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Quasi-Orthogonal Sequences for Code-Division
Multiple-Access Systems

Kyeongcheol YangMember, IEEEYoung-Ky Kim, and P. Vijay KumarMember, IEEE

Abstract—in this paper, the notion of quasi-orthogonalse- correlationR,; between two binary sequence@) andb(t) of
quence (QOS) as a means of increasing the number of channelsthe same lengttV is given by
in synchronous code-division multiple-access (CDMA) systems
that employ Walsh sequences for spreading information signals N-1
and separating channels is introduced. It is shown that a QOS R = Z(_l)a(tﬂ-b(t)
sequence may be regarded as a class of bent (almost bent)
functions possessing, in addition, a certainvindow property Such
sequences while increasing system capacity, minimize interferencewherea(t) + b(t) is computed modul@ for all ¢. It is easily
to the existing set of Walsh sequences. The window property gives ghown thatRa, = N — 2dy(a,b) wheredy (a, b) denotes the

the system the ability to handle variable data rates. A general . .
procedure of constructing QOS's from well-known families of Hamming distance of two vectorsandb. Two sequences are

binary sequences with good correlation, including the Kasami and Said to beorthogonalif their correlation is zero.

Gold sequence families, as well as from the binary Kerdock code ~ Let F = {a;(¢)|i = 1,2,---, M} be a family ofM binary

is provided. Examples of QOS's are presented for small lengths. sequences of periall. The family.F is said to bevrthogonalif

Som(_a examples ofjuaternary QOS's drawn from Family .A are any two sequences are mutually orthogonal, thaRL§sj -0

also included. for any: andj # ¢. For example, the Walsh sequence family of

t Indeé Tlgrms—Bent fUEC“O”S_' °°de'diViSi°|2 rr:jultiEIe-zccess SYS- |ength2™ is orthogonal. Where there is no chance of confusion,

e el ST e, Kook odes, eSO il abbrevite and Wi, nsead oft,.

Consider a synchronous system without multipath time dis-
persion, where a sequence famity= {a;(¢)} is employed to
I. INTRODUCTION both spread the signal bandwidth as well as distinguish between

ODE-division multiple-access (CDMA) systems usdifferent users. We consider the case when binary phase-shift
C pseudo-noise binary sequences as signature sequerf&¥9 (BPSK) is used to modulate the signal. igt), n =

to distinguish between the signals of different users. Sevefaf: 2, be the binary information signal of théh user at
spread-spectrum communication systems also use themtigth information bit time. Then each bﬂi(@) is spread into
spreading codes that help achieve a low probability of intercefythiPS by the signature sequencgét) of theth-user channel

by spreading the signal energy over a large bandwidth. D&ring thenth information bit time as follows:

sirable charac_teri_stics _of pseudo—noise_binary sequences used (_1)(17.(”)(_1),17.@) f— 01 N—1

for such applications include long-period, low out-of-phase ’ T
autocorrelation values, low crosscorrelation values, large "”Q@horing noise added to the signal in the channel, the received

span, symbol balance, low nontrivial partial-period correlatiogignal during theath information bit time is given by
values, large family size, and ease of implementation [7], [10],

t=0

[20], [22]. r(t) = (1) (1) ® 4 Z(—l)di(")(—l)aﬂ'(t),
Leta(t),¢=0,1,---, N—1, be a sequence of lengtti=2" Jai
over I, = {0,1}. We will sometimes identify the sequence t=0,1,---N—1.

with the binary vectom = (a(0),a(l),---,a(N — 1)). The

The receiver at the output of thth-user channel computes
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CDMA systems such as the 1S-95 system employ Walsh [I. QUASI-ORTHOGONAL SEQUENCES
sequences of lengttd in the forward link .both as spreading et m be an integer. For a positive integer m, let z;(¢),
sequences and also to separate the d|ﬁerenF user chanQe:sO’ 1,---,N — 1, be the sequence of length = 2, given
[24]. Since the 1S-95 system is synchronous in the forvva[%

link, it is the inner product between the vectors associate

with different user sequences rather than periodic correlation, z1(t): 01010101 --0101
that is a measure of interference from other channels. Walsh z2(t): 00110011 --0011
sequences are perfect in the sense that there is no interference z3(t):  00001111---1111 2)

between any pair of sequences, as Walsh sequences form an

orthogonal family. However, the orthogonality limits the size

of an orthogonal family—there are onf}j* Walsh sequences () :
of length2™. For this reason, it is impossible to increase th’?he sequencetr;(t) [i — 1,2,---,m} are said to be thea-
number of channels without either increasing the sequence ‘ e A/

lenath Ise losi th lit betw i of nical sequences of lengtki™. We will abbreviate and write
(?J]gncec;r €ise 10sing orthogonality between a pair of USer Sg-instead ofr;(¢) when there is no chance of confusion.

. . . . . Any binary sequencé(t) of length2™ has a Boolean expres-
There are many situations where it is not appropriate to 0 y yseq (1) g P

. ~ > 'slon of the form
crease the length of the sequence. A loss in orthogonality is In-

