figure 1 - uploaded by Katsumi Shibata
Content may be subject to copyright.
effects of amino acid mixture with wheat protein and with rice protein on body weight changes (a) and food intake (b) in rats. Note: each symbol shows mean ± se for 4–5 rats.  

effects of amino acid mixture with wheat protein and with rice protein on body weight changes (a) and food intake (b) in rats. Note: each symbol shows mean ± se for 4–5 rats.  

Source publication
Article
Full-text available
We reported previously that the pellagragenic property of corn protein is not only low l-tryptophan concentration but also the lower conversion percentage of l-tryptophan to nicotinamide; the amino acid composition greatly affected the conversion percentage. The amino acid value of wheat protein is lower than that of rice protein. In the present st...

Similar publications

Article
Full-text available
Two experiments were conducted to determine the standardized ileal digestible (SID) lysine (Lys) requirement and the ideal SID sulphur amino acids (SAA) to Lys ratio for 30–50 kg crossbred pigs. In experiment 1, a total of 72 crossbred pigs with an average initial body weight (BW) of 28.9 kg were allotted to one of six dietary treatments in a rando...
Article
Full-text available
In a ten week feeding trial, seventy-two (72) weaned mixed breed rabbits aged six to seven weeks old, with initial live weight ranging from 600g to 1130g, were randomly allocated to twelve treatment diets in a 3 x 2 x 2 factorial experiment in a completely randomized design. The factors were: (1) Sweet potato vine at levels of 0, 15 and 30%, (2) me...

