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Abstract—In this paper, the notion of quasi-orthogonal se-
quence (QOS) as a means of increasing the number of channels
in synchronous code-division multiple-access (CDMA) systems
that employ Walsh sequences for spreading information signals
and separating channels is introduced. It is shown that a QOS
sequence may be regarded as a class of bent (almost bent)
functions possessing, in addition, a certainwindow property. Such
sequences while increasing system capacity, minimize interference
to the existing set of Walsh sequences. The window property gives
the system the ability to handle variable data rates. A general
procedure of constructing QOS's from well-known families of
binary sequences with good correlation, including the Kasami and
Gold sequence families, as well as from the binary Kerdock code
is provided. Examples of QOS's are presented for small lengths.
Some examples ofquaternary QOS's drawn from Family are
also included.

Index Terms—Bent functions, code-division multiple-access sys-
tems, Gold sequences, Kasami sequences, Kerdock codes, quasi-or-
thogonal sequences, Walsh sequences.

I. INTRODUCTION

CODE-division multiple-access (CDMA) systems use
pseudo-noise binary sequences as signature sequences

to distinguish between the signals of different users. Several
spread-spectrum communication systems also use them as
spreading codes that help achieve a low probability of intercept
by spreading the signal energy over a large bandwidth. De-
sirable characteristics of pseudo-noise binary sequences used
for such applications include long-period, low out-of-phase
autocorrelation values, low crosscorrelation values, large linear
span, symbol balance, low nontrivial partial-period correlation
values, large family size, and ease of implementation [7], [10],
[20], [22].

Let be a sequence of length
over . We will sometimes identify the sequence
with the binary vector . The
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correlation between two binary sequences and of
the same length is given by

where is computed modulo for all . It is easily
shown that where denotes the
Hamming distance of two vectorsand . Two sequences are
said to beorthogonalif their correlation is zero.

Let be a family of binary
sequences of period . The family is said to beorthogonalif
any two sequences are mutually orthogonal, that is,
for any and . For example, the Walsh sequence family of
length is orthogonal. Where there is no chance of confusion,
we will abbreviate and write instead of .

Consider a synchronous system without multipath time dis-
persion, where a sequence family is employed to
both spread the signal bandwidth as well as distinguish between
different users. We consider the case when binary phase-shift
keying (BPSK) is used to modulate the signal. Let

be the binary information signal of theth user at
the th information bit time. Then each bit is spread into

chips by the signature sequence of the th-user channel
during the th information bit time as follows:

Ignoring noise added to the signal in the channel, the received
signal during the th information bit time is given by

The receiver at the output of theth-user channel computes

(1)

If is orthogonal, then and can be
easily determined from the sign of . When is not or-
thogonal, it is necessary to minimize the second term in (1),
i.e., the interference from other channels. Since is typi-
cally assumed to take on valuesor with equal likelihood, it
is necessary to minimize the absolute value of the correlations

between two distinct sequences in.
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CDMA systems such as the IS-95 system employ Walsh
sequences of length in the forward link both as spreading
sequences and also to separate the different user channels
[24]. Since the IS-95 system is synchronous in the forward
link, it is the inner product between the vectors associated
with different user sequences rather than periodic correlation,
that is a measure of interference from other channels. Walsh
sequences are perfect in the sense that there is no interference
between any pair of sequences, as Walsh sequences form an
orthogonal family. However, the orthogonality limits the size
of an orthogonal family—there are only Walsh sequences
of length . For this reason, it is impossible to increase the
number of channels without either increasing the sequence
length or else losing orthogonality between a pair of user se-
quences.

There are many situations where it is not appropriate to in-
crease the length of the sequence. A loss in orthogonality is in-
evitable in such situations and gives rise to interference from
other channels. In [1], Bottomley proposed a set of signature
sequences drawn from a Kerdock code for a synchronous direct
sequence CDMA system where orthogonal spreading is used.
However, in this scheme, signature and spreading sequences are
different and there is no requirement on correlation between sig-
nature sequences over a subblock.

