𝜸𝒂Averagespecificattenuation
𝜸𝒄 Cloudspecificattenuationcoefficient
Sustainability2022,14,1174458of67
𝜸𝒉,𝒗Specificrainattenuationforverticalandhorizontal
polarization
𝜸𝒐Specificattenuationduetooxygen
𝜸𝒘Specificattenuationduetowatervapor
References
1. Popoola,S.I.;Faruk,N.;Atayero,A.A.;Oshin,M.A.;Bello,O.W.;Mutafungwa,E.RadioAccessTechnologiesforSustainable
Deploymentof5GNetworksinEmergingMarkets.Int.J.Appl.Eng.Res.2017,12,14154–14172.
2. Ulaganathen,K.;Rahman,T.B.A.;Islam,M.R.;Abdullah,K.Rainattenuationfor5gnetworkintropicalregion(Malaysia)for
terrestriallink.Prog.Electromagn.Res.Lett.2020,90,99–104.https://doi.org/10.1109/MICC.2017.8311727.
3. Alabi,C.A.;Tooki,O.O.;Imoize,A.L.;Faruk,N.ApplicationofUAVAssisted5GCommunication:ACaseStudyoftheNigerian
Environment.InProceedingsofthe2022IEEENigeria4thInternationalConferenceonDisruptiveTechnologiesforSustainable
Development(NIGERCON),Lagos,Nigeria,5–7April2022;pp.1–5.
4. Farayo,H.H.;Oloyede,A.A.;Faruk,N.;Garba,S.;Idris,A.;Hassan,H.A.BlendedLearningEnvironments:AnExploratory
StudyofeLearningImplementationinNigeriaTertiaryInstitutionsDuetoCOVID19Pandemic.InProceedingsofthe2022
IEEENigeria4thInternationalConferenceonDisruptiveTechnologiesforSustainableDevelopment(NIGERCON),Lagos,Ni
geria,5–7April2022;pp.1–4.
5. Rahman,M.M.;Khatun,F.;Sami,S.I.;Uzzaman,A.TheEvolvingRolesandImpactsof5GEnabledTechnologiesinHealthcare:The
WorldEpidemicCOVID19Issues;Elsevier:Amsterdam,TheNetherlands,2022;Volume14,p.14.
6. Oloyede,A.A.;Faruk,N.;Raji,W.O.COVID19lockdownandremoteattendanceteachingindevelopingcountries:Areview
ofsomeonlinepedagogicalresources.Afr.J.Sci.Technol.Innov.Dev.2022,14,678–696.
https://doi.org/10.1080/20421338.2021.1889768.
7. Fahm,A.O.;Azeez,A.L.;ImamFulani,Y.O.;Mejabi,O.V.;Faruk,N.;Abdulrahaman,M.D.;Lukman,A.O.;Oloyede,A.A.;
SurajudeenBakinde.ICTenabledAlmajirieducationinNigeria:Challengesandprospects.Educ.Inf.Technol.2022,27,3135–
3169.https://doi.org/10.1007/s10639021104907.
8. Zeeshan,K.;Hämäläinen,T.;Neittaanmäki,P.InternetofThingsforSustainableSmartEducation:AnOverview.Sustainability
2022,14,4293.https://doi.org/10.3390/su14074293.
9. Tang,Y.;Dananjayan,S.;Hou,C.;Guo,Q.;Luo,S.;He,Y.ASurveyonthe5GNetworkandItsImpactonAgriculture:Chal
lengesandOpportunities.Comput.Electron.Agric.2021,180,105895,doi:10.1016/j.compag.2020.105895.
10. SaidMohamed,E.;Belal,A.A.;KotbAbdElmabod,S.;ElShirbeny,M.A.;Gad,A.;Zahran,M.B.SmartFarmingforImproving
AgriculturalManagement.Egypt.J.RemoteSens.Sp.Sci.2021,24,971–981,doi:10.1016/j.ejrs.2021.08.007.
11. Adediran,Y.;Opadiji,J.F.;Faruk,N.;Bello,O.OnIssuesandChallengesofRuralTelecommunicationsAccessinNigeria.African
J.Educ.Sci.Technol.2016,3,16–26.
12. Bello,O.W.;Opadiji,J.F.;Faruk,N.;Adediran,Y.A.OpportunitiesforUniversalTelecommunicationAccessinRuralCommu
nities:ACaseStudyof15RuralVillagesinNigeria’sKwaraState.AfricanJ.Inf.Commun.2016,2016,139–163,
doi:10.23962/10539/21625.
13. Ekpe,U.M.;Umoh,V.B.;Agbeb,N.S.EliminatingtheDigitalDivideinNigeria:PolicyDirectionand5GDeploymentMethod
ology.InProceedingsofthe20211stInternationalConferenceonMultidisciplinaryEngineeringandAppliedScience(IC
MEAS),Abuja,Nigeria,15–16July2021.https://doi.org/10.1109/ICMEAS52683.2021.9692399.
14. Faruk,N.;Bello,O.;Sowande,O.;Onidare,S.;Muhammad,M.;Ayeni,A.LargeScaleSpectrumSurveyinRuralandUrban
Environmentswithinthe50MHz–6GHzBands.Measurement2016,91,228–238.
15. Faruk,N.;ImamFulani,Y.;Sikiru,I.A.;Popoola,S.I.;Oloyede,A.A.;Olawoyin,L.A.;SurajudeenBakinde,N.T.;Sowande,A.O.
SpatialvariabilityanalysisofdutycycleinGSMband.InProceedingsofthe2017IEEE3rdInternationalConferenceonElectro
TechnologyforNationalDevelopment(NIGERCON),Owerri,Nigeria,7–10November2017;Volume3.
16. Faruk,N.;Ramon,A.Q.;Popoola,S.I.;Oloyede,A.A.;Olawoyin,L.A.;SurajudeenBakinde,N.T.;Abdulkarim,A.;Adediran,
Y.A.SpectrumSurveyandCoexistenceStudiesintheTV,WLAN,ISMandRadarBandsforWirelessBroadbandServices.In
ProceedingsoftheCEURWorkshopProceedings,Luxembourg,27–29November2019;Volume2544.
17. Sowande,O.A.;Idachaba,F.E.;Ekpo,S.C.;Faruk,N.;Karimian,N.;Ogunmodimu,O.;Oloyede,A.A.;Olawoyin,L.A.;Abdul
kareem,S.A.Designofa3.8GHzMicrostripPatchAntennaforSub6GHz5GApplications.InProceedingsofthe2022IEEE
Nigeria4thInternationalConferenceonDisruptiveTechnologiesforSustainableDevelopment(NIGERCON),Lagos,Nigeria,
5–7April2022;pp.1–5.
18. Sowande,O.;Idachaba,F.;Ekpo,S.;Faruk,N.;Uko,M.;Ogunmodimu,O.Sub6GHz5GSpectrumforSatelliteCellularCon
vergenceBroadbandInternetAccessinNigeria.Int.Rev.Aerosp.Eng.2022,15,2.https://doi.org/10.15866/irease.v15i2.20240.
19. Zhao,Q.;Jin,L.Rainattenuationinmillimeterwaveranges.InProceedingsofthe20067thInternationalSymposiumonAn
tennas,Propagation&EMTheory,Guilin,China,26–29October2006.
20. Huang,J.;Cao,Y.;Raimundo,X.;Cheema,A.;Salous,S.RainStatisticsInvestigationandRainAttenuationModelingforMilli
meterWaveShortRangeFixedLinks.IEEEAccess2019,7,156110–156120.https://doi.org/10.1109/ACCESS.2019.2949437.
21. Han,C.;Bi,Y.;Duan,S.;Lu,G.RainRateRetrievalTestfrom25GHz,28GHz,and38GHzMillimeterWaveLinkMeasurement
inBeijing.IEEEJ.Sel.Top.Appl.EarthObs.RemoteSens.2019,12,2835–2847.https://doi.org/10.1109/JSTARS.2019.2918507.
Sustainability2022,14,1174459of67
22. Zahid,O.;Huang,J.;Salous,S.LongTermRainAttenuationMeasurementsatMillimeterWaveBandsforDirectandSideShort
RangeFixedLinks.InProceedingsofthe2020XXXIIIrdGeneralAssemblyandScientificSymposiumoftheInternationalUnion
ofRadioScience,Rome,Italy,29August–5September2020;pp.12–15.https://doi.org/10.23919/URSIGASS49373.2020.9232024.
23. Niu,Y.;Li,Y.;Jin,D.;Su,L.;Vasilakos,A.V.Asurveyofmillimeterwavecommunications(mmWave)for5G:Opportunities
andchallenges.Wirel.Netw.2015,21,2657–2676.https://doi.org/10.1007/s112760150942z.
24. Faruk,N.;Ayeni,A.A.;Adediran,Y.A.OnthestudyofempiricalpathlossmodelsforaccuratepredictionofTVsignalfor
secondaryusers.Prog.Electromagn.Res.B2013,49,155–176.https://doi.org/10.2528/PIERB13011306.
25. Faruk,N.;Popoola,S.I.;SurajudeenBakinde,N.T.;Oloyede,A.A.;Abdulkarim,A.;Olawoyin,L.A.;Ali,M.;Calafate,C.T.;
Atayero,A.A.PathlosspredictionsintheVHFandUHFbandswithinurbanenvironments:Experimentalinvestigationof
empirical,heuristicsandgeospatialmodels.IEEEAccess2019,7,7293–77307.https://doi.org/10.1109/ACCESS.2019.2921411.
26. Faruk,N.;Abdulrasheed,I.Y.;SurajudeenBakinde,N.T.;Adetiba,E.;Oloyede,A.A.;Abdulkarim,A.;Sowande,O.;Ifijeh,A.H.;
Atayero,A.A.LargescaleradiopropagationpathlossmeasurementsandpredictionsintheVHFandUHFbands.Heliyon2021,
7,e07298.
27. Chittimoju,G.;Yalavarthi,U.D.AComprehensiveReviewonMillimeterWavesApplicationsandAntennas.J.Phys.Conf.Ser.
2021,1804,12205.https://doi.org/10.1088/17426596/1804/1/012205.
28. Adebowale,Q.R.;Faruk,N.;Adewole,K.S.;Abdulkarim,A.;Olawoyin,L.A.;Oloyede,A.A.;Chiroma,H.;Usman,A.D.;
Calafate,C.T.ApplicationofComputationalIntelligenceAlgorithmsinRadioPropagation:ASystematicReviewandMetadata
Analysis.Mob.Inf.Syst.2021,2021,6619364.https://doi.org/10.1155/2021/6619364.
29. Adebowale,Q.R.;Faruk,N.;Adewole,K.S.;Abdulkarim,A.;Oloyede,A.A.;Chiroma,H.;Sowande,O.A.;Usman,A.D.;
Olayinka,I.F.Y.;etal.EffectofTrainingAlgorithmsandNetworkArchitectureonthePerformanceofMultiBandANNBased
PathLossPredictionModel.InProceedingsofthe2022IEEENigeria4thInternationalConferenceonDisruptiveTechnologies
forSustainableDevelopment(NIGERCON),Lagos,Nigeria,5–7April2022;pp.1–5.