evitable in such situations and gives rise to interference from F(t) = Z ap” @)
other channels. In [1], Bottomley proposed a set of signature
sequences drawn from a Kerdock code for a synchronous direct
sequence CDMA system where orthogonal spreading is us@ghere r — (11,72, s Tm) € F3* a, € Fy 2" =
However, in this scheme, signature and spreading sequencesare’z ... ;™ is a sequence obtained via bitwise multiplica-
different and there is no requirement on correlation between sign, and the addition of sequences is carried out bitwise modulo
nature sequences over a subblock. 2 [14]. For example, the sequenge= (01010110) of lengths
In this paper, the notion ofjuasi-orthogonalsequence may be expressed in the forfift) = z1 + zoxz3. With (3) and
(QOS) as a means of increasing the number of channels(®) in mind, we will interchangeably writg(x1, 2, -+, Zm)
synchronous code-division multiple-access (CDMA) systems place of f(#).
that employ Walsh sequences for spreading information signalsor any integef, 0 < i < 2™ — 1, we have the binary expan-
and separating channels is introduced. It is shown that a Q€iBn: =41 + 4,2+ - -+ + 4,,2™ L, whereiy, ig, - -+ , 4, € Fh.
sequence may be regarded as a class of bent (almost b&Jihg this expansion, we defing;(¢) to be a linear combina-
functions possessing, in addition, a certaimdow property tion of z;'s, given by
Such sequences while increasing system capacity, minimize
interference to the existing set of Walsh sequences. The wi(t) =d1x1 +i2x2 + -+ imTm- 4)
window property gives the system the ability to handle variable
data rates. A general procedure of constructing QOS's frdhis not difficult to show thatw; (#) andw;(t) are mutually or-
well-known families of binary sequences with good correlatiohogonal for any, j, j # 4. The familyW,,,, defined by
including the Kasami and Gold sequence families, as well as
from the binary Kerdock code is provided. Examples of QOS¥Vm ={w;(t) [¢=0,1,---,2™ — 1;¢=0,1,---2™ — 1}  (5)
are presented for small lengths. )
Complex or quaternary sequences, specifically sequenteg complete set of orthogonal sequences of ledgth- 2™
drawn from Family.A [2], [23], in place of binary sequences K"oWn as the family of Walsh sequences of lerigjth
were first considered in [5] in order to expand the set of |"€ Walsh familyV,, can be interpreted as a subcode of the
binary Walsh sequences for CDMA systems. In the final paifst-order Reed-Muller cod&..,, whereR,, is given by
of this paper, the correlation properties in “windows” of th
sequences in Familyl are studied. Computer searches were™
conducted (under a restriction on the subspaces associated with{c(t) | c(t) =tozo+i1z1+- - +im@Tmito, i1, i € F2}
the windows) and used to provide examples of sets of QOS's )
for all lengths of the forn2™, 4 < m < 8. where z is the all-one s_equenc(all 1) and {z;| l_ =
The paper is organized as follows. In Section I, we givé:2; -~ -,m} are the canonical sequences of length given
some preliminaries and introduce the concept of quasi-orthdg-(2) (see [14]). In many applications, it is important to find
onal sequences. The properties of a QOS sequence are stull@gorrelation between a binary sequence of le@gtiand the
here. In Section I1l, a general procedure for the construction g#de sequences ®,,,. This correlation is closely related to the
QOS's is provided from well-known families including Kasamflétermination of a parameter &,,, known as thecovering
sequences, Gold sequences, and binary Kerdock codes. Qu&géhius p(m) given by
nary quasi-orthogonal sequences are discussed in Section 1V, .
and some examples drawn from the Farpilyare provided. Fi- p(m) = max oy du (v, ¢) (6)
nally, concluding remarks and some open problems are given in
Section V. wherew runs through all the binary vectors of length in F2™ .

00000000 - --1111.

rekF;r
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The covering radiug(m) of the first-order Reed—Muller TABLE |
codeR,,, has been Int_enSIVely_Studled [4], [9], [1.5]' Itis well FIRST-ORDER REEEEMCL:JCI).\L/IIEE:;IZ%D?%L:SF(?;SHAEL VALUES OF m
known thatp(m) = 27~ — 20m=2)/2 for any even integem,
and p(2) =1 p(7) = 56

gm=1 _ o(m=1)/2 < p(m) < gm=1 _ o(m=2)/2 7 p(3)=2 p(8) =120

p(4) =6 240 < p(9) < 244

for odd mteggrm > 3. The known values op(m) equal the (5) = 12 p(10) = 496
lower bound in (7) form = 3,5, and7. However, Patterson
and Wiedemann [18] have shown thdin) is strictly greater p6) =28 | 992 < p(11) < 1002
than the lower bound in (7) for any odd integer > 15. The
determination of the exact value gfim) for oddm > 9 remains TABLE Il
an open problem. Known results gfymn) are listed in Table | Bmin (27™) FORSMALL VALUES OF 1
for small values ofn.

In the 1S-95 CDMA mobile communication system [24], the N=2"|0pin(2™) || N =27 | 6pin(2™) l
Walsh sequenced/s of length64 are used in the forward link 2 128 16
both to spread the signal bandwidth and to distinguish between 3 1 256 16
the signals of different users. The usage of Walsh sequences .
limits the number of channels to the sipé/,,| of the Walsh 16 4 512 32
sequence family which is equal to the length of the sequences 32 8 1024 32
in the family. The size of a Walsh sequence family cannot be 64 8 2048 64*

increased while maintaining orthogonality between pairs of se-

guences because there can be no greater2tigpairwise or-

thogonal sequences of lengit. Proof: Let f(t) € F§¥ be a sequence of lengtN =
The increasing demand for more service makes it desiraBf8 and letc(t) be a codeword oR,, with di (f(t),c(t)) =

to increase the size of the sequence family. Our goal is to @8~ —A, wheredy; (f(t), «(t)) denotes the Hamming distance

precisely this while keeping the interference introduced by tigtweenf(¢) andc(t) of length/N. Thenl +¢(t) is also a code-

additional sequences as small as possible. Note that sincewed with dy (f(t), 1 4 <(t)) = 2™~! 4+ A, since the all-one

CDMA system is assumed to be synchronous, it is the innégctor is a codeword ik,,,. Therefore,

product between pairs of sequences rather than periodic corre-

lation that is the relevant measure of interference. max
Consider first, the situation where a single sequef(@¢g of  <(t)eR..

lengthN = 2™ is added to the Walsh sequence famil,,. We

define Ry..x(f) to be the maximum correlation betweg) From the definitions in (6) and (8), we have

and the sequences W,,, given by

N-1
— )OO =272 min dy(f(t), «(t)).
(-1) c(tl)el . (f(#),c(t))

t=0

N—-1
N-1 Omin(2™) = min  max Z (—1)f(t)+c(t)
Rmax(f) = max Z (—1)f(t)+i0+wi ) FOEEY c(HERM t=0
10,W; (t) _
=0 = min <2m —2mindg(f(t), c(t)))
wherei, takes ord or 1, andhw;(#) runs through¥,,,. The factor fr(;) o(®)
(—1)% isintroduced to account for the effect of data modulation =2"-2 I}l(}? 1211)1 dr(f(t), c(t))
upon the inner product. Lé,,;,(N) be the minimum achiev- — 9™ 2p(m)
able correlation value, given by o pRI)-
. The proposition now follows from the well-known results on
9111in N) = Rmax 8 . .
(W) = min (f) ® p(m), including (7). O

where f(¢) runs through all sequences of len@fi. Then the Proposition 1 tells us that determinirg,;,,(2™) is equiva-
maximum interference introduced to the existing Walsh familgnt to determining the covering radipém) of the first-order

W, is at least ;i (V) for any sequencg(t) of lengthN = Reed-Muller code of lengtl2™. For small values ofm,
2" that is used to augment the family,,,. Our next step is to #.,in(2™) is listed in Table II, in which & denotes an upper
determingf s (2™). bound 0né,,in(2™).