In this paper, the notion ofquasi-orthogonalsequence
(QOS) as a means of increasing the number of channels in
synchronous code-division multiple-access (CDMA) systems
that employ Walsh sequences for spreading information signals
and separating channels is introduced. It is shown that a QOS
sequence may be regarded as a class of bent (almost bent)
functions possessing, in addition, a certainwindow property.
Such sequences while increasing system capacity, minimize
interference to the existing set of Walsh sequences. The
window property gives the system the ability to handle variable
data rates. A general procedure of constructing QOS's from
well-known families of binary sequences with good correlation,
including the Kasami and Gold sequence families, as well as
from the binary Kerdock code is provided. Examples of QOS's
are presented for small lengths.

Complex or quaternary sequences, specifically sequences
drawn from Family [2], [23], in place of binary sequences,
were first considered in [5] in order to expand the set of
binary Walsh sequences for CDMA systems. In the final part
of this paper, the correlation properties in “windows” of the
sequences in Family are studied. Computer searches were
conducted (under a restriction on the subspaces associated with
the windows) and used to provide examples of sets of QOS's
for all lengths of the form , .

The paper is organized as follows. In Section II, we give
some preliminaries and introduce the concept of quasi-orthog-
onal sequences. The properties of a QOS sequence are studied
here. In Section III, a general procedure for the construction of
QOS's is provided from well-known families including Kasami
sequences, Gold sequences, and binary Kerdock codes. Quater-
nary quasi-orthogonal sequences are discussed in Section IV,
and some examples drawn from the Familyare provided. Fi-
nally, concluding remarks and some open problems are given in
Section V.

II. QUASI-ORTHOGONAL SEQUENCES

Let be an integer. For a positive integer , let
be the sequence of length , given

by

...

(2)

The sequences are said to be theca-
nonicalsequences of length . We will abbreviate and write

instead of when there is no chance of confusion.
Any binary sequence of length has a Boolean expres-

sion of the form

(3)

where
is a sequence obtained via bitwise multiplica-

tion, and the addition of sequences is carried out bitwise modulo
[14]. For example, the sequence of length

may be expressed in the form . With (3) and
(2) in mind, we will interchangeably write
in place of .

For any integer, , we have the binary expan-
sion , where .
Using this expansion, we define to be a linear combina-
tion of 's, given by

(4)

It is not difficult to show that and are mutually or-
thogonal for any . The family , defined by

(5)

is a complete set of orthogonal sequences of length
known as the family of Walsh sequences of length.

The Walsh family can be interpreted as a subcode of the
first-order Reed–Muller code , where is given by

where is the all-one sequence and
are the canonical sequences of length, given

in (2) (see [14]). In many applications, it is important to find
the correlation between a binary sequence of lengthand the
code sequences in . This correlation is closely related to the
determination of a parameter of , known as thecovering
radius given by

(6)

where runs through all the binary vectors of length in .
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The covering radius of the first-order Reed–Muller
code has been intensively studied [4], [9], [15]. It is well
known that for any even integer ,
and

(7)

for odd integer . The known values of equal the
lower bound in (7) for and . However, Patterson
and Wiedemann [18] have shown that is strictly greater
than the lower bound in (7) for any odd integer . The
determination of the exact value of for odd remains
an open problem. Known results on are listed in Table I
for small values of .

In the IS-95 CDMA mobile communication system [24], the
Walsh sequences of length are used in the forward link
both to spread the signal bandwidth and to distinguish between
the signals of different users. The usage of Walsh sequences
limits the number of channels to the size of the Walsh
sequence family which is equal to the length of the sequences
in the family. The size of a Walsh sequence family cannot be
increased while maintaining orthogonality between pairs of se-
quences because there can be no greater thanpairwise or-
thogonal sequences of length .

The increasing demand for more service makes it desirable
to increase the size of the sequence family. Our goal is to do
precisely this while keeping the interference introduced by the
additional sequences as small as possible. Note that since the
CDMA system is assumed to be synchronous, it is the inner
product between pairs of sequences rather than periodic corre-
lation that is the relevant measure of interference.

Consider first, the situation where a single sequence of
length is added to the Walsh sequence family . We
define to be the maximum correlation between
and the sequences in , given by

where takes on or , and runs through . The factor
is introduced to account for the effect of data modulation

upon the inner product. Let be the minimum achiev-
able correlation value, given by

(8)

where runs through all sequences of length. Then the
maximum interference introduced to the existing Walsh family

is at least for any sequence of length
that is used to augment the family . Our next step is to

determine .

Proposition 1: Let be the covering radius of the
first-order Reed–Muller code of length . Then
we have . Moreover, we have

for any even integer , and

for any odd integer .