30. Isabona,J.;Kehinde,R.;Imoize,A.L.;Ojo,S.;Faruk,N.LargescaleSignalAttenuationandShadowFadingMeasurementand
ModellingforEfficientWirelessNetworkDesignandManagement.InProceedingsofthe2022IEEENigeria4thInternational
ConferenceonDisruptiveTechnologiesforSustainableDevelopment(NIGERCON),Lagos,Nigeria,5–7April2022;pp.1–5.
31. Ojo,J.S.;Ajewole,M.O.;Sarkar,S.K.RainrateandrainattenuationpredictionforsatellitecommunicationinKuandKabands
overNigeria.Prog.Electromagn.Res.B2008,5,207–223.https://doi.org/10.2528/pierb08021201.
32. Seah,S.J.;Jong,S.L.;Lam,H.Y.Atmosphericimpairmentsandmitigationtechniquesforhighfrequencyearthspacecommuni
cationsysteminheavyrainregion:Abriefreview.Int.J.Integr.Eng.2019,11,159–168.
https://doi.org/10.30880/ijie.2019.11.03.017.
33. Isabona,J.;Imoize,A.L.;Rawat,P.;Jamal,S.S.;Pant,B.;Ojo,S.;Hinga,S.K..RealisticPrognosticModelingofSpecificAttenua
tionduetoRainatMicrowaveFrequencyforTropicalClimateRegion.Wirel.Commun.Mob.Comput.2022,2022,8209256.
https://doi.org/10.1155/2022/8209256.
34. Isabona,J.;Imoize,A.L.;Ojo,S.;Lee,C.C.;Li,C.T.AtmosphericPropagationModellingforTerrestrialRadioFrequencyCom
municationLinksinaTropicalWetandDrySavannaClimate.Information2022,13,141.https://doi.org/10.3390/info13030141.
35. Mello,L.d.;Pontes,M.;Fagundes,I.;Andrade,F.;Almeida,M.Rainattenuationinconvergingterrestriallinks:Measurements
andmodeling.InProceedingsofthe8thEuropeanConferenceonAntennasandPropagation,EuCAP2014,TheHague,The
Netherlands,6–11April2014;pp.3504–3505.https://doi.org/10.1109/EuCAP.2014.6902585.
36. Livieratos,S.;Ioannidis,Z.;Savaidis,S.;Mitilineos,S.;Stathopoulos,N.Anewpredictionmethodofrainattenuationalong
millimeterwavelinksbasedonabivariatemodelfortheeffectivepathlengthandweibulldistribution.Prog.Electromagn.Res.
C2019,97,29–41.https://doi.org/10.2528/pierc19081704.
37. Crane,R.K.PredictionofAttenuationbyRain.IEEETrans.Commun.1980,28,1717–1733.
https://doi.org/10.1109/TCOM.1980.1094844.
38. Develi,I.DifferentialevolutionbasedpredictionofrainattenuationoveraLOSterrestriallinksituatedinthesouthernUnited
Kingdom.RadioSci.2007,42,1–6.https://doi.org/10.1029/2006rs003615.
39. Moupfouma,F.Electromagneticwavesattenuationduetorain:ApredictionmodelforterrestrialorL.O.SSHFandEHFradio
communicationlinks.J.InfraredMillim.TerahertzWaves2009,30,622–632.https://doi.org/10.1007/s107620099481y.
40. Mello,L.D.;Pontes,M.S.Unifiedmethodforthepredictionofrainattenuationinsatelliteandterrestriallinks.J.Microw.Opto
electron.Electromagn.Appl.2012,11,1–14.https://doi.org/10.1590/s217910742012000100001.
41. Ghiani,R.;Luini,L.;Fanti,A.Aphysicallybasedrainattenuationmodelforterrestriallinks.RadioSci.2017,52,972–980.
https://doi.org/10.1002/2017RS006320.
42. Livieratos,S.N.;Cottis,P.G.Rainattenuationalongterrestrialmillimeterwavelinks:Anewpredictionmethodbasedonsuper
visedmachinelearning.IEEEAccess2019,7,138745–138756.https://doi.org/10.1109/ACCESS.2019.2939498.
43. Budalal,A.A.H.;Islam,M.R.;Abdullah,K.;Rahman,T.A.ModificationofDistanceFactorinRainAttenuationPredictionfor
ShortRangeMillimeterWaveLinks.IEEEAntennasWirel.Propag.Lett.2020,19,1027–1031.
https://doi.org/10.1109/LAWP.2020.2987462.
44. ITUR.RecommendationITURP.8383:SpecificAttenuationModelforRain;InternationalTelecommunicationUnion:Geneva,
Switzerland,2005;pp.1–8.Availableonline:https://www.itu.int/dms_pubrec/itur/rec/p/RRECP.8383200503I!!PDFE.pdf
(accessedon31May2022).
Sustainability2022,14,1174460of67
45. ITUR.RecommendationITURP.61813PropagationDataandPredictionMethodsRequiredfortheDesignofEarthSpace
TelecommunicationSystemsPSeriesRadiowavePropagation.2017.Volume13.Availableonline:http://www.itu.int/ITU
R/go/patents/en(accessedon31May2022).
46. Samad,M.D.A.;Choi,D.Y.Learningassistedrainattenuationpredictionmodels.Appl.Sci.2020,10,6017.
https://doi.org/10.3390/app10176017.
47. Samad,M.A.;Diba,F.D.;Choi,D.Y.ASurveyofRainAttenuationPredictionModelsforTerrestrialLinks—CurrentResearch
ChallengesandStateoftheArt.Sensors2021,21,1207,doi:10.3390/s21041207.
48. Emiliani,L.D.;Agudelo,J.;Gutierrez,E.;Restrepo,J.;FradiqueMendez,C.Developmentofrainattenuationandrainratemaps
forsatellitesystemdesignintheKuandKabandsinColombia.IEEEAntennasPropag.Mag.2004,46,54–68.
https://doi.org/10.1109/MAP.2004.1396736.
49. Pontes,M.S.;DaSilvaMello,L.;DeSouza,R.S.L.;Miranda,E.C.B.ReviewofRainAttenuationStudiesinTropicalandEquato
rialRegionsinBrazil.InProceedingsofthe2005IEEEThailand5thInternationalConferenceonInformation,Communications
andSignalProcessing,Bangkok,Thailand,6–9December2005;pp.1097–1101.
50. Sen,R.;Singh,M.P.Effectofrainonmillimeter—Wavepropagation—Areview.AIPConf.Proc.2007,923,45–76,
doi:10.1063/1.2767014.
51. Bhattacharya,R.;Das,R.;Guha,R.;Barman,S.D.;Bhattacharya,A.B.Variabilityofmillimetrewaverainattenuationandrain
rateprediction:Asurvey.IndianJ.RadioSp.Phys.2007,36,325–344.
52. Emiliani,L.D.;Luini,L.;Capsoni,C.Analysisandparameterizationofmethodologiesfortheconversionofrainratecumulative
distributionsfromvariousintegrationtimestooneminute.IEEEAntennasPropag.Mag.2009,51,70–80.
https://doi.org/10.1109/MAP.2009.5251195.
53. Joshi,S.Areviewonrainattenuationofradiowaves.Int.J.Eng.Innov.Res.2012,4,59–64.Availableonline:http://ijeir.org/ad
ministrator/components/com_jresearch/files/publications/IJEIRSUMIT(accessedon2August2022).
54. Ulaganathen,K.;Rahman,T.A.;Rahim,S.K.A.;Islam,R.M.Reviewofrainattenuationstudiesintropicalandequatorialregions
inMalaysia:Anoverview.IEEEAntennasPropag.Mag.2013,55,103–113.https://doi.org/10.1109/MAP.2013.6474490.
55. Kotamraju,S.K.;Korada,C.S.K.Precipitationandotherpropagationimpairmentseffectsatmicrowaveandmillimeterwave
bands:Aminisurvey.ActaGeophys.2019,67,703–719.https://doi.org/10.1007/s1160001802387.
56. Christofilakis,V.;Tatsis,G.;Chronopoulos,S.K.;Sakkas,A.;Skrivanos,A.G.;Peppas,K.P.;Nistazakis,H.E.;Baldoumas,G.;
Kostarakis,P.Earthtoearthmicrowaverainattenuationmeasurements:Asurveyontherecentliterature.Symmetry2020,12,
1440.https://doi.org/10.3390/sym12091440.
57. Chakraborty,S.;Chakraborty,M.;Das,S.ExperimentalStudiesofSlantPathRainAttenuationoverTropicalandEquatorial
Regions:ABriefReview.IEEEAntennasPropag.Mag.2021,63,52–62.https://doi.org/10.1109/MAP.2020.2976911.
58. Samad,M.A.;Ahmed,M.R.;Rashid,S.Z.AnoverviewofrainattenuationresearchinBangladesh.Indones.J.Electr.Eng.Comput.
Sci.2021,23,902–909.https://doi.org/10.11591/ijeecs.v23.i2.pp902909.
59. Samad,M.A.;Choi,D.Y.Scalingofrainattenuationmodels:Asurvey.Appl.Sci.2021,11,8360.
https://doi.org/10.3390/app11188360.
60. Samad,M.A.;Diba,F.D.;Choi,D.Y.Asurveyofrainfademodelsforearth–spacetelecommunicationlinks—Taxonomy,meth
ods,andcomparativestudy.RemoteSens.2021,13,1965.https://doi.org/10.3390/rs13101965.
61. Busari,H.O.;Fakolujo,O.A.RainAttenuationPredictionModelsinMicrowaveandMillimeterBandsforSatelliteCommuni
cationSystem:AReview.FUOYEJ.Eng.Technol.2021,6,1.https://doi.org/10.46792/fuoyejet.v6i1.576.
62. Shayea,I.;Rahman,T.;HadriAzmi,M.;Islam,M.R.RealMeasurementStudyforRainRateandRainAttenuationConducted
Over26GHzMicrowave5GLinkSysteminMalaysia.IEEEAccess2018,26,19044–19064.https://doi.org/10.1109/ac
cess.2018.2810855.
63. Singh,H.;Kumar,V.;Saxena,K.;Boncho,B.;Prasad,R.ProposedModelforRadioWaveAttenuationduetoRain(RWAR).
Wirel.Pers.Commun.2020,115,791–807.https://doi.org/10.1007/s11277020075983.
64. Group,S.3Databanks—DBSG3.ITU.2022.Volume6.Availableonline:https://www.itu.int/en/ITUR/study
groups/rsg3/Pages/dtbankdbsg3.aspx(accessedon18August2022).
65. Lwas,A.K.;Islam,M.R.;Chebil,J.;Habaebi,M.H.;Ismail,A.F.;Zyoud,A.;Dao,H.Rainattenuationanalysisusingsynthetic
stormtechniqueinMalaysia.IOPConf.Ser.Mater.Sci.Eng.2013,53,12045.https://doi.org/10.1088/1757899X/53/1/012045.
66. Giannetti,F.;Reggiannini,R.;Moretti,M.;Adirosi,E.;Baldini,L.;Facheris,L.;Antonini,A.;Melani,S.;Bacci,G.;Petrolino,A.
etal.Realtimerainrateevaluationviasatellitedownlinksignalattenuationmeasurement.Sensors2017,17,1864.
https://doi.org/10.3390/s17081864.