For an even integen, a binary-valued functiofi(¢) of length
2™ is said to bebentif the correlationR,, betweenf(¢) and
any sequence(t) in W,,, has magnitude™/? [10], [14], [19].

In the case of an odd integet, there are no bent functions
of length2™ since2™/? is not an integer. Instead, for an odd
22 < B (2M) < 20mt)/2 integerm, a binary-valued functiorf(¢) of length2™ will be
said to bealmost bentf the correlationR ., betweenf(¢) and
for any odd integefn. any sequence(t) in W,, has magnitudec2(m+1/2 (cf. [3]).

Proposition 1: Let p(m) be the covering radius of the
first-order Reed-Muller codeR,, of length 2™. Then
we havef,,;,(2™) = 2™ — 2p(m). Moreover, we have
Bmin(27) = 2/2 for any even integem, and
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We are now in a position to introduce the concept of quadti-is easily checked that
orthogonal sequence.

Definition 2: LetW,, = {w,(¢)|j =0,1,---,2™ — 1} be
the Walsh family of lengti2™, given by (5). A family7 = gatisfies the Conditions a), b), and c), and therefore is quasi-
{fi(t)li =1,2,---, M} of M sequences of lengtN = 2™ is  grthogonal.
said to bequasi-orthogonalf the following are satisfied: .

; Lemma 6: Let f(¢) be a bent (almost bent) function of length

a) F contains\y,,. 9m with the wind L

b) |Rij| < Omin(N) for anyi andy ( 7). with the window property. Let

c) Foranyf(t) € FA\W,,, anyw(t) € W,,, and any integers _ e N
L,7,whereL =2,2<]<m,and0 <r < N/L -1 FO) + W = () +wilt)|i = 0,1, N —1}.

F =W, U{(0001), (0100), (0010), (1011)}

Then the sef = W,,, U (f(¢) + W,,,) is quasi-orthogonal.

rL4+L—1
Z (—1)f Ot <6 (1), Proof: For anyw(t), f(t) + w(t) is also a bent (almost
t—rT, bent) function of lengt2™. It also has the window property.

Furthermoref(¢) + w;(t) and f(¢) + w;(t) are orthogonal for
Remark 3: Whenm is an odd integer9, we use the upper anys and; (#4), sincew;(t) andw;(t) are orthogonal. 1
bound2(m+1)/2 instead of the exact value 6f,;,,(2™), since

i It will be convenient to define an equivalence relation be-
Omin(27) is unknown.

tween Boolean functions of leng®#i* in terms of the first-order
Condition b) for quasi-orthogonality requires that the corrd2eed—Muller codér,,,,.
lation between any two distinct sequencesfirshould be as

. o i Definition 7: Two binary-valued Boolean functiorf§¢) and
small as possible. Conditions a) and b) imply that any sequelfbci?) of the same length™ are said to bequivalent(with re-

in Z\W,, should cause minimal possible interference to the .+ iqr )if £(£)— g(t) € R,; in other words/(¢) — g(¢) is

existing Walsh family, i..|Ef.| < fmin(N) forany f(f) € = inear combination of the canonical sequences and the all-one
F\W, andw(t) € Wr,. This requires that any(t) € 7 goquence of lengtt™. Otherwise, they are said to beequiv-
not belonging ta,,, should be either bent or almost bent deélent (with respect taR,,.)

pending onm. , , The following is a direct consequence of Lemma 6 and Defi-
Condition c), which we will refer to as theindow property nition 7.

requires that when any sequenfig) € F\W,, is divided into

N/L consecutive subblocks of length= 2!, 2 < [ < m, the =~ Theorem 8:Let fi(t), f2(¢), -, fu(t) be k inequivalent

partial correlationbetweenyf(t) andw(t) over every subblock bent (almost bent) functions of length' = 2™ with the

be as small as possible for anyt) € W,,. Since every sub- Window property. Iff;(¢) + f;(¢) is also bent (almost bent) for

block of lengthL in W, corresponds to a sequencefip, the any: andj, i # j, then the set

condition requires that every consecutive subblock(ef cor-

responds either to a bent or almost bent function of ledgth

depending orl.. This requirement is motivated by practical ap-

plications, where repeating a sequenc®\ip,_; twice yields a

sequence iV,,, and therefore all sequencesW,,_; can be is quasi-orthogonal, wherg(¢) = 0. Furthermore, the size of

used for the transmission of data at twice the normal data rate Anis (k + 1) - 2™.

h a situation ndition c) is n r nsure minimum .
such a situation, Condition c) is necessary to ensure u Any quasi-orthogonal sequence (QOS) constructed

E%?SLtg?r;T;?igirgcgre;c;\}izz:\;\?gfe;icg?— rla::tﬁztre{ﬁ;vrgg wil ®Hom Theorem 8 consists df + 1 cosets ofW,,. Note that
' fo(t), f1(®), -+ -, fr(t) are the coset leaders if with respect

Remark 4:In terms of Boolean expressions, the windowio W,,. Since any sequencg(t) in F can be expressed as
property in part c) of Definition 2 can be reformulated ag(t) = f;(t) + w,(t) for somef;(t) andw;(t), thek nonzero

F= 0 + W)

1=0

follows: If f(¢) € F\W,,, then functions f1(t), f2(¢),- - -, fx(t) are often called thenasking
functionsof F in practical applications. In order to maximize
f@1, 22, Tm) e =an1 ey =aise,  wm=am the size of 7, it is necessary to maximizke. The definition

. below relates to the maximum possible valuéof
should be a bent or almost bent function of lengttfor any P