TABLE I
THE COVERING RADIUS OF THE

FIRST-ORDERREED–MULLER CODER FOR SMALL VALUES OFm

TABLE II
� (2 ) FOR SMALL VALUES OFm

Proof: Let be a sequence of length
and let be a codeword of with

, where denotes the Hamming distance
between and of length . Then is also a code-
word with , since the all-one
vector is a codeword in . Therefore,

From the definitions in (6) and (8), we have

The proposition now follows from the well-known results on
, including (7).

Proposition 1 tells us that determining is equiva-
lent to determining the covering radius of the first-order
Reed–Muller code of length . For small values of ,

is listed in Table II, in which a denotes an upper
bound on .

For an even integer , a binary-valued function of length
is said to bebent if the correlation between and

any sequence in has magnitude [10], [14], [19].
In the case of an odd integer, there are no bent functions
of length since is not an integer. Instead, for an odd
integer , a binary-valued function of length will be
said to bealmost bentif the correlation between and
any sequence in has magnitude (cf. [3]).
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We are now in a position to introduce the concept of quasi-
orthogonal sequence.

Definition 2: Let be
the Walsh family of length , given by (5). A family

of sequences of length is
said to bequasi-orthogonalif the following are satisfied:

a) contains .
b) for any and .
c) For any , any , and any integers

, , where , , and

Remark 3: When is an odd integer , we use the upper
bound instead of the exact value of , since

is unknown.

Condition b) for quasi-orthogonality requires that the corre-
lation between any two distinct sequences inshould be as
small as possible. Conditions a) and b) imply that any sequence
in should cause minimal possible interference to the
existing Walsh family, i.e., for any

and . This requires that any
not belonging to should be either bent or almost bent de-
pending on .

Condition c), which we will refer to as thewindow property,
requires that when any sequence is divided into

consecutive subblocks of length , , the
partial correlationbetween and over every subblock
be as small as possible for any . Since every sub-
block of length in corresponds to a sequence in, the
condition requires that every consecutive subblock of cor-
responds either to a bent or almost bent function of length,
depending on . This requirement is motivated by practical ap-
plications, where repeating a sequence in twice yields a
sequence in , and therefore all sequences in can be
used for the transmission of data at twice the normal data rate. In
such a situation, Condition c) is necessary to ensure minimum
possible interference to the higher data rate users who will em-
ploy correlation over a window of size rather than .

Remark 4: In terms of Boolean expressions, the window
property in part c) of Definition 2 can be reformulated as
follows: If , then

should be a bent or almost bent function of lengthfor any
, where .

Example 5: Consider the canonical sequences of length,
given by

Then the Walsh sequence of lengthis

It is easily checked that

satisfies the Conditions a), b), and c), and therefore is quasi-
orthogonal.

Lemma 6: Let be a bent (almost bent) function of length
with the window property. Let

Then the set is quasi-orthogonal.
Proof: For any , is also a bent (almost

bent) function of length . It also has the window property.
Furthermore, and are orthogonal for
any and , since and are orthogonal.

It will be convenient to define an equivalence relation be-
tween Boolean functions of length in terms of the first-order
Reed–Muller code .

Definition 7: Two binary-valued Boolean functions and
of the same length are said to beequivalent(with re-

spect to ) if ; in other words, is
a linear combination of the canonical sequences and the all-one
sequence of length . Otherwise, they are said to beinequiv-
alent (with respect to ).

The following is a direct consequence of Lemma 6 and Defi-
nition 7.

Theorem 8: Let be inequivalent
bent (almost bent) functions of length with the
window property. If is also bent (almost bent) for
any and , then the set

is quasi-orthogonal, where . Furthermore, the size of
is .

Any quasi-orthogonal sequence (QOS) constructed
from Theorem 8 consists of cosets of . Note that

are the coset leaders in with respect
to . Since any sequence in can be expressed as

for some and , the nonzero
functions are often called themasking
functionsof in practical applications. In order to maximize
the size of , it is necessary to maximize. The definition
below relates to the maximum possible value of.

Definition 9: Let be the ensemble of setsof inequivalent
functions of length (with respect to ) such that

a) any function in is bent (almost bent);
b) the sum of any two functions is also bent (almost bent);
c) any function in has the window property.

