Similar publications

Article
Full-text available
We describe reshaping of active textiles actuated by bending of Janus fibres comprising both active and passive components. A great variety of shapes, determined by minimising the overall energy of the fabric, can be produced by varying bending directions determined by the orientation of Janus fibres. Under certain conditions, alternative equilibri...

Citations

... These processes can fabricate parts with complex geometries and intermediate densities without having dedicated tools [3,4]. The only limitation to build a part with these processes is just the imagination during designing [5,6]. An excellent description of various AM processes is given in [7]. . ...
Article
Full-text available
Additive manufacturing (AM) processes enable the production of functional parts with complex geometries, multi-materials as well as individualized mass production. Another significant benefit of AM is the ability to produce optimized geometries with near- perfect strength-to-weight ratios. Weight plays a crucial role in many functional parts such as parts used in vehicle and aircraft industries. Current topology optimization techniques, a powerful tool for weight reduction, do not work well for such kind of process since AM methods necessitate applying own dedicated design rules. This paper investigates the issues and opportunities for the application of topology optimization methods for (AM). Converting topology optimization output files to usable AM input data for production of meso-scale structures for realizing intermediated density regions are investigated. This methodology is then implemented for the fused deposition modeling process (FDM). Based on the implemented tool a case study is redesigned, fabricated and evaluated. Link: http://www.sciencedirect.com/science/article/pii/S2212827113001728
Article
Full-text available
Additive manufacturing (AM) processes enable the production of functional parts with complex geometries, multi-materials, as well as individualized mass production. Another significant benefit of AM is the ability to produce optimized geometries with near perfect strength to weight ratios. Weight plays a crucial role in many functional parts such as parts used in automotive and aeronautic industries. Current topology optimization techniques, a powerful tool for weight reduction and product optimization in general, do not work well for such kind of process since AM methods necessitate applying own dedicated design rules. This paper reports a product/process optimization study of a simple test case geometry (C-Clip), where structural optimization has been applied using an innovative approach based on the design of lattice structure feasible thanks to additive process adoption. Moreover, it has been conducted a study to evaluate the possible advantages offered by the integration of the two previous approaches in order to verify the required design specifications. The aim of the work has been to evaluate the potentiality offered by the integration of the two structural optimization approaches (topological and lattice structures design) to obtain innovative and highly performing structures. This activity represents a necessary step for the definition and the subsequent development of a methodology aimed to the creation of structures obtained with this combined design approach. In order to define an objective evaluation of the component performances, appropriate Key Performance Indicators (KPI) have been developed. An engineering intelligence tool has been used to post process the generated optimization results for the three different approaches. Finally, the first three “best” structural solutions have been manufactured by 3D printing machine, with scaled dimensions, in order to evaluate the printing time considering the geometry complexity for the chosen structural layout in order to have useful feedbacks on Product/Process choices interaction.
Article
Purpose – The purpose of this paper is to investigate the adhesion of polymer materials printed directly onto fabrics using entry-level fused deposition modelling (FDM) machines. A series of functional and decorative parts were designed to explore the limitations and to identify potential applications. Design/methodology/approach – A series of shapes and structures were designed as 3D computer-aided design (CAD) solids to determine whether complex parts could be printed directly onto the surface of fabrics. The structures were fabricated using an entry-level FDM printer with acrylonitrile butadiene styrene, polylactic acid (PLA) and nylon on eight different types of synthetic and man-made woven and knit fabrics. The results were recorded according to four parameters – the warp, bond, print quality and flex – before comparing the data sets. Findings – Among the three polymers, PLA showed the best results when printed on the eight different types of fabrics, having extremely good adhesion with little warp, yet displaying a high quality of print with good flexural strength. For the fabrics, woven cotton, woven polywool and knit soy had excellent adhesion when the three polymers were deposited. Research limitations/implications – Future work should cover a wider range of polymers and textiles and incorporate more functional features for testing. Other aspects include modifying the fibre surface through mechanical or chemical means to achieve a more efficient adhesion with the fibre and examining the deposition process in terms of temperature, pressure and build density. Future work should also investigate the feasibility for large-scale production. Practical implications – This paper supports work on wearable electronics by integrating comfortable textiles with hard wearing parts without compromising on quality and fit and combining additive manufacturing processes with textiles to maintain the drape characteristics of the fabric. Polymer–textile deposition will contribute to new applications and functional products such as orthopaedic braces for medical use or for decorative features such as buttons and trimmings for garments. Originality/value – This paper has contributed to new knowledge by providing a better understanding of polymer materials being printed directly onto fabrics using entry-level FDM machines.