Gl41, Atz Gm € I, where2 <[ < m. Definition 9: LetI be the ensemble of sefsof inequivalent
functions of length2™ (with respect tdR,,,) such that

Example 5: Consider the canonical sequences of length RO
a) any function inS is bent (almost bent);

iven b
g y b) the sum of any two functions is also bent (almost bent);
z1(t): 01 0 1 c¢) any function inS has the window property.
za(t): 0 0 1 1 The numberk,,,x(m) is defined to be the maximum ¢8|

Then the Walsh sequence of lengdtis wheres runs througiT’, that is,

W, = {(0000), (0101), (0011), (1010)}. Finax(m) = max |S|.
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It is well known [14, Corollary 11, p. 429] that

f(ajlax?v to 7$m) =X1T2 +X3T4+ -+ Tm—1Tm
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Ill. QUASI-ORTHOGONAL SEQUENCES FROMKNOWN FAMILIES

In Section I, QOS's are defined and their existence is verified
for any length2™ in (9). A natural question at this stage is to find

is bent, for any evem > 2. It is easily checked that this func-a" efficientway to construct QOS's. In this section we give a sys-
tion has the window property. It follows from this and the thelemMatic procedure to construct QOS's from known families with
orem below that there exists at least one bent (almost bent) fu@0d correlation properties, including Gold sequences, Kasami

tion of length2™ with the window property, i.e.,
Funax(m) > 1 ©)

for any integernn > 2.

Theorem 10: For any positive integein, we have

kmax(2m) S kmax(2m + ]—)

sequences, and Kerdock codes.

A. Construction of QOS's from Known Sequences with
Optimal Correlation

Consider a familys = {s;(¢)|¢ = 0,1,---,M — 1} of M
binary sequences of peridd = 2™ —1, satisfying the following
conditions.

a) Anm-sequence of perio belongs toS (Here,so(¢) is
usually assumed to be am-sequence).

Proof: LetS be a set of inequivalent functions of length b) Any two sequences are cyclically distinct, that is, for any

2?2m satisfying the conditions given in Definition 9, which

achievesk,,..(2m). Then any functionf(¢) in & can be
considered as a bent functiof{z,zz,- -, z2m,). Now let
f= (f1lf) be a concatenation gf and f, which is of length
22m+1 |n the notation of Boolean functions, we have

~

f(xlaw'?a T a$2nlax2nl+1) = f(xlaw'?a T a$2nl)-

The theorem follows from the fact thﬁtis almost bent, since

Z (—1)F@H+e)| <

e FZm+1

Z(_l)}(w)+<:(w)

x

T2m41=0

Z(_l)}(w)+6(w)

x

+

Tm 41 =1

< 2rn + 2rn —_ 2rn+1

foranyc(x) € Romt1- O

It is quite interesting to determirfg,,,.(m) exactly, but this
does not appear to be an easy problem. For small valuas ibf
can be checked thdt,..(2) = 1, kmax(3) = 4, kmax(4) = 4.

In the following section, we know from a computer search that

kma.x(S) 2 107 kma.x(G) 2 87 kmax(7) 2 227 kmax(8) 2 207
kma.x(g) 2 487 etc.

Example 11:In the case ofn = 4, consider the s&f of four
inequivalent bent functions of lengtlé, given by

J1(t) = w122 + 23714,

f2(t) = x120 + 2124 + x203

f3(t) = x122 + 123 + X223 + T2Z4
fa(t) = x120 + 123 + T1204 + T224.

Note thatf;(¢) has the window property anfi(t) + f;(¢) are
also bent for any andj (# ¢), Hence the set

4

U +w)

=0

is quasi-orthogonal, wherg(¢) = 0.

¢ andyj (#£¢) there does not exist, 0 < 7 < N, such that
si(t+71)=s;(t)forallt,t=0,1,--- N — 1.

¢) Whenl is added to the out-of-phase auto- and crosscorre-
lation values, the result has magnitudal(m+1)/2] je

N-1
14+ 3 (c1ysttn+ 0| < oltmtn/2)
=0

for all 4, j, 7 except fori = j andr = 0 (mod N). Here
|| is the largest integer less than or equat to

Our goal is to construct a quasi-orthogonal sequéefitem S.
Since the Walsh sequent®,, is obtained by permutingg(?)

and its shifts properlyiV,, is included inF by the Condition
a). Condition b) allowss;(¢) to be the coset leaders jA with
respect toW,,, if properly permuted. Condition c) guarantees
thats;(t) is bent (almost bent) for any> 1, ands; (t) + s;(¢)

is also bent (almost bent), if properly defined. The remaining
work is to check ifs;(¢) has the window property.

AlgorithmZ to Construct a QOS from a Given Familys

(A.1) Using anm-sequencey(t), we define a mapping :
{0,1,---,2™ — 2} — {1,2,---,2™ — 1}, given by

m—1
o(t) =Y so(t+d)2m '
=0
(A.2) Foreach,i=1,2,---,M — 1, we define a sequence

ei(t),t=0,1,---,2m — 1, of length2™ by

— 0’
= { 3oy,

wheres ! is the inverse mapping of.

Choose all sequencegt) having the window property,
and call themy(¢), fo(¢),-- -, fx(¢). Define

ift=0
ift=1,2---,2m -1

(A.3)

F=JF@®) +Wn)
:=0

where fo(t) = 0. Then the familyF is a quasi-orthog-
onal sequence of siZ& + 1) - 2. O
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Let m be an integer and ldi» be a finite field of2™ ele- B. Construction of QOS's from Binary Kerdock Codes
ments. The trace functich,,, (-) is a mapping fromfsm to Fs,

k Letm be an even integer4. Note thatn — 1 is odd. For sim-
given by

plicity, let o1 (x) = Tr,,—1(x), and letoy(z) be the quadratic
m—1 form given by
o
T (z) = ; . (m—2)/2 7-
- 0’2(.7}) = Z Trrn—l (-T1+2 ) .

Every primitive elementy in £y~ is associated with am-se- i=1
quencex(t) of length2™ —1, viac(t) = Tr,,(aa’) fora € Fom.
(See [13] for more detalils.)