67. Pickering,B.S.;Neely,R.R.;Harrison,D.TheDisdrometerVerificationNetwork(DiVeN):AUKnetworkoflaserprecipitation
instruments.Atmos.Meas.Tech.2019,12,5845–5861.https://doi.org/10.5194/amt1258452019.
68. Lam,H.Y.;Din,J.;Jong,S.L.StatisticalandphysicaldescriptionsofraindropsizedistributionsinequatorialMalaysiafrom
disdrometerobservations.Adv.Meteorol.2015,2015,253730.https://doi.org/10.1155/2015/253730.
69. Ahuna,M.N.;Afullo,T.J.;Alonge,A.A.30secondandoneminuterainfallratemodellingandconversionformillimetricwave
propagationinSouthAfrica.SAIEEAfr.Res.J.2016,107,17–29.https://doi.org/10.23919/saiee.2016.8532248.
70. Alhilali,M.;Din,J.;Schönhuber,M.;Lam,H.Y.Estimationofmillimeterwaveattenuationduetorainusing2Dvideodistrom
eterdatainMalaysia.Indones.J.Electr.Eng.Comput.Sci.2017,7,164–169.https://doi.org/10.11591/ijeecs.v7.i1.pp164169.
Sustainability2022,14,1174461of67
71. Luini,L.;Roveda,G.;Zaffaroni,M.;Costa,M.;Riva,C.G.TheImpactofRainonShort{E}‐BandRadioLinksfor5GMobile
Systems:ExperimentalResultsandPredictionModels.IEEETrans.AntennasPropag.2020,68,3124–3134.
https://doi.org/10.1109/TAP.2019.2957116.
72. Ibekwe,E.C.;Igwe,K.C.;Eichie,J.O.Rainattenuationpredictionfor5GcommunicationlinksinMinna,Nigeria.J.Phys.Conf.
Ser.2021,2034,12028.https://doi.org/10.1088/17426596/2034/1/012028.
73. Erbakanov,L.;Staneva,L.;Vardeva,I.Usingalongtimeconstantintegratorinrainfallintensitymeasuringviaacousticmethod.
InProceedingsofthe201820thInternationalSymposiumonElectricalApparatusandTechnologies(SIELA),Bourgas,Bulgaria,
3–6June2018;pp.1–4.https://doi.org/10.1109/SIELA.2018.8447073.
74. Sokol,Z.;Szturc,J.;OrellanaAlvear,J.;Popová,J.;Jurczyk,A.;Célleri,R.Theroleofweatherradarinrainfallestimationand
itsapplicationinmeteorologicalandhydrologicalmodelling—Areview.RemoteSens.2021,13,351.
https://doi.org/10.3390/rs13030351.
75. Hong,Y.;Tang,G.;Ma,Y.;Huang,Q.;Han,Z.;Zeng,Z.;Yang,Y.;Wang,C.;Guo,X.RemoteSensingPrecipitation:Sensors,
Retrievals,Validations,andApplications.InObservationandMeasurementofEcohydrologicalProcesses;Springer:Cham,Switzer
land,2019;pp.107–128.https://doi.org/10.1007/9783662482971_4.
76. Mandeep,J.S.;Tanaka,K.Effectofatmosphericparametersonsatellitelink.Int.J.InfraredMillim.Waves2007,28,789–795.
https://doi.org/10.1007/s107620079269x.
77. Pitas,K.;Fiser,O.Onrainfalltypeclassificationtoimproverainattenuationprediction.InProceedingsofthe202030thInter
nationalConferenceRadioelektronika(RADIOELEKTRONIKA),Bratislava,Slovakia,15–16April2020;pp.1–4.
https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092381.
78. Samat,F.;Singh,M.J.;Sali,A.;Zainal,N.AComprehensiveReviewoftheSiteDiversityTechniqueinTropicalRegion:Evalu
ationofPredictionModelsUsingSiteDiversityGainofGreeceandIndia.IEEEAccess2021,9,105060–105071.
https://doi.org/10.1109/ACCESS.2021.3100363.
79. Luini,L.;Riva,C.;Capsoni,C.OntheaccuracyofsimplifiedmodelsforwatervaporattenuationpredictionatKabandandQ
band.InProceedingsofthe2019URSIAsiaPacificRadioScienceConference(APRASC),NewDelhi,India,9–15March2019;
pp.1–4.https://doi.org/10.23919/URSIAPRASC.2019.8738387.
80. Choi,Y.;Kim,S.RainTypeClassificationfromMicrowaveSatelliteObservationsUsingDeepNeuralNetworkSegmentation.
IEEEGeosci.RemoteSens.Lett.2021,18,2137–2141.https://doi.org/10.1109/LGRS.2020.3016001.
81. Alonge,A.A.;Afullo,T.J.RainfallratemodelingforvariousrainfalltypesinSouthAfrica.InProceedingsoftheIEEEAfricon
’11,VictoriaFalls,Zambia,13–15September2011;Volume11.https://doi.org/10.1109/AFRCON.2011.6072002.
82. Owolawi,P.A.RainfallrateprobabilitydensityevaluationandmappingfortheestimationofrainattenuationinSouthAfrica
andsurroundingislands.Prog.Electromagn.Res.2011,112,155–181.https://doi.org/10.2528/PIER10082504.
83. Ibiyemi,T.S.;Ajewole,O.;Ojo,J.;Obiyemi,O.Rainrateandrainattenuationpredictionwithexperimentalrainattenuation
effortsinSouthWesternNigeria.InProceedingsofthe201220thTelecommunicationsForum(TELFOR),Belgrade,Serbia,20–
22November2012.https://doi.org/10.1109/TELFOR.2012.6419213.
84. Semire,F.A.;MohdMokhtar,R.;Akanbi,I.A.ValidationofNewITURRainAttenuationPredictionModeloverMalaysiaEqua
torialRegion.MapanJ.Metrol.Soc.India2019,34,71–77.https://doi.org/10.1007/s126470180295z.
85. De,A.;Maitra,A.RadiometricMeasurementsofAtmosphericAttenuationOveraTropicalLocation.RadioSci.2020,55,10.
https://doi.org/10.1029/2020RS007093.
86. Maitra,A.;Chakraborty,S.Cloudliquidwatercontentandcloudattenuationstudieswithradiosondedataatatropicallocation.
J.InfraredMillim.TerahertzWaves2009,30,367–373.https://doi.org/10.1007/s1076200894528.
87. Das,S.;Maitra,A.;Shukla,A.K.Rainattenuationmodelinginthe10100GHzfrequencyusingdropsizedistributionsfordif
ferentclimaticzonesintropicalIndia.Prog.Electromagn.Res.B2010,25,211–224.https://doi.org/10.2528/PIERB10072707.
88. Patra,T.;Mitra,S.K.RainAttenuationPredictedModelfor5GCommunicationinTropicalRegions.Int.J.Eng.Adv.Technol.
2020,9,1151–1158.https://doi.org/10.35940/ijeat.c5134.029320.
89. Abdulrahman,A.Y.;Rahman,T.A.;Rahim,S.K.A.;Islam,M.R.U.Anewrainattenuationconversiontechniquefortropical
regions.Prog.Electromagn.Res.B2010,26,53–67.https://doi.org/10.2528/PIERB10062105.
90. Seah,S.J.;Jong,S.L.;Lam,H.Y.;Din,J.Rainfademarginofterrestriallineofsight(LOS)linksfor5GnetworksinPeninsular
Malaysia.Int.J.Microw.Wirel.Technol.2022,14,750–760.https://doi.org/10.1017/S1759078721000751.
91. Rashid,M.;Din,J.Effectsofreductionfactoronrainattenuationpredictionsovermillimeterwavelinksfor5gapplications.
Bull.Electr.Eng.Inform.2020,9,1907–1915.https://doi.org/10.11591/eei.v9i5.2188.
92. Huang,J.;Gong,S.;Cai,B.ThefrequencyscalingratiofactorofrainattenuationinKawavebandalongearthspacepathin
China.InProceedingsofthe2011SecondInternationalConferenceonMechanicAutomationandControlEngineering,Inner
Mongolia,China,15–17July2011;pp.7831–7833.https://doi.org/10.1109/MACE.2011.5988868.
93. Li,L.;Zhu,Y.J.;Zhao,B.RainratedistributionsforChinafromhourlyraingaugedata.RadioSci.1998,33,553–564.
https://doi.org/10.1029/97RS03184.
94. Shrestha,S.;Choi,D.Y.RainattenuationstatisticsovermillimeterwavebandsinSouthKorea.J.Atmos.SolarTerr.Phys.2017,
152–153,1–10.https://doi.org/10.1016/j.jastp.2016.11.004.
95. Linga,P.H.;Iddi,H.U.;Kissaka,M.ContourMappingforRainRateandRainAttenuationinMicrowaveandMillimetreWave
EarthSatelliteLinkDesigninTropicalTanzania.TanzaniaJ.Sci.2020,46,982–987.Availableonline:https://www.ajol.info/in
dex.php/tjs/article/view/201157/189680(accessedon2July2022).
Sustainability2022,14,1174462of67
96. Ahuna,M.;Afullo,T.J.O.;Alonge,A.Rainattenuationpredictionusingartificialneuralnetworkfordynamicrainfademitiga
tion.SAIEEAfr.Res.J.2019,110,11–18.https://doi.org/10.23919/SAIEE.2019.8643146.
97. Onaya,J.;Akuon,P.O.;Kalecha,V.O.Rainattenuationpredictionforterrestriallinksatmicrowaveandmillimeterbandsover
Kenya.InProceedingsoftheIEEEAFRICONConference,Arusha,Tanzania,13–15September2021;pp.1–5.
https://doi.org/10.1109/AFRICON51333.2021.9570878.
98. Owolawi,P.A.;Malinga,S.J.;Afullo,T.J.O.Estimationofterrestrialrainattenuationatmicrowaveandmillimeterwavesignals
inSouthAfricausingtheITURmodel.InProceedingsofthePIERSProceeding,KualaLumpur,Malaysia,27–30March2012.
99. Ojo,J.S.;Owolawi,P.A.Developmentofoneminuterainrateandrainattenuationcontourmapsforsatellitepropagationsys
templanninginasubtropicalcountry:SouthAfrica.Adv.Sp.Res.2014,54,1487–1501.https://doi.org/10.1016/j.asr.2014.06.028.
100. Mulangu,C.T.;Afullo,T.J.VariabilityofthepropagationcoefficientsduetorainformicrowavelinksinsouthernAfrica.Radio
Sci.2009,44,1–10,https://doi.org/10.1029/2008RS003912.
101. Akobre,S.;Ibrahim,M.;Salifu,A.M.RainRateandRainAttenuationGeographicalMapforSatelliteSystemPlanninginGhana.
Int.J.Comput.Appl.2020,177,34–45.https://doi.org/10.5120/ijca2020919911.
102. Zarkadas,K.;Dimitrakopoulos,G.RainAttenuationin5GWirelessBroadbandBackhaulLinkandDevelop(IoT)RainfallMon
itoringSystem.Int.J.Adv.Comput.Sci.Appl.2021,12,1–8.https://doi.org/10.14569/IJACSA.2021.0120501.