Citations

... Brown rice had the highest nicotinamide content (45 µg/100 g), which was 11.25 times higher than white rice and 1.45 times higher than germinated brown rice (p < 0.05). Because L-tryptophan is a precursor for nicotinamide synthesis, its presence in rice is strongly related to the amount of nicotinamide [55]. The loss of protein during rice polishing could explain why nicotinamide levels are lower in white Yoom Noon rice. ...
Article
Full-text available
For long-term food sustainability and security, it is crucial to recognize and preserve Indigenous rice varieties and their diversity. Yoom Noon is one of the non-glutinous rice (Oryza sativa L.) varieties being conserved as part of the Phanang Basin Area Development Project, which is administered by the Royal Initiative of Nakhon Si Thammarat in Southern Thailand. The goal of this research was to compare the nutritional profiles of Yoom Noon white rice, brown rice, and germinated brown rice. The results indicated that carbohydrate content was found to be the most plentiful macronutrient in all processed Yoom Noon rice types, accounting for 67.1 to 81.5% of the total. White rice had the highest carbohydrate content (p < 0.05), followed by brown rice and germinated brown rice. Brown rice had more protein and fat than white rice (p < 0.05). The maximum protein, dietary fiber, and ash content were found in germinated brown rice, followed by brown rice and white rice (p < 0.05). White rice had the highest amylose content, around 24% (p < 0.05), followed by brown rice (22%), and germinated brown rice (20%). Mg levels in all white, brown, and germinated brown rice ranged from 6.59 to 10.59 mg/100 g, which was shown to be the highest among the minerals studied (p < 0.05). Zn (4.10–6.18 mg/100 g) was the second most abundant mineral, followed by Fe (3.45–4.92 mg/100 g), K (2.61–3.81 mg/100 g), Mn (1.20–4.48 mg/100 g), Ca (1.14–1.66 mg/100 g), and Cu (0.16–0.23 mg/100 g). Se was not found in any processed Yoom Noon rice. Overall, brown rice had the highest content of macro- and micronutrients (p < 0.05). In all processed rice, thiamin was found in the highest amount (56–85 mg/100 g), followed by pyridoxine (18–44 g/100 g) and nicotinamide (4–45 g/100 g) (p < 0.05). Riboflavin was not identified in any of the three types of processed Yoom Noon rice. Individual vitamin concentrations varied among processed rice, with germinated brown rice having the highest thiamine content by around 1.5 and 1.3 folds compared to white and brown rice, respectively. The GABA level was the highest in germinated rice (585 mg/kg), which was around three times higher than in brown rice (p < 0.05), whereas GABA was not detectable in white rice. The greatest total extractable flavonoid level was found in brown rice (495 mg rutin equivalent (RE)/100 g), followed by germinated brown rice (232 mg RE/100 g), while white rice had no detectable total extractable flavonoid. Brown rice had the highest phytic acid level (11.2 mg/100 g), which was 1.2 times higher than germinated brown rice (p < 0.05). However, phytic acid was not detected in white rice. White rice (10.25 mg/100 g) and brown rice (10.04 mg/100 g) had the highest non-significant rapidly available glucose (RAG) values, while germinated brown rice had the lowest (5.33 mg/100 g). In contrast, germinated brown rice had the highest slowly available glucose (SAG) value (9.19 mg/100 g), followed by brown rice (3.58 mg/100 g) and white rice (1.61 mg/100 g) (p < 0.05).
... For example, tryptophan improves growth performance, reduces stress and regulates insulin, synthesizes protein in the muscles, and improves meat quality. For poultry, tryptophan serves as a niacin precursor [28] and melatonin and serotonin precursors [6,16]. Moreover, tryptophan is one of the essential amino acids necessary for growth performance and feed utilization. ...
Article
Full-text available
Tryptophan is an essential amino acid for all animals that was discovered through casein hydrolysis. The use of tryptophan as feed additives has been attracting the attention of many nutritionists because it cannot be synthesized enough in an animal's body. Tryptophan or precursor to the vitamin niacin in the diet is important, and its supplementation for poultry is determined to improve the amino acid balance and promote the poultry's growth performance through enhancing appetite, feed efficiency, and protein synthesis. Moreover, poultry in different growth phases, breeding, and conditions require various amounts of tryptophan. In addition, supplemented tryptophan also improves the immune response or the immunomodulatory activity of poultry to various diseases through the kynurenine pathway, especially diseases in the bursa. Furthermore, tryptophan also has a strong relationship with lysine (the ideal tryptophan/lysine ratio) in improving growth performance. However, tryptophan deficiency could affect the behavioral responses (e.g. pecking behavior and poultry stress) because tryptophan serves as a precursor for the neurotransmitter serotonin and the pineal hormone melatonin in the diet. This paper tried to summarize all information about applying tryptophan in the diets and illustrate the roles of tryptophan in the poultry industry.
... An investigation in weanling rats of the efficiency of transformation of d-tryptophan to the vitamin niacin (nicotinamide) showed that the availability of d-tryptophan was almost the same as that of l-tryptophan and was 1/6 as active as niacin. [67][68][69] Other researchers reported that the 2 oxidative enzymes, tryptophan 2,3-dioxygenase and indoleamine 2,3-doxygenase, contribute equally to the biosynthesis of nicotinamide from both d-tryptophan and l-tryptophan. 70 Williams and Hill 71 propose a biochemical mechanism that operates through evolution, whereby high nicotinamide in the diet switches off the "de novo" pathway stopping inhouse production of nicotinamide from tryptophan through kynurenine and causing immune intolerance, including of the fetus and dietary-induced infertility. ...
Article
Full-text available
Tryptophan is an essential plant-derived amino acid that is needed for the in vivo biosynthesis of proteins. After consumption, it is metabolically transformed to bioactive metabolites, including serotonin, melatonin, kynurenine, and the vitamin niacin (nicotinamide). This brief integrated overview surveys and interprets our current knowledge of the reported multiple analytical methods for free and protein-bound tryptophan in pure proteins, protein-containing foods, and in human fluids and tissues, the nutritional significance of l-tryptophan and its isomer d-tryptophan in fortified infant foods and corn tortillas as well the possible function of tryptophan in the diagnosis and mitigation of multiple human diseases. Analytical methods include the use of acid ninhydrin, near-infrared reflectance spectroscopy, colorimetry, basic hydrolysis; acid hydrolysis of S-pyridylethylated proteins, and high-performance liquid and gas chromatography-mass spectrometry. Also covered are the nutritional values of tryptophan-fortified infant formulas and corn-based tortillas, safety of tryptophan for human consumption and the analysis of maize (corn), rice, and soybean plants that have been successfully genetically engineered to produce increasing tryptophan. Dietary tryptophan and its metabolites seem to have the potential to contribute to the therapy of autism, cardiovascular disease, cognitive function, chronic kidney disease, depression, inflammatory bowel disease, multiple sclerosis, sleep, social function, and microbial infections. Tryptophan can also facilitate the diagnosis of certain conditions such as human cataracts, colon neoplasms, renal cell carcinoma, and the prognosis of diabetic nephropathy. The described findings are not only of fundamental scientific interest but also have practical implications for agriculture, food processing, food safety, nutrition, and animal and human health. The collated information and suggested research need will hopefully facilitate and guide further studies needed to optimize the use of free and protein-bound tryptophan and metabolites to help improve animal and human nutrition and health.