The number is defined to be the maximum of
where runs through , that is,
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It is well known [14, Corollary 11, p. 429] that

is bent, for any even . It is easily checked that this func-
tion has the window property. It follows from this and the the-
orem below that there exists at least one bent (almost bent) func-
tion of length with the window property, i.e.,

(9)

for any integer .

Theorem 10:For any positive integer , we have

Proof: Let be a set of inequivalent functions of length
satisfying the conditions given in Definition 9, which

achieves . Then any function in can be
considered as a bent function . Now let

be a concatenation of and , which is of length
. In the notation of Boolean functions, we have

The theorem follows from the fact thatis almost bent, since

for any .

It is quite interesting to determine exactly, but this
does not appear to be an easy problem. For small values of, it
can be checked that .
In the following section, we know from a computer search that

etc.

Example 11: In the case of , consider the set of four
inequivalent bent functions of length , given by

Note that has the window property and are
also bent for any and , Hence the set

is quasi-orthogonal, where .

III. QUASI-ORTHOGONAL SEQUENCES FROMKNOWN FAMILIES

In Section II, QOS's are defined and their existence is verified
for any length in (9). A natural question at this stage is to find
an efficient way to construct QOS's. In this section we give a sys-
tematic procedure to construct QOS's from known families with
good correlation properties, including Gold sequences, Kasami
sequences, and Kerdock codes.

A. Construction of QOS's from Known Sequences with
Optimal Correlation

Consider a family of
binary sequences of period , satisfying the following
conditions.

a) An -sequence of period belongs to (Here, is
usually assumed to be an-sequence).

b) Any two sequences are cyclically distinct, that is, for any
and there does not exist, , such that

for all .
c) When is added to the out-of-phase auto- and crosscorre-

lation values, the result has magnitude , i.e.,

for all except for and . Here
is the largest integer less than or equal to.

Our goal is to construct a quasi-orthogonal sequencefrom .
Since the Walsh sequence is obtained by permuting
and its shifts properly, is included in by the Condition
a). Condition b) allows to be the coset leaders in with
respect to , if properly permuted. Condition c) guarantees
that is bent (almost bent) for any , and
is also bent (almost bent), if properly defined. The remaining
work is to check if has the window property.

Algorithm to Construct a QOS from a Given Family

(A.1) Using an -sequence , we define a mapping
, given by

(A.2) For each we define a sequence
of length by

if
if

where is the inverse mapping of.

(A.3) Choose all sequences having the window property,
and call them . Define

where . Then the family is a quasi-orthog-
onal sequence of size
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Let be an integer and let be a finite field of ele-
ments. The trace function is a mapping from to ,
given by

Every primitive element in is associated with an -se-
quence of length , via for .
(See [13] for more details.)

For an even integer , let be a sequence decimated from
by , that is,

where and is chosen so that is not the
all-zero sequence. Note that is an -sequence of period

. The small set of Kasami sequences can be
defined as

(10)

Note that the size of is . (See [10], [20], or [22] for
details.)

Proposition 12: The out-of-phase autocorrelation and cross-
correlation between sequences of the Kasami sequence
in (10) take on three values: .

Example 13: For an even integer , the Kasami sequence
in (10) can be used to construct quasi-orthogonal se-

quences of length by Proposition 12. Put
for and apply

Algorithm described above to .

For an odd integer , let be an integer relatively prime to.
Let be a sequence decimated by from an -sequence

of length , that is,

The Gold sequence can be defined as

(11)

Note that is a family of size . (See [10], [20], or
[22] for details.)

Proposition 14: The out-of-phase autocorrelation and cross-
correlation between sequences of the Gold sequence in
(11) take on three values: , , where is odd.

Example 15: For an odd integer , the Gold sequence
in (11) can be used to construct quasi-orthogonal sequences of
length by Proposition 12. Put

for

and apply Algorithm to .

B. Construction of QOS's from Binary Kerdock Codes

Let be an even integer . Note that is odd. For sim-
plicity, let , and let be the quadratic
form given by

The binary Kerdock code of length can be described
as

where and

It is shown in [8] that the binary Kerdock code can be
described as the image of the Gray map of a linear code over a
quaternary alphabet. The weight distribution of is well
known [14].