103. Christofilakis,V.;Tatsis,G.;Lolis,C.J.;Chronopoulos,S.K.;Kostarakis,P.;Bartzokas,A.;Nistazakis,H.E.Arainestimation
modelbasedonmicrowavesignalattenuationmeasurementsinthecityofIoannina,Greece.Meteorol.Appl.2020,27,4.
https://doi.org/10.1002/met.1932.
104. Papatsoris,A.D.;Polimeris,K.;Lazou,A.A.Developmentofrainattenuationandrainratemapsforsatellitecommunications
systemdesigninGreece.InProceedingsofthe2008IEEEAntennasandPropagationSocietyInternationalSymposium,San
Diego,CA,USA,5–11July2008;pp.1–4.https://doi.org/10.1109/APS.2008.4619005.
105. Rimven,G.R.;Paulson,K.S.;Bellerby,T.EstimatingOneMinuteRainRateDistributionsintheTropicsfromTRMMSatellite
Data(October2017).IEEEJ.Sel.Top.Appl.EarthObs.RemoteSens.2018,11,3660–3667.
https://doi.org/10.1109/JSTARS.2018.2869322.
106. GarciaLopez,J.A.;CasaresGiner,V.ModifiedLin’sempiricalformulaforcalculatingrainattenuationonaterrestrialpath.
Electron.Lett.1981,17,34–36.https://doi.org/10.1049/el:19810026.
107. Abdulrahman,A.Y.;Rahman,T.A.;Rahim,S.K.A.;Islam,M.R.;Abdulrahman,M.K.A.Rainattenuationpredictionsonterres
trialradiolinks:Differentialequationsapproach.Eur.Trans.Telecommun.2012,23,293–301,Availableonline:
https://core.ac.uk/download/pdf/300401941.pdf(accessedon31August2022).
108. Mello,L.A.R.d.;Pontes,M.S.Improvedunifiedmethodforthepredictionofrainattenuationinterrestrialandearthspacelinks.
InProceedingsoftheSBMO/IEEEMTTSInternationalMicrowaveandOptoelectronicsConferenceProceedings,Belem,Brazil,
3–6November2009;pp.569–573.https://doi.org/10.1109/IMOC.2009.5427520.
109. Lam,H.Y.;Luini,L.;Din,J.;Alhilali,M.J.;Jong,S.L.;Cuervo,F.Impactofrainattenuationon5Gmillimeterwavecommunica
tionsystemsinequatorialMalaysiainvestigatedthroughdisdrometerdata.InProceedingsofthe201711thEuropeanConfer
enceonAntennasandPropagation(EUCAP),Paris,France,19–24March2017;pp.1793–1797.https://doi.org/10.23919/Eu
CAP.2017.7928616.
110. Ghanim,M.;Alhilali,M.;Din,J.;Lam,H.Y.Rainattenuationstatisticsover5GmillimetrewavelinksinMalaysia.InProceedings
ofthe20185thInternationalConferenceonElectricalEngineering,ComputerScienceandInformatics(EECSI),Malang,Indo
nesia,16–18October2018;pp.266–269.https://doi.org/10.1109/EECSI.2018.8752836.
111. Ajayi,G.O.;Feng,S.;Radicella,S.M.;Reddy,B.M.HandbookonRadiopropagationRelatedtoSatelliteCommunicationsinTropicaland
SubtropicalCountries;InternationalCentreforTheoreticalPhysics:Trieste,Italy,1996.
112. Olsen,R.L.;Rogers,D.V.;Hodge,D.B.TheaRbRelationintheCalculationofRainAttenuation.IEEETrans.AntennasPropag.
1978,26,318–329.https://doi.org/10.1109/TAP.1978.1141845.
113. Tharek,A.R.;Din,J.RainfalldropssizedistributionmeasurementsinMalaysia.InProceedingsoftheURSICommissionF1992
SymposiumWavePropagationandRemoteSensing,Ravenscar,UK,8–12June1992.
114. Ajayi,G.O.;Olsen,R.L.Modelingofatropicalraindropsizedistributionformicrowaveandmillimeterwaveapplications.Radio
Sci.1985,20,193–202.https://doi.org/10.1029/RS020i002p00193.
115. Ong,J.T.;Shan,Y.Y.RaindropsizedistributionmodelsforSingapore—Comparisonwithresultsfromdifferentregions.In
ProceedingsoftheTenthInternationalConferenceonAntennasandPropagation,Edinburgh,UK,14–17April1997.
https://doi.org/10.1049/cp:19970382.
116. Badron,K.;Ismail,A.F.;Islam,M.R.;Abdullah,K.;Din,J.;Tharek,A.R.Amodifiedrainattenuationpredictionmodelfortrop
icalVbandsatelliteearthlink.Int.J.Satell.Commun.Netw.2015,33,57–67.https://doi.org/10.1002/sat.1071.
117. Zahid,O.;Salous,S.LongTermRainAttenuationMeasurementforShortRangemmWaveFixedLinkUsingDSDandITUR
PredictionModels.RadioSci.2022,57,4.https://doi.org/10.1029/2021RS007307.
118. Nissirat,L.;Alsamawi,A.;Shayea,I.;Azmi,M.;Ergen,M.;Rahman,T.A.ComparisonofITUModels’PerformanceinPredicting
MalaysiasTropicalRainfallRateandRainAttenuationat26GHzmmWavePropagation.TechRxiv2021,
https://doi.org/10.36227/techrxiv.17306339.v1.
119. Seah,S.J.CharacterizationofRainAttenuationStatisticsfor5GCommunicationSystemintheEquatorialRegion.Int.J.Adv.
TrendsComput.Sci.Eng.2020,9,157–162.https://doi.org/10.30534/ijatcse/2020/2391.42020.
Sustainability2022,14,1174463of67
120. AlSaman,A.M.;Cheffena,M.;Mohamed,M.;Azmi,M.H.;Ai,Y.StatisticalAnalysisofRainatMillimeterWavesinTropical
Area.IEEEAccess2020,8,51044–51061.https://doi.org/10.1109/ACCESS.2020.2979683.
121. Shayea,I.;Nissirat,L.A.;Nisirat,M.A.;Alsamawi,A.;Rahman,T.A.;Azmi,M.H.;AboZeed,M.;Trrad,I.Rainattenuationand
worstmonthstatisticsverificationandmodelingfor5Gradiolinksystemat26GHzinMalaysia.Trans.Emerg.Telecommun.
Technol.2019,30,e3697.https://doi.org/10.1002/ett.3697.
122. Odokienko,O.;Merzlikin,A.;Pavlikov,V.;Ruzhentsev,N.;Sobkolov,A.;Tsopa,O.;Salnikov,D.;Zhyla,S.Cumulativedistri
butionofrainrateandrainattenuationinUkraine.InProceedingsofthe20193rdInternationalConferenceonAdvancedIn
formationandCommunicationsTechnologies,Lviv,Ukraine,2–6July2019;pp.62–66.
https://doi.org/10.1109/AIACT.2019.8847730.
123. Akinwumi,S.A.;Omotosho,T.V.;Usikalu,M.R.;Ometan,O.O.;Adewusi,M.O.;Adagunodo,T.A.StudyofOxygenandWater
VapourAttenuationinWestAfrica.IntecienciaJ.2018,43,180–191.Availableonline:https://core.ac.uk/down
load/pdf/157741136.pdf(accessedon25June2022).
124. Diba,F.D.;Afullo,T.J.EstimationofrainattenuationovermicrowaveandmillimeterbandsforterrestrialradiolinksinEthiopia.
InProceedingsoftheIEEEAFRICON2015,AddisAbaba,Ethiopia,14–17September2015.
https://doi.org/10.1109/AFRCON.2015.7332053.
125. Obiyemi,O.O.;Ojo,J.S.;Ibiyemi,T.S.Performanceanalysisofrainratemodelsformicrowavepropagationdesignsovertropical
climate.Prog.Electromagn.Res.M2014,39,115–122.https://doi.org/10.2528/PIERM14083003.
126. Abdulrahman,A.Y.;binAbdulrahman,T.;binAbdulrahim,S.K.;Kesavan,U.Comparisonofmeasuredrainattenuationand
ITURpredictionsonexperimentalmicrowavelinksinMalaysia.Int.J.Microw.Wirel.Technol.2011,3,477–483.
https://doi.org/10.1017/s1759078711000171.
127. Mandeep,J.S.;Hui,O.W.;Abdullah,M.;Tariqul,M.;Ismail,M.;Suparta,W.;Yatim,B.;Menon,P.S.;Abdullah,H.Modified
ITURrainattenuationmodelforequatorialclimate.InProceedingsofthe2011IEEEInternationalConferenceonSpaceScience
andCommunication(IconSpace),Penang,Malaysia,12–13July2011;pp.89–92.
https://doi.org/10.1109/IConSpace.2011.6015858.
128. Andrade,F.;deMedeiros,Á.;daSilvaMello,L.ShortTermRainAttenuationPredictorforTerrestrialLinksinTropicalArea.
IEEEAntennasWirel.Propag.Lett.2017,16,1325–1328.doi:10.1109/LAWP.2016.2633718.
129. Chebil,J.;Zyoud,A.H.;Habaebi,M.H.;Rafiqul,I.M.;Dao,H.Analysisofrainfadeslopeforterrestriallinks.Indones.J.Electr.
Eng.Comput.Sci.2020,18,896–902.https://doi.org/10.11591/ijeecs.v18.i2.pp896902.
130. Budalal,A.A.;Shayea,I.;Islam,M.R.;Azmi,M.H.;Mohamad,H.;Saad,S.A.;Daradkeh,Y.I.MillimeterWavePropagation
ChannelBasedonNYUSIMChannelModelwithConsiderationofRainFadeinTropicalClimates.IEEEAccess2022,10,1990–
2005.https://doi.org/10.1109/ACCESS.2021.3135382.
131. Ahuna,M.N.;Afullo,T.J.FadeSlopePredictionModelforRainStormsoverSubtropicalAfrica.InProceedingsoftheIEEE
AFRICONConference,Accra,Ghana,25–27September2019;pp.1–4.https://doi.org/10.1109/AFRICON46755.2019.9133736.
132. Nabangala,M.;Africa,S.RainfallAttenuationPredictionModelforDynamicRainFadeMitigationTechniqueConsidering
MillimeterWaveCommunication.Researchspace2018.Availableonline:https://researchspace.ukzn.ac.za/xmlui/han
dle/10413/17179(accessedon15September2022).
133. Crane,R.K.;Shieh,H.C.Atwocomponentrainmodelforthepredictionofsitediversityperformance.RadioSci.1989,24,641–
665.https://doi.org/10.1029/RS024i005p00641.
134. Capsoni,C.;Fedi,F.;Paraboni,A.Acomprehensivemeteorologicallyorientedmethodologyforthepredictionofwavepropa
gationparametersintelecommunicationapplicationsbeyond10GHz.RadioSci.1987,22,387–393.
https://doi.org/10.1029/RS022i003p00387.
