Figure - available from: Remote Sensing
This content is subject to copyright.
(a) Topographic map of eastern China, (b) topographic map of Henan province, and (c) spatial distribution of meteorological stations over Henan province.

(a) Topographic map of eastern China, (b) topographic map of Henan province, and (c) spatial distribution of meteorological stations over Henan province.

Source publication
Article
Full-text available
One of the important tasks of the Chinese geostationary and meteorological satellite Fengyun-2 (FY2) series is to provide quantitative precipitation estimates (QPE) with high spatiotemporal resolutions for East Asia. To analyze the monitoring capabilities of FY2-based QPEs in extreme rainfall events, this study comprehensively evaluated and compare...

Similar publications

Article
Full-text available
This study aims to systematically evaluate the accuracy and applicability of GPM satellite precipitation products (IMERG-E, IMERG-L, and IMERG-F) with varying time lags at different spatial and temporal scales over mainland China. We use quantitative statistical indicators, including correlation coefficient (CC), root mean square error (RMSE), mean...

Citations

... ERA5 has shown excellent application in simulating global storm surges [61]. Wu et al. [62] pointed out that there is still room for improvement in the FY-2H QPE's precipitation retrieval algorithm. Error correction algorithms are necessary, especially for rainstorm events occurring in complex topography. ...
Article
Full-text available
Precipitation products play an important role in monitoring rainstorm processes. This study takes a rare historical event of extreme, heavy precipitation that occurred in Henan Province, China, in July 2021 as a research case. By analyzing the distribution of the spatial and temporal characteristics of precipitation errors, using a probability density function of the occurrence of precipitation and the daily variation pattern, we assess the capability of a radar precipitation estimation product (RADAR), satellite precipitation products (IMERG and GSMAP), a reanalysis product (ERA5) and a precipitation fusion product (the CMPAS) to monitor an extreme rainstorm in the Henan region. The CMPAS has the best fit with the gauge observations in terms of the precipitation area, precipitation maximum and the evolution of the whole process, with a low spatial variability of errors. However, the CMPAS slightly underestimated the precipitation extremum at the peak moment (06:00–08:00). The RADAR product was prone to a spurious overestimation of the originally small rainfall, especially during peak precipitation times, with deviations concentrated in the core precipitation area. The IMERG, GSMAP and ERA5 products have similar performances, all of which failed to effectively capture heavy precipitation in excess of 60 mm/h, with negative deviations in precipitation at mountainfront locations west of northern Henan Province. There is still a need for terrain-specific error revisions for areas with large topographic relief. By merging and processing precipitation data from multiple sources, the accuracy of the CMPAS is better than any single-source precipitation product. The CMPAS has the characteristic advantage of high spatial and temporal resolutions (0.01° × 0.01°/1 h), which play a positive role in precipitation dynamic monitoring, providing early warnings of heavy rainfall processes and hydrological application research.
... In Europe, satellite-derived precipitation products from the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) [11] are widely used. The Fengyu series satellite developed by China also provide precipitation products for East Asia [12]. However, certain limitations of satellite-based products have also been gradually made evident. ...
Article
Full-text available
Satellite products have mediocre performance in precipitation estimation, while rain gauges are incapable of describing continuous spatial precipitation distributions. To obtain spatially continuous and accurate precipitation data, this paper proposes a two-step scheme incorporating environmental variables, satellite precipitation estimations, and rain gauge observations for the calibration of satellite precipitation data. First, the GPM data are downscaled from 0.1° to 0.01° based on the seasonal RF models to minimize the spatial differences between the satellite estimations and the rain gauge observations. Secondly, the fusion model combining ConvLSTM and CBAM explores the spatiotemporal correlation of downscaled satellite precipitation data with environmental co-variables and ground-based observations to correct GPM precipitation. The integrated scheme (CBAM-ConvLSTM) is applied to acquire monthly precipitation at a spatial resolution of 0.01° over Hanjiang River Basin from 2014 to 2018. Comparative analyses of model-based satellite products with in situ observations show that model-based precipitation products have a high-resolution spatial distribution along with high accuracy, which combines the advantages of in situ observations and satellite products. Compared to the original GPM product, the evaluation metric values of the merged precipitation products all improved: the RMSE decreased by 31% while the CC increased from 0.55 to 0.69, the bias decreased from about 25% to less than 1.8%, and the MAE decreased by 27.8% while the KGE increased from 0.28 to 0.52. This two-step scheme provides an effective way to derive a high-resolution and accurate monthly precipitation product for humid regions.