Proposition 16: For even , let be the number of
codewords of weight in the binary Kerdock code of
length . Then

for or
for
for

In order to express and in a unified way, we intro-
duce a variable and put , where

(12)

where

is the quadratic part of , and

is the linear part of . This implies that if we take
in , we get all codewords of the first-order Reed–Muller
code by proper permutation of using
as in Algorithm . Thus the Kerdock code consists of

cosets of , corresponding to the forms de-
pending on .

Let be a basis for over . Then
every element can be expressed as

(13)

where for . Using this expression, we
put
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From the weight distribution of in Proposition 16, it
is easily checked that is a bent function of
length and that for any and

is also bent. These facts give a way to construct QOS's from
binary Kerdock codes, if we properly choose bent functions with
window property from them.

Lemma 17: There are inequivalent bent functions from
the Kerdock code , which have the window property of
size .

Proof: There are inequivalent bent functions
in . From (13) and linearity of the

trace function, we have

where is a linear function and
is a quadratic function. Therefore, is a bent
function of length for any fixed value

if and only if it has the term , that is, .
There are exactly such 's in for a fixed . .

The lemma implies that the number of inequivalent bent func-
tions of length with window property, which can be obtained
from the Kerdock code , is at most .

C. Simulation Results for QOS's from Known Families

Computer simulations were done to find QOS's of length
from known families. For even , Kasami sequences and Ker-
dock codes can be used. In general, it is possible to get larger
QOS's from the Kerdock codes than those from Kasami se-
quences. For example, there are 4, 8, and 20 inequivalent bent
functions with window property from Kerdock codes in the case
of , respectively, while there are 2, 3, and 6 such
functions from Kasami sequences in each case. It may be nat-
ural because there are more candidates for inequivalent bent
functions with window property in the case of Kerdock codes
( candidates) than candidates in Kasami sequences.
For an odd integer , the Gold sequence in (11) has
candidates for inequivalent almost bent functions with window
property.

In Tables III–V, inequivalent bent (almost bent) functions
with window property (called masking functions) for QOS's
are listed for small values of , which are of importance in
practical systems. In Tables IV and V, implies that the term

belongs to the masking function in its Boolean expression.
Gold sequences have been used in the case of odd integers,

Kerdock codes have been used in the case of even integers.
An interesting point in these simulations is that the maximum
number of inequivalent bent (almost bent) functions from
these families depends on the choice of an-sequence or
the choice of primitive elements.

IV. QUATERNARY QUASI-ORTHOGONAL SEQUENCES

When a CDMA communication system uses QPSK (quadra-
ture phase-shift keying) modulation instead of BPSK (binary
phase-shift keying) modulation, it is natural to use quadrature
phase sequences as signature sequences rather than binary se-
quences and this is the approach taken in [5]. Also, as pointed
out in [5], when it is desired to expand the set of binary Walsh
functions currently used on the forward link of the IS-95 CDMA
system, one advantage using quaternary rather than binary se-
quences to augment the family is that the maximum full-period
correlation between a Walsh function and a new sequence be-
longing to the augmented set, is lower in the quaternary case by
a factor of for the case when the full period is of the form

odd.
For these reasons, we investigate in this paper, the question

of whether it is possible to construct a QOS family (i.e., a
family that in addition to full-period correlation, also enjoys
good correlation properties in every window) that consists of
binary Walsh sequences and quaternary sequences. From the
theory of quaternary sequences, a natural candidate to use is the
sequences set known as Family[2], [23]. These sequences
were also the basis of the quaternary sequences studied in [5],
where the focus was on the full-period correlation properties.1

The construction of quaternary QOS's from sequences in
Family depends on the choice of certain subspaces of a finite
field. The results of an exhaustive search conducted over a
subset of all possible choices of subspaces are presented in this
section.

A. Definition of Quaternary Quasi-Orthogonal Sequences

Let be the ring of integers modulo. A se-
quence , is called aquaternarysequence
of length if for all . The correlation between
two quaternary sequences and of the same length is
given by

where denotes complex conjugation, is computed
modulo for each , and is a primitive fourth root of unity,
that is, . Two sequences are said to beorthogonalif
their correlation is zero.

The following result is well-known from the theory of orthog-
onal transforms. As a special case, it gives a lower bound on the
maximum of coefficients of the Walsh transform.

1At the time of initial writing of this paper, the authors were unware of [21],
where the QOS properties of FamilyA are also considered and some methods
of construction provided. However, the techniques used there and the sequences
presented are distinct from ours.
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TABLE III
MASKING FUNCTIONS FORQOS'S OFLENGTH 2

Proposition 18: Let be a complex
vector with and let , where is an
unitary matrix, i.e., . Then

Proof: Note that the maximum of is at least the av-
erage of . It is easily checked that the average of is
equal to .