135. Amarasinghe,Y.;Zhang,W.;Zhang,R.;Mittleman,D.M.;Ma,J.ScatteringofTerahertzWavesbySnow.J.InfraredMillim.
TerahertzWaves2020,41,215–224.https://doi.org/10.1007/s10762019006474.
136. Omotosho,T.;Willoughby,A.;Akinyemi,M.;Mandeep,J.S.;Abdullah,M.Oneyearresultsofoneminuterainfallratemeas
urementatCovenantUniversity,SouthwestNigeria.InProceedingsof2013IEEEInternationalConferenceonSpaceScience
andCommunication(IconSpace),Melaka,Malaysia,1–3July2013.
137. PintoMangones,A.D.;TorresTovio,J.M.;PérezGarcía,N.A.;daSilvaMello,L.A.R.;RuizGarcés,A.F.;LeónAcurio,J.Im
provedITUModelforRainfallAttenuationPredictionofinTerrestrialLinks.Adv.Intell.Syst.Comput.2020,1066,531–541.
https://doi.org/10.1007/9783030320225_49.
138. Hirano,T.;Hirokawa,J.;Ando,M.EstimationofrainrateusingmeasuredrainattenuationintheTokyotechmillimeterwave
modelnetwork.InProceedingsof2010IEEEAntennasandPropagationSocietyInternationalSymposium,Toronto,ON,Can
ada,11–17July2010;pp.1–4.https://doi.org/10.1109/APS.2010.5562253.
139. Peric,M.V.;Peric,D.B.;Todorovic,B.M.;Popovic,M.V.Dynamicrainattenuationmodelformillimeterwavenetworkanalysis.
IEEETrans.Wirel.Commun.2017,16,441–450.https://doi.org/10.1109/TWC.2016.2624729.
140. ITUR.PropagationDataandPredictionMethodsRequiredfortheDesignofEarthSpaceTelecommunicationSystems;Recommendation
ITURP.6188;InternationalTelecommunicationUnion:Geneva,Switzerland,2015;Volume12,pp.1–24.
141. AlSaegh,A.M.;Sali,A.;Mandeep,J.S.;Ismail,A.Extractedatmosphericimpairmentsonearthskysignalqualityintropical
regionsatKuband.J.Atmos.SolarTerrestrialPhys.2013,104,96–105.https://doi.org/10.1016/j.jastp.2013.08.018.
142. Ananya,S.T.;Islam,S.;Mahmud,A.R.;Podder,P.K.;Uddin,J.Atmosphericpropagationimpairmenteffectsforwirelesscom
munications.Int.J.Wirel.Mob.Netw.2020,12,45–61.https://doi.org/10.5121/ijwmn.2020.12304.
Sustainability2022,14,1174464of67
143. AlSaegh,A.M.;Sali,A.;Mandeep,J.S.;Ismail,A.;AlJumaily,A.H.J.;Gomes,C.AtmosphericPropagationModelforSatellite
Communications.InMATLABApplicationsforthePracticalEngineer;IntechOpen:London,UK,2014.
https://doi.org/10.5772/58238.
144. ITUR.S.ofRecommendationITURP.67611.AttenuationbyAtmosphericGases.InternationalTelecommunicationUnion.
2016,Volume11,p.24.Availableonline:http://www.itu.int/dms_pubrec/itur/rec/p/RRECP.67611201609I!!PDFE.pdf(ac
cessedon31August2022).
145. Wahab,M.Radarradomeanditsdesignconsiderations.InProceedingsoftheInternationalConferenceonInstrumentation,
Communication,InformationTechnology,andBiomedicalEngineering2009,Bandung,Indonesia,23–25November2009.
https://doi.org/10.1109/ICICIBME.2009.5417229.
146. Qamar,Z.;SalazarCerreno,J.L.;Aboserwal,N.Anultrawidebandradomeforhighperformanceanddualpolarizedradar
andcommunicationsystems.IEEEAccess2020,8,199369–199381.https://doi.org/10.1109/ACCESS.2020.3032881.
147. Gorgucci,E.;Bechini,R.;Baldini,L.;Cremonini,R.;Chandrasekar,V.Theinfluenceofantennaradomeonweatherradarcali
brationanditsrealtimeassessment.J.Atmos.Ocean.Technol.2013,30,676–689.https://doi.org/10.1175/JTECHD1100050.1.
148. Képeši,V.;Labun,J.Slabljenjeradarskogsignalazbogograničenedebljinekućišta.NaseMore2015,62,200–203.
https://doi.org/10.17818/NM/2015/SI20.
149. Mancini,A.;Salazar,J.L.;Lebrón,R.M.;Cheong,B.L.Anovelinstrumentforrealtimemeasurementofattenuationofweather
radarradomeincludingitsoutersurface.PartII:Applications.J.Atmos.Ocean.Technol.2018,35,975–991.
https://doi.org/10.1175/JTECHD170084.1.
150. Frasier,S.J.;Kabeche,F.;Ventura,J.F.i.;AlSakka,H.;Tabary,P.;Beck,J.;Bousquet,O.InPlaceEstimationofWetRadome
AttenuationatXBand.J.Atmos.Ocean.Technol.2013,30,917–928.https://doi.org/10.1175/jtechd1200148.1.
151. Ojuh,O.;Isabona,J.RadioFrequencyEMFExposureduetoGsmMobilePhonesBaseStations:MeasurementsandAnalysisin
NigerianEnvironment.Niger.J.Technol.2015,34,809.https://doi.org/10.4314/njt.v34i4.20.
152. Naseem,Z.;Nausheen,I.;Mirza,Z.PropagationModelsforWirelessCommunicationSystem.Int.Res.J.Eng.Technol.2008,
9001,237–242.Availableonline:www.irjet.net(accessedon31August2022).
153. Luini,L.;Capsoni,C.Efficientcalculationofcloudattenuationforearthspaceapplications.IEEEAntennasWirel.Propag.Lett.
2014,13,1136–1139.https://doi.org/10.1109/LAWP.2014.2329953.
154. Milani,L.;Biscarini,M.;Marzano,F.S.CloudAttenuationStochasticCharacterizationfromGroundbasedMicrowaveRadio
metricDataatKaband.InProceedingsoftheProgressinElectromagneticsResearchSymposium,Rome,Italy,17–20June2019;
pp.3428–3433.https://doi.org/10.1109/PIERSSpring46901.2019.9017898.
155. Luini,L.;Capsoni,C.Modelinghighresolution3Dcloudfieldsforearthspacecommunicationsystems.IEEETrans.Antennas
Propag.2014,62,5190–5199.https://doi.org/10.1109/TAP.2014.2341297.
156. Olurotimi,E.O.EstimationofcloudattenuationoversomecoastalcitiesforsatellitespacelinksinSouthAfrica.J.Phys.Conf.
Ser.2021,1874,12011.https://doi.org/10.1088/17426596/1874/1/012011.
157. Yuan,F.;Lee,Y.H.;Meng,Y.S.;Yeo,J.X.;Ong,J.T.StatisticalStudyofCloudAttenuationonKaBandSatelliteSignalinTropical
Region.IEEEAntennasWirel.Propag.Lett.2017,16,2018–2021.https://doi.org/10.1109/LAWP.2017.2693423.
158. Luini,L.;Riva,C.G.ImprovingtheAccuracyinPredictingWaterVaporAttenuationatMillimeterWaveforEarthSpaceAp
plications.IEEETrans.AntennasPropag.2016,64,2487–2493.https://doi.org/10.1109/TAP.2016.2546952.
159. Luini,L.;Riva,C.;Emiliani,L.Communication:AttenuationinducedbywatervaporalongEarthspacelinks:Selectingthemost
appropriatepredictionmethod.IEEETrans.AntennasPropag.2017,65,3806–3808.https://doi.org/10.1109/TAP.2017.2705156.
160. Luini,L.;Riva,C.G.ASimplifiedModeltoPredictOxygenAttenuationonEarthSpaceLinks.IEEETrans.AntennasPropag.
2017,65,7217–7223.https://doi.org/10.1109/TAP.2017.2765541.
161. Norouzian,F.;Du,R.;Gashinova,M.;Hoare,E.;Constantinou,C.;Lancaster,M.;Gardner,P.;Cherniakov,M.Signalreduction
duetoradomecontaminationinlowTHzautomotiveradar.InProceedingsofthe2016IEEERadarConference,RadarConf
2016,Philadelphia,PA,USA,2–6May2016;pp.1–4.https://doi.org/10.1109/RADAR.2016.7485217.
162. ITUR.RecommendationP.8406:AttenuationduetoCloudsandFog.Recomm.ITUR,P.8406.2013;Volume6.Available
online:https://www.itu.int/dms_pubrec/itur/rec/p/RRECP.8406201309I!!PDFE.pdf(accessedon24July2022).
163. Zhao,Z.W.;Zhang,M.G.;Wu,Z.S.Analyticspecificattenuationmodelforrainforuseinpredictionmethods.Int.J.Infrared
Millim.Waves2001,22,113–120.https://doi.org/10.1023/A:1010717821659.
164. Ostrometzky,J.;Raich,R.;Eshel,A.;Messer,H.Calibrationoftheattenuationrainratepowerlawparametersusingmeasure
mentsfromcommercialmicrowavenetworks.InProceedingsoftheSpeechandSignalProcessingICASSP,Shanghai,China,
20–25March2016.
165. Yusuf,A.A.;Falade,A.;Olufeagba,B.J.;Mohammed,O.O.;Rahman,T.A.StatisticalEvaluationofMeasuredRainAttenuation
inTropicalClimateandComparisonwithPredictionModels.J.MicrowavesOptoelectron.Electromagn.Appl.2016,15,123–134,
doi:10.1590/217910742016v15i2624..
166. Lu,C.S.;Zhao,Z.W.;Wu,Z.S.;Lin,L.K.;Thiennviboon,P.;Zhang,X.;Lv,Z.F.ANewRainAttenuationPredictionModelfor
theEarthSpaceLinks.IEEETrans.AntennasPropag.2018,66,5432–5442.https://doi.org/10.1109/TAP.2018.2854181.
167. ITUAcquisition,PresentationandAnalysisofDatainStudiesofTroposphericPropagation.ITURRecomm.Rep.2009,13,11.
168. Abdulrahman,A.Y.;Rahman,T.A.;Rahim,S.K.A.;Islam,M.R.U.EmpiricallyDerivedPathReductionFactorforTerrestrial
MicrowaveLinksOperatingat15GhzinPeninsulaMalaysia.J.Electromagn.WavesAppl.2011,25,23–37,
doi:10.1163/156939311793898369.
Sustainability2022,14,1174465of67
169. Islam,M.A.;Maiti,M.;Ghosh,P.K.;Sanyal,J.MachineLearningBasedRainAttenuationPredictionModel.Lect.NotesNetw.
Syst.2021,147,15–22.https://doi.org/10.1007/9789811583667_3.
170. Ferdowsi,A.;Whitefield,D.DeepLearningforRainFadePredictioninSatelliteCommunications.InProceedingsofthe2021
IEEEGlobecomWorkshops(GCWkshps)2021,Madrid,Spain,7–11December2021;pp.1–6.
https://doi.org/10.1109/GCWkshps52748.2021.9682090.