For an even integer., let’(t) be a sequence decimated fronf*®
c(t) by 27/2 41, that is,

The binary Kerdock cod&,(m) of length2™ can be described

Ka(m) = {(Cw)azerm_l |7, m € Fom-1,¢9,01 € FQ}

_ rn/?
bt) = (™7 + 1)+ 4) wherec,, = (I(z),r(x)) and
where0 < A < 2™/2 andA is chosen so thdi(t) is not the I(z) = oa(y2) ()
all-zero sequence. Note thaft) is anm-sequence of period ¥) = o2{ye) +o1ne) + e
2m/2 _ 1. The small setk(m) of Kasami sequences can be r(x) = o2(vx) + o1(nx) + 01(yx) + (co + 1)

defined
elined as It is shown in [8] that the binary Kerdock cod& (m) can be

K(m) = {c(t)+bt+7)|0 <7 <22 —1}u{c(t)}. (10) described as the image of the Gray map of a linear code over a
guaternary alphabet. The weight distribution&f(mn) is well
Note that the size o (m) is 2™/2. (See [10], [20], or [22] for known [14].

details.) Proposition 16: For evenm > 4, let A; be the number of

Proposition 12: The out-of-phase autocorrelation and crosgodewords of weight in the binary Kerdock codé,(m) of
correlation between sequences of the Kasami sequEiiee) length2™. Then
in (10) take on three values:1, —1 & 2/2,

K(m) in (10) can be used to construct quasi-orthogonal se- gmtl _ o ’ fori = oam—1
quences of lengtl2™ by Proposition 12. Puso(t) = c(t),

si(t) = c(t) + bt +4) for 1 < ¢ < 2m/2 — 1, and apply
Algorithm Z described above te;(t).

1, fori =0or2™
Example 13: For an even integet:, the Kasami sequence A = { gm(gm=1 _ 1) fori = am—1 4 9(m=2)/2

In order to expresHx) andr(z) in a unified way, we intro-
duce a variable;; € F5 and putce, := ¢(z, z1), where

For an odd integef:, let+ be an integer relatively prime to.
Letb(t) be a sequence decimatedBiy+ 1 from anm-sequence o(z,x1) = Qy(x, 1) + Ly co e, (%, 71) (12)
¢(t) of length2™ — 1, that is,

b(t) = (2" + 1)t).

where

Qy(z, 1) = 02(vz) + 2101(72)
The Gold sequence can be defined as ) )
is the quadratic part of(z, z1 ), and

Gim) ={c(t) + bt +7)|0 <7 < 2™ — 1} U{c(t), b(t)}.
(]_]_) meo,ﬁ (l’, ‘Tl) = 01(7797) + cox1 +c1

Note that(? is a family of size2™ + 1. (See [10], [20], or is the linear part of(z, 21 ). This implies that if we takes = 0
[22] for detgirlls))l ly ot siz L [10]. {20] in ¢(x, z1), we get all codewords of the first-order Reed—Muller

codeR ,,, by proper permutation df,, ., ., (x, z1) usingo ()
Proposition 14: The out-of-phase autocorrelation and crosss in Algorithm.A. Thus the Kerdock codk»(m) consists of
correlation between sequences of the Gold sequéfiee) in - 2~1 cosets ofR,,,, corresponding to the form@(z, z;) de-
(11) take on three values:1, —1 £ 20m*+1/2 ‘wherem is odd. pending ony.

Example 15: For an odd integer, the Gold sequendg(m) Let {72’73’k" ) ’}m} be a Eass forF?ma‘ over f3. Then
in (11) can be used to construct quasi-orthogonal sequenceg\fﬁry element € Ly -1 Can be expressed as

length2™ by Proposition 12. Put m
T = Z%‘xi (13)
so(t) = (), i=2
si(t) =e(t) +b(t+4),  forl<i<2™ -1 wherez; € F, fori = 2,3,---,m. Using this expression, we
sam (t) = b(t) put

and apply AlgorithniZ to s;(t). fo(@r, @2, @) 1= Qy (, 21).
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From the weight distribution of>(m) in Proposition 16, it Kerdock codes have been used in the case of even integers

is easily checked that,(z1, z2,- - -,z ) is @ bent function of An interesting point in these simulations is that the maximum
length2™ and that for anyy; and~ys (#y1) numberk of inequivalent bent (almost bent) functions from
these families depends on the choice ofarsequence(t) or
fon (@1, 22, am) + frolz, @2, -, o) the choice of primitive elements.

is also bent. These facts give a way to construct QOS's from IV. QUATERNARY QUASI-ORTHOGONAL SEQUENCES
binary Kerdock codes, if we properly choose bent functions with

window property from them. When a CDMA communication system uses QPSK (quadra-

ture phase-shift keying) modulation instead of BPSK (binary
Lemma 17: There ar@™~? inequivalent bent functions from phase-shift keying) modulation, it is natural to use quadrature
the Kerdock codéC(m), which have the window property of phase sequences as signature sequences rather than binary se-
size4. guences and this is the approach taken in [5]. Also, as pointed
Proof: There are2™~' inequivalent bent functions out in [5], when it is desired to expand the set of binary Walsh
fy(x1,22,- -+, &) In Ko(m). From (13) and linearity of the functions currently used on the forward link of the 1S-95 CDMA
trace function, we have system, one advantage using quaternary rather than binary se-
guences to augment the family is that the maximum full-period
correlation between a Walsh function and a new sequence be-
longing to the augmented set, is lower in the quaternary case by
a factor ofv/2 for the case when the full period is of the form

- - 2™ m odd.
=0 E Ty | +x10 E i T4 ’ . . . . .
? <’y ~ R ) . <’y ~ 7 ) For these reasons, we investigate in this paper, the question

of whether it is possible to construct a QOS family (i.e., a
family that in addition to full-period correlation, also enjoys
good correlation properties in every window) that consists of

f"/(xlax% e axrn)

= Trrn—l(’Y’YQ)xIxQ + .7}291(.7}3, T xnl) + 92(-T3, e 7xnl)

whereg, (x3,- - -,z ) is a linear function andz(zs, -, #m)  pinary Walsh sequences and quaternary sequences. From the
is a quadratic function. Thereforg, (1, z2,- -+, zm) iIs@bent theory of quaternary sequences, a natural candidate to use is the
function of lengthd for any fixed value sequences set known as Famiy[2], [23]. These sequences
were also the basis of the quaternary sequences studied in [5],
(x3, -, m) = (az, -+, am) where the focus was on the full-period correlation propetties.