Corollary 19: Let be a quaternary sequence of length
and let be the binary Walsh sequence of the same

length. Then the maximum of absolute correlation values be-
tween and any in is at least , that is,

where

Using the relation , for any binary sequence ,
the correlation becomes

where is computed modulo , so can be re-
garded as a special case of quaternary sequence, which we will
denote by . Note that takes on two values:or . For
an integer , it is natural to identify the binary Walsh sequence

with the set over , given by
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TABLE IV
MASKING FUNCTIONS FORQOS'S OFLENGTH 128 (m = 7)

TABLE V
MASKING FUNCTIONS FORQOS'S OFLENGTH 256 (m = 8)
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TABLE VI
MASKING FUNCTIONS FORQUATERNARY QOS'S OFLENGTH 2

(Continued on the following page)

In the same way as in the binary case, it is natural to use
by Corollary 19 in order to definequaternary

quasi-orthogonalsequences in the following.

Definition 20: A family of
quaternary sequences of length over is said to

bequaternary quasi-orthogonalif the following are satisfied:

a) contains .
b) For any distinct two sequences

c) For any , any , and any in-
tegers , where , and

Remark 21: Compared with the conditions for binary QOS's,
Conditions b) and c) in Definition 20 are stronger whenor
are odd, in the sense that maximum correlation values are re-

duced by a factor of . Condition c) is also called thewindow
propertyin the quaternary case, as in the binary case.

Definition 22: Two quaternary sequences and of
the same length are said to beequivalent(with respect to

) if is in , where and
is a module2 generated by and over .

In the same way as in the binary case, we get the following
theorem.

Theorem 23:Let be in-
equivalent sequences of length over with window
property. If and satisfy Condition b) in Definition 20
for any and , then the set

is quasi-orthogonal, where . Furthermore, the size of
is .
As in the binary case, the nonzero quaternary sequences

given in Theorem 23 will be called the
masking sequencesof the family .

2See [12] for details.
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TABLE VI (Continued)

B. Construction of Quaternary Quasi-Orthogonal Sequences

The Galois ring GR is an extension of of
degree . is a local ring having a unique maximal ideal

and the quotient ring is isomorphic to a finite
field with elements (see [8], [11] for details). As a mul-
tiplicative group the set of units in has a cyclic subgroup
of order . Let be an element of order ,
and let . Any element can
be expressed uniquely as for . Let be
the modulo- reduction map. Note that is a primitive
element in in . The trace map from to is defined by

Note that it is a -linear map.
Let , , be an ordering of the the elements of.

The Family of -sequences of period is defined by

(14)

where

for

Note that the size of is and is referred to as the
Family , whose correlation distribution is well known in the
following proposition [2], [10], [23].

Proposition 24: The out-of-phase autocorrelation and cross-
correlation between sequences of in (14) take on only the
following values:

for odd
for even

where and .
The sequence is an
-sequence of length multiplied by . Thus

can be obtained from and its shifts by a proper per-
mutation in a similar way as Algorithmin Section III-A. Com-
bined with Proposition 24, the family is a good candidate
for construction of quaternary QOS's. In Table VI, examples
of masking functions for quaternary QOS's are listed for small
values of . There have been found four nonzero masking func-
tions for quaternary QOS's for .

V. CONCLUDING REMARKS

We have introduced quasi-orthogonal sequences which can
be used in CDMA systems that employ the Walsh sequence
family for channel separation. A general procedure for con-
struction of QOS's is provided from well-known families of
binary sequences with good correlation, including Kasami se-
quences, Gold sequences, and binary Kerdock codes. In partic-
ular, examples of masking functions for QOS's are presented for
small lengths. Some examples of quaternary QOS's drawn from
Family are also included.

Some open problems relating to QOS's are listed as follows.
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i) What is for odd ? In other words, what is
the covering radius of the first-order Reed–Muller
code for odd ?

ii) Find the exact value of for any . In
other words, find a maximal set of masking functions for
quasi-orthogonal sequences of a given lengthin the
binary and quaternary cases.

iii) Find a systematic method to construct QOS's in the bi-
nary and quaternary cases.
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