171. Kamoru,K.;Kolawole,K.K.;Mayowa,O.;Theophilus,E.DevelopmentofrainattenuationpredictioninsouthwestNigeriaon
terrestriallinkusingartificialneuralNetwork.Int.J.Commun.Inf.Technol.2021,2,33–39.Availableonline:https://www.com
putersciencejournals.com/ijcit/article/31/311298.pdf(accessedon5August2022).
172. Ayo,A.O.;Owolawi,P.A.;Ojo,J.S.;Mpoporo,L.J.RainImpairmentModelforSatelliteCommunicationLinkDesigninSouth
AfricausingNeuralNetwork.InProceedingsofthe20202ndInternationalMultidisciplinaryInformationTechnologyandEn
gineeringConference,IMITEC2020,Kimberley,SouthAfrica,25–27November2020;pp.1–8.
https://doi.org/10.1109/IMITEC50163.2020.9334080.
173. Singh,H.;Kumar,V.;Saxena,K.;Bonev,B.AnIntelligentModelforpredictionofAttenuationcausedbyRainbasedonMachine
LearningTechniques.InProceedingsofthe2020InternationalConferenceonContemporaryComputingandApplications,
IC3A2020,Lucknow,India,5–7February2020,pp.92–97.https://doi.org/10.1109/IC3A48958.2020.233277.
174. Olatunde,I.D.;Babatunde,K.O.;Afolabi,D.O.RainAttenuationPredictioninNigeriaUsingArtificialNeuralNetwork(ANN).
Int.J.Electr.Electron.Sci.2019,6,1–7.Availableonline:http://article.aascit.org/file/pdf/9150837.pdf(accessedon5August2022).
175. Thiennviboon,P.;Wisutimateekorn,S.Rainattenuationpredictionmodelingforearthspacelinksusingartificialneuralnet
works.InProceedingsofthe16thInternationalConferenceonElectricalEngineering/Electronics,Computer,Telecommunica
tionsandInformationTechnology(ECTICON),Pattaya,Thailand,10–13July2019.
176. Mpoporo,L.J.;Owolawi,P.A.EarthSpaceRainAttenuationpredictionusingOptimumAlgorithmofArtificialNeuralNet
works.InProceedingsofthe2019InternationalMultidisciplinaryInformationTechnologyandEngineeringConference,
IMITEC2019,Vanderbijlpark,SouthAfrica,21–22November2019;pp.1–6.https://doi.org/10.1109/IMITEC45504.2019.9015885.
177. Mpoporo,L.J.;Owolawi,P.A.;Ayo,A.O.UtilizationofArtificialNeuralNetworksforEstimationofSlantPathRainAttenua
tion.InProceedingsofthe2019InternationalMultidisciplinaryInformationTechnologyandEngineeringConference,IMITEC
2019,Vanderbijlpark,SouthAfrica,21–22November2019;pp.1–7.https://doi.org/10.1109/IMITEC45504.2019.9015837.
178. Kavya,K.C.S.;Kotamraju,S.K.;Rani,G.L.PredictionofRainAttenuationusingArtificialNeuralNetworks1.Int.J.PureAppl.
Math.2017,117,171–175.Availableonline:https://acadpubl.eu/jsi/20171171819/articles/18/25.pdf(accessedon5Augst2022).
179. Ahuna,M.N.;Afullo,T.J.;Alonge,A.A.Rainfallratepredictionbasedonartificialneuralnetworksforrainfademitigationover
earthsatellitelink.InProceedingsofthe2017IEEEAFRICON:Science,TechnologyandInnovationforAfrica,AFRICON2017,
CapeTown,SouthAfrica,18–20September2017;pp.579–584.https://doi.org/10.1109/AFRCON.2017.8095546.
180. Li,T.;Suzuki,K.;Nishioka,J.;Mizukoshi,Y.;Hasegawa,Y.ShortTermrainfallattenuationpredictionforwirelesscommuni
cation.InProceedingsoftheInternationalConferenceonCommunicationTechnologyProceedings,ICCT,Hangzhou,China,
18–20October2015;pp.615–619.https://doi.org/10.1109/ICCT.2015.7399913.
181. Zhao,L.;Zhao,L.;Song,Q.;Zhao,C.;Li,B.Rainattenuationpredictionmodelsof60ghzbasedonneuralnetworkandleast
squaressupportvectormachine.InTheProceedingsoftheSecondInternationalConferenceonCommunications,SignalProcessing,
andSystems;LectureNotesinElectricalEngineering;Springer:Berlin/Heidelberg,Germany,2014;Volume246,pp.413–421.
https://doi.org/10.1007/9783319005362_48.
182. Roy,B.;Acharya,R.;Sivaraman,M.R.Attenuationpredictionforfademitigationusingneuralnetworkwithinsitulearning
algorithm.Adv.SpaceRes.2012,49,336–350.https://doi.org/10.1016/j.asr.2011.10.010.
183. Amarjit;Gangwar,R.P.S.Implementationofartificialneuralnetworkforpredictionofrainattenuationinmicrowaveandmil
limeterwavefrequencies.IETEJ.Res.2008,54,346–352.https://doi.org/10.4103/03772063.48536.
184. Yang,H.;He,C.;Zhu,H.;Song,W.EarthspacerainattenuationmodelbasedonEPNetevolvedartificialneuralnetwork.IEICE
Trans.Commun.2001,E84B,2540–2549.Availableonline:https://www.ieice.org/cs/isap/ISAP_Archives/2000/pdf/1D45.pdf(ac
cessedon5August2022).
185. Lashari,H.N.;Ali,H.M.;Laghari,A.UAVCommunicationNetworksIssues:AReview.Arch.Comput.MethodsEng.2020,
doi:10.1007/s11831020094180.
186. Song,M.;Huo,Y.;Lu,T.;Dong,X.;Liang,Z.MeteorologicallyIntroducedImpactsonAerialChannelsandUAVCommunica
tions.InProceedingsof2020IEEE92ndVehicularTechnologyConference(VTC2020Fall),Victoria,BC,Canada,18November–
16December2020.doi:10.1109/VTC2020Fall49728.2020.9348592.
187. Shalaby,A.M.;Othman,N.S.TheEffectofRainfallontheUAVPlacementfor5GSpectruminMalaysia.Electronics2022,11,
681,doi:10.3390/electronics11050681.
188. Ippolito,L.J.RadiowavePropagationinSatelliteCommunications;Springer:Berlin/Heidelberg,Germany,1986.
189. Patra,T.;Sil,S.Frequencydiversityimprovementfactorforrainfademitigationtechniquefor5090GHzintropicalregion.In
Proceedingsofthe20178thIndustrialAutomationandElectromechanicalEngineeringConference,IEMECON2017,Bangkok,
Thailand,16–18August2017;pp.86–90.https://doi.org/10.1109/IEMECON.2017.8079567.
190. Castanet,L.;BoleaAlamanac,A.;Bousquet,M.InterferenceandfademitigationtechniquesforKaandQ/Vbandsatellitecom
municationsystems.InProceedingsoftheCOST272280Workshop,Noordwijk,TheNetherlands,26–28May2003.
Sustainability2022,14,1174466of67
191. Panwar,V.;Kumar,S.BitErrorRate(BER)AnalysisofRayleighFadingChannelsinMobileCommunication.Int.J.Mod.Eng.
Res.2012,2,796–798.Availableonline:http://www.ijmer.com/papers/vol2_issue3/AM23796798.pdf%5Cnpapers3://publica
tion/uuid/018868179475427085EFB08D490B0C21(accessedon26June2022).
192. Shrawankar,J.A.;Kulat,K.D.Astudyofinfluenceoffastfadingontheperformanceofmobilecommunicationsystem.InPro
ceedingsofthe2015InternationalConferenceonMicrowave,OpticalandCommunicationEngineering(ICMOCE),Bhubanes
war,India,18–20December,2016.
193. Thrimurthulu,V.;Sarma,N.S.FadingMitigationTechniquesinWirelessMobileCommunicationSystems.Int.J.Eng.Technol.
Sci.Res.IJETSR2017,4,782–792.Availableonline:http://www.ijetsr.com/images/short_pdf/1496165373_ietep401_ijetsr2.pdf
(accessedon26June2022).
194. Goldsmith,A.J.;Varaiya,P.P.Capacityoffadingchannelswithchannelsideinformation.IEEETrans.Inf.Theory1997,43,1986–
1992.https://doi.org/10.1109/18.641562.
195. Akobre,S.;Daabo,M.I.;Salifu,A.M.RainFadeMitigationTechniqueUsingResidueNumberSystemArchitectureonKUBand
SatelliteCommunicationLink.Electr.Comput.Sci.2020,8,1–8.https://doi.org/10.11648/j.net.20200801.11.
196. Miller,A.R.AdaptiveCodingandModulation(ACM)intheCDM625AdvancedSatelliteModem.ComtechEFDataCorpora
tion.2009.Availableonline:http://www.comtechefdata.com/files/articles_papers/wpcdm625_acm_white_paper.pdf(accessed
on26June2022).
197. Woldamanuel,E.M.;Diba,F.D.EnhancedadaptivecodemodulationforrainfallfademitigationinEthiopia.EurasipJ.Wirel.
Commun.Netw.2022,2022,8.https://doi.org/10.1186/s13638021020850.
198. Yussuff,A.I.;Khamis,N.H.RainAttenuationModellingandMitigationinTheTropics:BriefReview.Int.J.Electr.Comput.Eng.
2012,2,6.https://doi.org/10.11591/ijece.v2i6.1222.
199. Rafiqul,I.M.;Altajjar,M.L.;Habib,M.S.;Abdullah,K.;Rashid,M.M.;Bashar,K.L.Frequencydiversityimprovementfactorfor
rainfademitigationinMalaysia.InProceedingsofthe2015IEEEInternationalWIEConferenceonElectricalandComputer
Engineering,WIECONECE2015,Dhaka,Bangladesh,19–20December2015;pp.159–163.https://doi.org/10.1109/WIECON
ECE.2015.7443886.
200. Anderson,J.B.;Mohan,S.ErrorControlCoding.InSourceandChannelCoding:AnAlgorithmicApproach;Springer:Boston,MA,
USA,1991;pp.77–197.
201. Kumar,R.;Ghai,R.SATCOMM—FadeInteferanceandBandMitigationAnalysis.J.Adv.Res.Electr.Electron.Eng.2014,1,14–
21.https://doi.org/10.53555/nneee.v1i3.253.
202. Paul,K.CalculationofRainAttenuationandMitigateUsingMacroscopicDiversityinMillimeterWave&THzRadioWireless
CommunicationSystems.InACollectionofContemporaryResearchArticlesinElectronics,Communication&Computation;Mantech
Publications:UttarPradesh,India2021;Volume72,p.72.https://doi.org/10.47531/mantech/ecc.2021.11.
203. Nwaogu,C.C.;Amadi,A.O.;Alozie,I.S.MitigatingRainAttenuationonWirelessCommunicationLinkUsingAdaptivePower
Control.InProceedingsoftheLectureNotesinEngineeringandComputerScience,SanFrancisco,CA,USA,22–24October
2019,pp.150–157.