_ o ) The construction of quaternary QOS's from sequences in
if and only if it has Ef;e termvllx_z, that is, Trm—1(¥72) # 0. Family A depends on the choice of certain subspaces of a finite
There are exactlg™ ™" suchy's in Fy»—1 forafixedv:. 0. field. The results of an exhaustive search conducted over a

The lemma implies that the number of inequivalent bent fungubset of all possible choices of subspaces are presented in this
tions of length2™ with window property, which can be obtainedS€ction.

from the Kerdock codéC,(m), is at mos2™ 2.
A. Definition of Quaternary Quasi-Orthogonal Sequences

C. Simulation Results for QOS's from Known Families Let Z, = {0, 1,2, 3} be the ring of integers modulh A se-

Computer simulations were done to find QOS's of lerzjth duenceu(t),t =0,1,---, N—1is called ajuaternarysequence
from known families. For evem, Kasami sequences and Kerof length NV if a(t) € Z4 for all t. The correlation between
dock codes can be used. In general, it is possible to get lar§gp quaternary sequence§) andi(t) of the same lengttV is
QOS's from the Kerdock codes than those from Kasami s@iven by
guences. For example, there are 4, 8, and 20 inequivalent bent N1 N1
functions with window property from Kerdock codes in the case R e Z Lo® (wb(t))* _ Z (D=4t
of m = 4,6,8, respectively, while there are 2, 3, and 6 such ab -
functions from Kasami sequences in each case. It may be nat- =0 =0

ural because there are more candidates for inequivalent bgRkre* denotes complex conjugation(t) — b(¢) is computed
functions with window property in the case of Kerdock codegodulo4 for eacht, andw is a primitive fourth root of unity,

(2"1_1 CandidatES) thaﬂnl/2 candidates in Kasami sequenceshat iS,w = \/__]_ Two sequences are said to mhogona”f
For an odd integein, the Gold sequenc&(m) in (11) has2™  their correlation is zero.

candidates for inequivalent almost bent functions with window The following result is well-known from the theory of orthog-

property. _ . ~onaltransforms. As a special case, it gives a lower bound on the
In Tables IlI-V, inequivalent bent (almost bent) functiongnaximum of coefficients of the Walsh transform.
with window property (called masking functions) for QOS's
are listed for small values of., which are of importance in
practical systems. In Tables IV and &, implies that the term 1At the time of initial v_vriting of th_is paper, the aut'hors were unware of [21],
2 bel to the maskina function in its Boolean e ress.owhere the QOS properties of Famil are also considered and some methods
Z;x; belongs 1o Ingtu '_ ni Xp 108}-construction provided. However, the techniques used there and the sequences
Gold sequences have been used in the case of odd int@gergresented are distinct from ours.
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TABLE 1lI
MASKING FUNCTIONS FORQOSS OFLENGTH 2™

[ m ’ Nonzero Masking Functions of Length 2™

fi = 1130

3 || fo= 2130 + 2123

f3 = 2120 + 2223

Ji= 2120 + 3153 + Tox3

f1 = Z1%2 + 123 + TaTs + L3T4
4 || f2 = 2122 + 1173 + 1124 + 274
f3 = Z1T9 + ToZ3 + ToZy + T3Ty
J1=21%2 + 3124 + T34

fi = 2172 + Tox4 + T314

fo= 2129 + T1X5 + TaTs + TaTy + T4T5

f3s = 21@9 + 1124 + 135 + oy + T3T4 + TaTs
fo =129 + T4 + ToT5 + T3T4 + T3T5 + TaTs
5 f5 =122 +T1x3 + T1Z4 + T1T5 + ToZy + ToXy
fo = z1%2 + 1123 + Loy + ToTs + 3T

fr = 2120 + 2123 + ToT3 + ToBy + TaT5 + T4Ts
fo = @9 + Tox3 + ToTy + T3y + T3T5 + TaZs
fo = z1Zo + 2125 + ToZ3 + ToTs + T3T4 + T3T5
f10 = T1T2 + T123 + T134 + ToZ3 + T3Ts

Ji = 3139 + 31203 + 1105 + Loy + T2Zg + TaTs

fg = T1T9 + X1Ts5 + T1Tg + TaT3 + ToZs + T3Ts + T3Tg + T4 + T5Tg

f3s = T122 + 2123 + T1Te + ToTe + TaTy + T3Te + TaTs + TaZs + T5Te

fa= 2129 + 2124 + T1T5 + T1 T + TaTs + ToTg + T5Te

6 || f5 =x120 4+ 2176 + ToT5 + ToT6 + T3T4

fo = 2122 + 2123 + 124 + T, T5 + T1T6 + ToT3 + TaT5 + ToZe + T3Ts
+I3%s + T4Zg

fr =120 4+ 2123 + 2124 + Ta%y + ToTs + ToTe + T3Tg + TaLe + T5Tg

fs = 122 + 2123 + X124 + T1T5 + T2T3 + ToTy + ToTs + Tols + T3y
+Tsx5 + TsTg

Proposition 18: Let 2 = (x9,21,---,71_1) be a complex where
vector with|z| = 1 and lety = Uz, whereU is anL x L Nt
unitary matrix, i.e., U#U = I. Then — ,
Ryw = Z W (1)@ ®),
t=0
1 . . .
mle|Z/z‘| > Vi Using the relation,? = —1, for any binary sequendg),

the correlation becomes

Proof: Note that the maximum gdfy;|? is at least the av- N1 N1
erage ofly;|?. It is easily checked that the averagemﬂ?Il:ls Ry = Z WD (1)) = Z L (DH256(t)
t=0

equaltol/L. —

Corollary 19: Let a(t) be a quaternary sequence of length

N = 2™ and letW,, be the binary Walsh sequence of the sam‘@herea(t) - 21’@ is computed moduld, sob(t) can b_e re-
length. Then the maximum of absolute correlation values arded as a special case of quaternary sequence, which we wil

tweena(t) and anyw(t) in W,, is at least/2™, that is, der?ote b)Qb(t_) . Note tha12b(_t) tal_<es on two values) or 2. For
an integern, itis natural to identify the binary Walsh sequence