204. Omijeh,B.;Nwanekwu,J.MitigationofRainAttenuationinaFixedWirelessMicrowaveLinkUsinganAdaptiveTransmit
PowerControl(Atpc).Glob.Sci.J.2018,6,290–302.Availableonline:https://www.globalscientificjournal.com/researchpa
per/mitigationofrainattenuationinafixedwirelessmicrowavelinkusinganadaptivetransmitpowercontrol.pdf(ac
cessedon6August2022).
205. Rafiqul,I.M.;Lwas,A.K.;Habaebi,M.H.;Alam,M.M.;Chebil,J.;Mandeep,J.S.;Zyoud,A.AnalysisofTimeDiversityGainfor
SatelliteCommunicationLinkbasedonKuBandRainAttenuationDataMeasuredinMalaysia.Int.J.Electr.Comput.Eng.
(IJECE)2018,8,4.https://doi.org/10.11591/ijece.v8i4.pp26082613.
206. Ulaganathen,K.;Rahman,T.A.;Islam,M.R.;Malek,N.A.Mitigationtechniqueforrainfadeusingfrequencydiversitymethod.
InProceedingsofthe2015IEEE12thMalaysiaInternationalConferenceonCommunications,MICC2015,Kuching,Malaysia,
23–25November2015;pp.82–86.https://doi.org/10.1109/MICC.2015.7725412.
207. CsurgaiHorváth,L.;Frigyes,I.Ebandterrestrialradio—Propagationandavailabilityaspects.InfocommunicationsJ.2015,7,28–
33.Availableonline:http://www.infocommunications.hu/documents/169298/1200813/InfocomJ_2015_1_5_Csurgai
Horvath.pdf(accessedon2July2022).
208. Hirata,A.;Yamaguchi,R.;Takahashi,H.;Kosugi,T.;Murata,K.;Kukutsu,N.;Kado,Y.Effectofrainattenuationfora10Gb/s
120GHzbandmillimeterwavewirelesslink.IEEETrans.Microw.TheoryTech.2009,57,3099–3105.
https://doi.org/10.1109/TMTT.2009.2034342.
209. Kim,J.H.;Jung,M.W.;Yoon,Y.K.;Chong,Y.J.ThemeasurementsofrainattenuationforterrestriallinkatmillimeterWave.In
Proceedingsofthe2013InternationalConferenceonICTConvergence(ICTC),Jeju,Korea,14–16October2013;pp.848–849.
https://doi.org/10.1109/ICTC.2013.6675497.
210. Hong,E.;Lane,S.;Murrell,D.;Tarasenko,N.;Christodoulou,C.Terrestriallinkrainattenuationmeasurementsat84GHz.In
Proceedingsofthe2017UnitedStatesNationalCommitteeofURSINationalRadioScienceMeeting(USNCURSINRSM),Boul
der,CO,USA4–7January2017;pp.1–2.https://doi.org/10.1109/USNCURSINRSM.2017.7878267.
211. Kvicera,V.;Grabner,M.Rainattenuationat58GHz:Predictionversuslongtermtrialresults.EurasipJ.Wirel.Commun.Netw.
2007,2007,046083.https://doi.org/10.1155/2007/46083.
Sustainability2022,14,1174467of67
212. Hong,E.S.;Lane,S.;Murrell,D.;Tarasenko,N.;Christodoulou,C.;Keeley,J.EstimatingRainAttenuationat72and84GHz
fromRaindropSizeDistributionMeasurementsinAlbuquerque,NM,USA.IEEEGeosci.RemoteSens.Lett.2019,16,1175–1179.
https://doi.org/10.1109/LGRS.2019.2893906.
213. Shubhendu,S.S.;Vijay,J.Applicabilityofartificialintelligenceindifferentfieldsoflife.Int.J.Sci.Eng.Res.2013,1,28–35.
214. Stewart,S.D.;Watson,G.Applicationsofartificialintelligence.Simulation1985,44,306–310.
https://doi.org/10.1177/003754978504400607.
... According to the studies conducted, rain attenuation has been identified as a major obstacle in the design of microwave communication links operating at higher frequencies [2,3]. The attenuation caused by rainfall depends on various factors, such as the intensity of the rain, the size and shape of raindrops, and the distance between the transmitting and receiving antennas [4,5]. The effect of heavy or intense rainfall Rainfall's Symphony: Understanding its Influence on Communication Systems in Nigeria DOI: http://dx.doi.org ...
... The average raindrop size (ARS) is defined by a diameter of 1.67 mm [4], but signals in the 12-18 GHz range exhibit wavelengths ranging from 25 to 16.7 mm. This implies that the wavelength of the signal is consistently greater than the typical size of rain droplets, which typically range in diameter from 0.1 to 5 mm. ...
... For frequencies up to 3 GHz, the droplet size in the Rayleigh scattering by raindrops is considerably lower than the wavelength. This function relates to the scattering characteristics of raindrops, which are affected by factors such as the size, shape, complex permittivity, and frequency of the signal [4]. ...
Chapter
Full-text available
This study investigates the significant issue of rain-induced signal attenuation in satellite communication, specifically focusing on television receive-only (TVRO) stations operating in the Ku band across diverse Nigerian locations. Utilizing a comprehensive dataset of point rain rate distribution and the ITU rain attenuation model, the study comprehensively assesses how rainfall impacts signal quality. The findings highlight that southern regions consistently display high decibel (dB) values, indicating increased susceptibility to signal disruptions during heavy rainfall, while a comparative analysis between two key satellites, EUTELSAT 36B and INTELSAT 20, consistently favors the former in terms of signal resilience during adverse weather conditions. In contrast, northern regions generally exhibit lower dB values, suggesting a higher degree of signal resilience during rainfall events. These insights underscore the importance of considering location-specific and satellite-specific factors when designing satellite communication systems, emphasizing the need for robust infrastructure and strategic satellite selection to mitigate the effects of rain-induced attenuation. This study provides valuable guidance to engineers and service providers, enabling them to make informed decisions to minimize signal disruptions and enhance overall network reliability, particularly in regions susceptible to rain-induced attenuation.
... The FR2 band, which ranges from 24.25 to 52.6 GHz, not only provides greater bandwidth required to support frontand back-haul as well as short building-to-building links but also offers the security of communication transmissions [7]. However, it is very susceptible to attenuation due to several atmospheric conditions such as rain, dust storms, clouds, atmospheric gases, and other terrain and clutter properties such as buildings, trees, foliage, etc. [1], [8]. ...
... Specifically, Kano state, located at latitude 12.000000 and longitude 8.516667, is characterized by different terrain and clutter features according to the EDX Cirrus database, which includes savanna, grassland, shrubland, urban and built-up land, and cropland/woodland mosaic represented by purple, black, orange, yellow, and blue respectively, as shown in Fig. 1. Adamawa state, located in Latitude 9.333333 and Longitude 12.500000, is characterized by only five major land uses which include savanna, water bodies, cropland/grassland mosaic, grassland, evergreen broadleaf forest represented by purple, blue, gray, black, and light green, respectively, as shown in Fig. 2. Total attenuation is the sum of all the losses encountered by the propagating signals from the transmitter to the receiver due to atmospheric conditions or other obstacles on the radio wave path [7], [11]. These losses include the basic free space path loss ( ), pass-through clutter loss ( ), site clutter loss ( ), diffraction loss ( ), Fresnel zone loss (FZ ), ground reflection loss ( ), atmospheric absorption attenuation (i.e., dry air and water vapor) ( ), variability statistics loss (VS ), the rain attenuation ( ), and modelspecific loss (MS ). ...
... Flat fade margin, in addition to these losses, is the fading that occurs when all the frequency components of a propagating signal experience almost equal fading due to the bandwidth mismatch [7], [10]. According to EDX Wireless [13], it can be estimated based on thermal fading (TM), adjacent fading (AM), as well as other external channel interference (EM) fade margins as shown in equation (3). ...
Conference Paper
ITU-R categorized Nigeria into four rain regions (i.e., M, N, P, and Q) depending on the atmospheric conditions. Previous works that have conducted rain and attenuation modeling and simulations have assumed similar signal propagation behavior and parameters within locations categorized under the same region. This paper aims to explore these assumptions by conducting an extensive radio propagation simulations of point-to-point microwave links with a clear line-of-sight in order to estimate the total path loss (attenuation), excess path loss, and flat fade margins for each of the locations within the M-regions, i.e., Kano, Sokoto, and Adamawa. Results obtained showed that in all the locations, the loss monotonically increases with distance, with Sokoto having the highest level of signal losses and fading, while, Adamawa has the lowest. The deviation for both total loss, excess loss, and flat fading margin was found to be between 1-5 dB across the region.
... In high-speed wireless communication systems, proper analysis of the propagation characteristics of electromagnetic signals is critical to aid in the effective design and optimization of mobile networks [1]- [4]. The recently developed 5G network utilized two frequency bands, FR1 (Sub 6 GHz) and FR2 (Above 6 GHz) bands, to provide multigigabit connections [5], [6]; however, these frequencies particularly, the FR2 band are highly limited in coverage as they are susceptible to attenuation due to various atmospheric phenomena [7]- [9], and other obstacles such as buildings, foliage, trees, etc. [10]- [12]. To estimate these losses and fading, numerous studies have been conducted, as well as models proposed across several high-frequency bands considering different scenarios [7], [9]. ...
... The recently developed 5G network utilized two frequency bands, FR1 (Sub 6 GHz) and FR2 (Above 6 GHz) bands, to provide multigigabit connections [5], [6]; however, these frequencies particularly, the FR2 band are highly limited in coverage as they are susceptible to attenuation due to various atmospheric phenomena [7]- [9], and other obstacles such as buildings, foliage, trees, etc. [10]- [12]. To estimate these losses and fading, numerous studies have been conducted, as well as models proposed across several high-frequency bands considering different scenarios [7], [9]. Two widely utilized models, known as the Crane and ITU-R models, presented letter designations for climatic boundaries around the world, primarily representing rain rate distributions that can be used to estimate rain attenuation [13]. ...
... Total path loss/attenuation is the sum of all losses experienced by signals traveling from the source to the receivers as a result of atmospheric variables or other impediments in the radio wave path [7], [8]. Besides, the fundamental free space path loss, propagating signal encounters other losses such as diffraction loss, Fresnel region loss, atmospheric absorption loss (dry air and water vapor), variability statistics loss, site clutter loss, rain attenuation, pass-through clutter loss, and model-specific loss. ...
Conference Paper
Signal propagation in a particular region differs from another due to differences in atmospheric, climatic and environmental properties, distinct terrain and clutter features. Adequate analysis is essential to understand the radio propagation behavior in a particular region. The ITU-R designated four rain regions, M, N, P, and Q, for Nigeria representing the rain rate distribution and also provided further classifications based on ground conductivity, among other salient parameters. Based on these classifications, this paper utilized the EDX Signal Pro software® to model and simulate a typical Point-to-Point (P2P), Non-Line of Sight (NLOS) link scenarios for 5G networks. The objective was to estimate and compare the total loss, excess loss, and flat fade margins for each rain region in Nigeria. Results obtained from the comparison showed that signals propagating in region N experience the highest level of losses and fading, while, region Q has the least losses and fading.