W, with the seW,,, over 7y, given by

3 Ryw| > V2™
o2, [ Raul 29 W, = {2u(t) | w(t) € W, ).
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TABLE IV
MASKING FUNCTIONS FORQOS'S OFLENGTH 128 (m = 7)

fi: 12,13, 14, 23, 25, 27, 35, 36, 37, 45, 46, 56, 57
fa: 12,13, 14, 16, 17, 23, 24, 25, 26, 27, 34, 35, 36, 37, 47, 56, 57, 67
fs: 12,13, 14, 15, 186, 17, 26, 34, 35, 36, 37, 45, 46, 47, 67
far 12,17, 25, 34, 35, 36, 45, 46, 56
fs0 12,13, 15, 16, 17, 23, 25, 34, 36, 37, 45, 67
fer 12,15, 23, 34, 37, 45, 47, 56, 67
fri 12,13, 17, 23, 25, 26, 27, 34, 35, 36, 37, 45, 56, 67
fs: 12,13, 15, 16, 17, 24, 27, 56, 67
for 12,14, 16, 25, 27, 34, 37, 45, 46, 67
fior 12, 14, 15, 17, 24, .25, 26, 27, 34, 36, 46, 47, 57
fu: 12, 15, 16, 24, 25, 26, 34, 35, 37, 46, 47, 56, 57, 67
fi2: 12, 14, 16, 17, 24, 25, 34, 35, 36, 46, 47, 56, 57
fise 12, 13, 15, 23, 24, 25, 26, 36, 37, 46, 47
fiar 12, 13, 14, 16, 24, 26, 27, 36, 37, 56
fis: 12, 16, 17, 23, 24, 26, 34, 36, 56, 57
fie: 12, 16, 23, 26, 27, 34, 35, 37, 45, 47, 67
fir 12, 13, 15, 26, 27, 34, 45, 46, 47, 56
fist 12, 15, 17, 23, 24, 27, 34, 35, 36, 57
fio: 12, 13, 16, 34, 35, 45, 46, 47
fa0: 12, 14, 16, 23, 24, 36, 46, 56, 67
farr 12, 15, 16, 17, 25, 26, 27, 34, 36, 45, 46
fa2r 12, 13, 14, 15, 24, 35, 36, 37
TABLE V ,

MASKING FUNCTIONS FORQOS'S OF LENGTH 256 (. = 8)
fi: 12, 15, 16, 24, 25, 34, 37, 45, 67, 78
far 12, 15, 16, 18, 23, 26, 27, 28, 34, 38, 46, 47, 48, 56, 57, 67, 68
f3: 12,13, 16, 17, 18, 23, 25, 27, 34, 36, 38, 45, 78
fa: 12,14, 15, 17, 23, 24, 26, 35, 37, 45, 46, 47, 57, 58, 67, 68
fs: 12, 14, 16, 23, 25, 36, 38, 46, 47, 48, 57, 67, 68, 78
fe: 12,13, 16, 18, 24, 26, 27, 28, 36, 45, 46, 47, 48, 56, 57, 68
f7: 12,13, 15, 16, 17, 25, 26, 27, 28, 34, 35, 37, 45, 47, 48, 67, 78
fa: 12, 14, 15, 18, 24, 25, 26, 27, 34, 353, 36, 37, 47, 56, 57, 68, 78
for 12,13, 14, 16, 24, 25, 26, 27, 28, 36, 38, 46, 48, 56, 57, 67, 68, 78
fior 12,13, 15, 16, 18, 27, 34, 35, 37, 38, 48, 56, 57, 58, 68
fui: 12,13, 14, 15, 18, 28, 34, 35, 36, 45, 46, 36, 58, 67, 68, 78
fi2: 12,16, 17, 18, 24, 28, 34, 35, 36, 37, 38, 46, 47, 56, 57, 58, 67, 78
fiz: 12, 14, 15, 16, 17, 18, 23, 24, 27, 28, 35, 38, 57, 67, 68
far 12,13, 16, 17, 23, 24, 25, 26, 27, 28, 35, 38, 47, 48, 78
fis: 12,13, 14, 18, 25, 26, 27, 34, 35, 38, 45, 47, 56, 57, 67, 68, 78
fie: 12, 17, 26, 34, 37, 38, 45, 46, 47, 48, 56, 58
fire 12, 14, 15, 23, 24, 37, 48, 56, 57, 58, 67, 68
fisr 12, 15, 17, 18, 24, 25, 27, 34, 36, 37, 46, 47, 48, 57, 68, 78
fier 12, 13, 14, 15, 16, 17, 23, 24, 25, 27, 28, 34, 35, 37, 45, 57, 68, 78

fao:

12, 16, 25, 34, 38, 78
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TABLE VI
MASKING FUNCTIONS FORQUATERNARY QOSS OFLENGTH 2™

f m Masking Sequences of Length 2™

fi: 02221113

3 | far 01122132

f3: 02111322

fi: 01213212

f1: 0013332020113100

4 | for 0200111333132000

f3: 0332013012011003

F1: 0112100330230310

f1: 02332213203300132213023322310211

5 || for 03322132231201123203100312233023

f3: 01303023122323302132320332212110

fa: 02332231223120113320132231003320

f1: 0013112022131102201131222033132211200013332000313122201131000211

6 | fo: 0301012121230121103012101030303223210323232121013010101212321012

f3: 0002131131112202331320000200111302223313111320221311222000203111

f1: 0103210112103212303232122321210101210301301032303010101201212123

fi: 0323301001031012323023213010032312320323323001032321101203231232
3010032310120103010310122101123203231232010332303230010330102101

7 | for 0103323010300121121021232101301012320323030130320121103032300103
0301121030100323323023212303103010302303232132302101123230322123

f3: 0200333122021333131100023313200031332220331320002022111322021333
0200111300201333313300023313022231330002113120000200111322023111

fa: 0222111302001131331302001113200000203133222013331333000213110020
1113022233132022020033130222333131330020311100020002133322023133

(Continued on the following page)

In the same way as in the binary case, it is natural to udaced by a factor of/2. Condition c) is also called theindow
fmin(2™) = /2™ by Corollary 19 in order to definguaternary propertyin the quaternary case, as in the binary case.

quasi-orthogonabequences in the following. Definition 22: Two quaternary sequenceg$t) and g(¢) of

Definition 20: A family F = {f;(¢)|i = 1,2,---, M} of the same lengtR™ are said to bequivalent(with respect to
M quaternary sequences of length= 2™ over Z, is said to R,,) if f(t) — g(t) isin (2W,,,,2), where2 = (2,2,---,2) and
bequaternary quasi-orthogonadl the following are satisfied:  {2W,,,2) is a modulé generated b2WV,,, and2 over Z,.
a) F contains2W,,,. In the same way as in the binary case, we get the following
b) For any distinct two sequencg¢st), f;(t) € F theorem. _
Theorem 23:Let fi(t), f2(t), -+, fu(t) € 2W,, bek in-
equivalent sequences of length = 2™ over Z; with window
< V2. property. If f;(t) and f;(¢) satisfy Condition b) in Definition 20
for anyi andj, ¢ # j, then the set

N—-1
S W50
t=0

c) For anyf(t) € F\2W,,, anyw(t) € 2W,,, and any in-
tegersL, r, whereL = 2,2 < 1 < m,and0 < r <

k

F =@ +2Wn)

N/L -1 i=0
rL+L—1 . . - .
Z 0| < T is gua5|-orthogonal, wherg(t) = 0. Furthermore, the size of
“ = Fis(k+1)-2m.
t=r

As in the binary case, the nonzero quaternary sequences
F1(2), fo(t),-- -, f1(¢) given in Theorem 23 will be called the

Remark 21: Compared with the conditions for binary QOS St‘nasking sequences the family 7.

Conditions b) and c) in Definition 20 are stronger wheror [
are odd, in the sense that maximum correlation values are refSee [12] for details.
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TABLE VI (Continued)

‘ m Masking Sequences of Length 2™ T

f1: 0310102123121201213210212312302303323221233030012110322123301223
2312302303103203013030230310102123301223033210030112122303323221
3023231232030310120123123203213230010112322121101223011232210332
1021031012012312320303101201013010032110122301123221211012232330

8 || f2: 0002331320221333111322023133022233132220311120220020111302221311
2022311100021131131102223331220231110200331300022000131122021113
1113220231330222000233132022133300201113022213113313222031112022
3133200011130020020013332220331302223133002033311333202211312220

f3: 0200131131330200022231113111200022023313113122022220111311130002
2202113133132202222033313331000220221311313320222000311131110222
1113222022203331331322020020331331110222022213331311020020221311
1333022202223111313302002022313311130002000233313313002022023313

fa: 0301121012322101212312101232032332122303010332303212012123213230
2303321210122321230310303230232112100301032330103032030103231232
1232210121233032301021012123121001033230103001210103101232120121
3230010323033212323023210121321221011232121003010323123212102123

B. Construction of Quaternary Quasi-Orthogonal Sequences Proposition 24: The out-of-phase autocorrelation and cross-

The Galois ringR,. = GR(4,m) is an extension of, of correlation between sequencesAf, in (14) take on only the

degreem. R,, is a local ring having a unique maximal ideafo!lowing values:

M = 2R and the quotient rind?/A is isomorphic to a finite 1,1+ /27, for oddm
field F»- with 2™ elements (see [8], [11] for details). As a mul- 1, -1+ /27, 1 £ w2, for evenm

tiplicative group the sek’, of units inR,,, has a cyclic subgroup

of order2™ — 1. Let 2 € R*, be an element of ord@™ — 1, wheree = (+1 + w)/v/2 andw = /—1.

and let7,, = {0,1,3,---,5%"~2}. Any element: € R,,, can The sequencey(t) = T(28%),t = 0,1,---,2™ — 2 is an

be expressed uniquely as= « + 2b for a, b € 7,,. Let » be m-sequence of lengtt”™ — 1 multiplied by 2 (mod 4). Thus

the modulo2 reduction map. Note that = y(3) is a primitive  2W,,, can be obtained from (¢) and its shifts by a proper per-

element in inFy-. The trace map fron&k,,, to 7, is defined by mutation in a similar way as Algorithtfiin Section IlI-A. Com-
bined with Proposition 24, the family,, is a good candidate

=g j for construction of quaternary QOS's. In Table VI, examples
Tz) = Z (GQ + 2" ) ) of masking functions for quaternary QOS's are listed for small
=0 values ofn. There have been found four nonzero masking func-
Note that it is aZ,-linear map. tions for quaternary QOS's fan < 8.
Letn;, 1 <+ < 2™, be an ordering of the the elements/pf.
The FamilyA,,, of Z,-sequences of peridi” — 1 is defined by V. CONCLUDING REMARKS
_ .. ; m We have introduced quasi-orthogonal sequences which can
Am = {s:(t) [0 58 <27 (14) be used in CDMA systems that employ the Walsh sequence
where family for channel separation. A general procedure for con-
struction of QOS's is provided from well-known families of
so(t) = T(268"), binary sequences with good correlation, including Kasami se-
si(t) = T([1 + 2n:]8Y), forl1<i<2m, quences, Gold sequences, and binary Kerdock codes. In partic-

ular, examples of masking functions for QOS's are presented for
Note that the size o#i,,, is 2™ + 1 and.A,, is referred to as the small lengths. Some examples of quaternary QOS's drawn from
Family A, whose correlation distribution is well known in theFamily .A are also included.
following proposition [2], [10], [23]. Some open problems relating to QOS's are listed as follows.
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i) Whatisé,,;,(2™) foroddm > 9? In other words, whatis  [9]
the covering radiug(m) of the first-order Reed—Muller
codeR,, for oddm > 9? [10]

ii) Find the exact value of,,x(m) for anym > 5. In
other words, find a maximal set of masking functions for 1]

guasi-orthogonal sequences of a given lergjthin the
binary and quaternary cases.

iii) Find a systematic method to construct QOS's in the blﬁg%

nary and quaternary cases.

(14]
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