... To address this challenge, AI-based models offer a solution by efficiently predicting and mitigating rain attenuation in both satellite and terrestrial communication networks [11]. While widely accepted models for predicting rain attenuation have been established based on extensive observations and monitoring over the years, these models rely on information related to rainfall rates. ...
... The demand for high-speed data services in both developed and developing countries, coupled with the complex atmospheric dynamics in certain regions like the United Arab Emirates (UAE), is further compounded by the absence of a reliable prediction model for raininduced effects on High Throughput Satellite (HTS) channels. Additionally, there's a scarcity of rain attenuation and mitigation models based on artificial intelligence (AI) specifically tailored for 5G and beyond communication links [11]. This underscores the importance of developing an AI model customized for the unique conditions of the UAE. ...
Article
Full-text available
Rain attenuation poses a significant challenge for high-throughput communication systems. In response, this paper introduces an artificial intelligence (AI) model designed for predicting and mitigating rain-induced impairments in high-throughput satellite (HTS) to land channels. The model is based on three AI algorithms developed using 3D antenna design to characterize, analyze, and mitigate rain-induced attenuation, optimizing channel quality specifically in the United Arab Emirates (UAE). The study evaluates various parameters, including rain-specific attenuation, effective slant path through rain, rain-induced attenuation, signal carrier-to-noise ratio, and symbol error rate, for five conventional modulation schemes: Quadrature Phase-Shift Keying (QPSK), 8-Phase Shift Keying (8-PSK), 16-Quadrature Amplitude Modulation (16-QAM), 32-QAM, and 64-QAM. Additionally, the paper introduces a new database detailing rain-induced attenuation in HTS channels in the UAE at different frequencies using measured rainfall intensities. The paper concludes by proposing a smart antenna design with a frequency diversity technique for fade mitigation. Results indicate that rain-induced attenuation varies significantly based on rainfall rate and frequency. Specifically, at 25 GHz and a rainfall rate of 100 mm/h, the rain-induced attenuation can reach as high as 15 dB, resulting in a significant decline in signal quality and link performance. The proposed AI model demonstrates the ability to intelligently predict rain-induced attenuation and channel quality for various rainfall rates and frequencies. This information can be valuable for optimizing satellite link design and operation, ultimately enhancing the reliability and quality of satellite communications. The proposed two-slot smart antenna design utilizes frequency diversity to effectively mitigate rain attenuation, contributing to the overall improvement of link reliability and quality.
... Among the hydrometeors found at the atmosphere, rain is the major factor that causes fading in system of satellite communication [4][5][6]. Many researchers have estimated path loss on communication between satellite in space and ground stations using distinct models in different regions of the word in the past four decades [7][8][9]. However, path loss on earth-space or airborne-space link have not been given much attention. ...
Article
Full-text available
The seasonal variation of total attenuation in the southwest region of Nigeria has been computed using eight (8) years dataset at Ku- and Ka-band of the transmitted power of the radar, transmitted antenna gain and the received antenna gain of the satellite retrieved from the archived of the GPM. The results obtained fluctuates between the seasons at Ku- and Ka-band. From the results obtained at Ku-and Ka-band, the results from analysis showed that the peak total attenuation was recorded between the early (MAM) and late wet (JJA) season when the intensity of rainfall is maximum in the South-West region. As a result, the effect on the airborne-earth station link will be severe which may further lead to signal outage. However, the state where the highest total attenuation was consistent is Lagos state. These seasons and Lagos state must be taking into consideration by engineers and radiowave propagation group when planning and sitting radiowave propagation in the study area.
... Path loss (PL) refers to the reduction or weakening of wireless signal strength as it travel through a specific medium from the sender to the recipient [3]. The signal loss can be due to several phenomena such as multipath, atmospheric conditions, and other obstructions [4], [5]. Over the years, several PL models have been proposed and employed to estimate losses in diverse scenarios or settings [6], [7]. ...
Conference Paper
5G communication systems provide an end-to-end wireless connection to billions of users and devices across the globe. The quality of signals received during radio communication is notably influenced by the behavior of the radio propagation channel. A major parameter used in characterizing this channel is the Path Loss Exponent (PLE). Several works that have estimated and analyzed the PLE mostly considered the effect of distance and carrier frequency. However, the effect of base station antenna height and channel bandwidth on the PLE for 5G networks have not been adequately considered. To address this, the impact of antenna height of base station and channel bandwidth on the PLE within the 5G Frequency Range 1 (FR1) frequencies was investigated in this study, specifically at 800, 3500, and 5900 MHz. The licensed EDX Signal Pro software® with Cirrus high resolution global terrain and clutter data base was utilized to model, simulate and analyze the PLE for Kano City, Nigeria. Results showed that for the tested frequencies, an increase in either base station height or channel bandwidth leads to a significant reduction in the PLE. This study can be utilized by network planning engineers and the wireless research community to further improve network implementation and optimization toward understanding the behavior of signal propagation in 5G networks and beyond.
... Wireless communication systems such as mobile cellular networks, public safety networks, Wi-Fi, etc., are the most utilized methods of communication today due to their flexibility, cost-effectiveness, deployment, and support for mobility, among others. However, they are subject to various issues and challenges, such as security and privacy [7], signal attenuation from path loss, and weather and climatic conditions [8]. Furthermore, the emerging needs for 21 stcentury services such as virtual education, electronic health, ecommerce, etc., have led to the exponential demand for highspeed network services, thus, making wireless communication networks a necessity rather than a luxury. ...
Conference Paper
Terrestrial Radio Propagation (TRP) involves radio wave propagation from one station to another over the surface of the earth. Radio communication systems have been deployed for broadcasting, mobile cellular, and public safety. Radio propagation planning plays a crucial role in designing and deploying terrestrial radio networks. Radio propagation models (Path loss Models) are utilized during the link budget, coverage, and interference estimations. The models guide radio network engineers in choosing appropriate placements of radio network equipment, such as the base stations. However, the high cost attributed to TRP data collection, lack of open access, and accurate TRP datasets hinders the development of path loss models that can reliably predict outcomes for different use cases. To address this problem, this paper aims to present a robust TRP repository that provides a platform for hosting and disseminating TRP datasets, which the research community could use for path loss modeling. The repository was implemented using the latest technologies, and its performance was evaluated. The system has been deployed for public access.
Article
Full-text available
In light of recent extreme weather events, it is imperative to explore innovative methodologies for promptly and accurately measuring various meteorological parameters. The high spatial and temporal variability in precipitation often surpasses the resolution capabilities of traditional rain gauge measurements and satellite estimation algorithms. Therefore, exploring alternative methods to capture this variability is crucial. Research on the correlation between signal attenuation and precipitation could offer valuable insights into these alternative approaches. This study investigates (a) the feasibility of the classification of precipitation rate using signal power measurements in cellular terminals and (b) the impact of atmospheric humidity as well as other meteorological parameters on the signal. Specifically, signal power data were collected remotely through a specialized Android application designed for this research. During the time of analysis, the power data were processed alongside meteorological parameters obtained from the meteorological station of the Physics Department at the University of Ioannina gathered over one semester. Having in mind the radio refractivity of the air as a fascinating concept affecting the way radio waves travel through the atmosphere, the processed results revealed a correlation with signal attenuation, while a correlation between the latter and absolute humidity was also observed. Moreover, a precipitation rate classification was attained with an overall accuracy exceeding 88%.
Article
This paper presents a novel approach for non-contact dielectric characterization of micron-sized samples through the integration of a microwave patch antenna and metamaterial-based structure which is executing metamaterial properties such as negative refractive index. The proposed sensor, operating at resonant frequencies of 12.12 GHz with S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> = -42.01 dB demonstrates excellent agreement with both CST and ADS simulations. To ensure the significant application of the sensor, comprehensive analyses are conducted, including Specific Absorption Rate (SAR) analysis, electric field analysis, efficiency, and radiation pattern assessments of the antenna. Additionally, we performed simulations using CST, evaluating 1000 samples with varying dielectric constants and conductivities. Subsequently, a Python-based GUI is developed to create a data prediction algorithm for determining the dielectric properties of unknown samples, employing a trained Linear Regression model derived from a diverse dataset of 1000 CST simulations. For the experimental setup, a 3D printed device is employed, enabling precise antenna movement. The proposed sensor is tested on 15 prior semi-biological samples to validate its accuracy. Subsequently, the sensor’s capabilities are leveraged to predict the dielectric properties of Bovine Serum Albumin (BSA) protein. Notably, we observed significant changes in the measured dielectric properties of BSA protein in the presence of urea, a known denaturing agent. This observation highlights the sensor’s potential in predicting biological phenomena, including protein denaturation. In conclusion, the integration of the microwave patch antenna and SSRR structures offers an efficient, single-port sensor for non-contact dielectric characterization of micron-sized samples. The sensor successfully predicts the dielectric properties for various samples, showcasing reliability and versatility in non-invasive measurements.
Article
Full-text available
In this paper, the influence of rainfall on the deployment of UAV as an aerial base station in the Malaysia 5G network is studied. The outdoor-to-outdoor and outdoor-to-indoor path loss models are derived by considering the user’s antenna height, rain attenuation, and the wall penetration loss at high frequencies. The problem of finding the UAV 3D placement is formulated with the objective to minimize the total path loss between the UAV and all users. The problem is solved by invoking two algorithms, namely Particle Swarm Optimization (PSO) and Gradient Descent (GD) algorithms. The performance of the proposed algorithms is evaluated by considering two scenarios to determine the optimum location of the UAV, namely outdoor-to-outdoor and outdoor-to-indoor scenarios. The simulation results show that, for the outdoor-to-outdoor scenario, both algorithms resulted in similar UAV 3D placement unlike for the outdoor-to-indoor scenario. Additionally, in both scenarios, the proposed algorithm that invokes PSO requires less iterations to converge to the minimum transmit power compared to that of the algorithm that invokes GD. Moreover, it is also observed that the rain attenuation increases the total path loss for high operating frequencies, namely at 24.9 GHz and 28.1 GHz. Hence, this resulted in an increase of UAV required transmit power. At 28.1 GHz, the presence of rain at the rate of 250 mm/h resulted in an increase of UAV required transmit power by a factor of 4 and 15 for outdoor-to-outdoor and outdoor-to-indoor scenarios, respectively.
Article
Rain rate and rain attenuation predictions are vital in the analysis of the performance of earth-satellite link at higher frequencies beyond 10 GHz for satellite system planning. This study intended to address lack of rain attenuation profile based on local rainfall data collected from various parts of the country. A one-minute integration time rainfall rate used to estimate the rain-induced attenuation was obtained by converting the annual rainfall data collected for 40 years from 22 locations in Tanzania using a combination of Chebil and refined Moupfouma-Martin methods. The International Telecommunication Union (ITU) standard was used to predict attenuation caused by one-minute rain rate. Contour maps for rain rate and rain attenuation were then generated over different percentages of times of 0.1% and 0.01% for both Ku and Ka-bands using the Kriging interpolation method in ArcGIS software. The maps show higher predicted rain rate values compared to the values given by the ITU in zones K, M and N. The developed maps can be used for rapid and precise estimation of link budget for satellite system design in Tanzania. Keywords: contour maps; one-minute; rain attenuation; integration time; Ku-band and Ka-bands