Fig 2 - uploaded by Zheng Fan
Content may be subject to copyright.
(a) Macrograph of a weld sample used for the study with inset to show an example of the grain structure; this is a joint between 60-mm-thick plates of 304L austenitic stainless steel, with 308 stainless steel composing the weld; and (b) grain orientation map of the weld inferred from the directions seen in the macrograph using a 1 × 2 mm mesh. 

(a) Macrograph of a weld sample used for the study with inset to show an example of the grain structure; this is a joint between 60-mm-thick plates of 304L austenitic stainless steel, with 308 stainless steel composing the weld; and (b) grain orientation map of the weld inferred from the directions seen in the macrograph using a 1 × 2 mm mesh. 

Source publication
Article
Full-text available
It is challenging to inspect austenitic welds nondestructively using ultrasonic waves because the spatially varying elastic anisotropy of weld microstructures can lead to the deviation of ultrasound. Models have been developed to predict the propagation of ultrasound in such welds once the weld stiffness heterogeneity is known. Consequently, it is...

Context in source publication

Context 1
... welds in thick-section plates or pipes are nor- mally made using a large numbers of passes, and their solidification results in very complex spatial variations of elastic properties arising from the anisotropic nature of the single crystal stiffness tensor of the austenitic steel. Fig. 2(a) shows a macrograph of a cross-section through a weld sample provided by our industrial partners. The sample contains a V-weld joining two 60-mm-thick 304L austenitic stainless steel plates. A 308 stainless steel con- sumable root insert and filler wire were used to form the weld. Manual tungsten inert gas (TIG) welding was used to form the root of the weld, followed by multiple passes of automated orbital TIG until full-fill. The plates were horizontal when the weld was made. The macrograph was obtained using a Nikon D1X digital SLR camera with a Nikkor 105-mm macro lens (Nikon Corp., Tokyo, Japan), after polishing and etching the specimen. The array of lines was overlaid on the macrograph using image process- ing software (Adobe Illustrator, Adobe Systems, San Jose, CA, USA); each arrow was then manually aligned with the grain structure beneath it. This was intended to be a simple, rapid method of obtaining an initial orientation map. The gray and white streaks in the macrograph indi- cate common directions of the crystal axes. A common way (adopted by all of the cases that will be discussed here) of simplifying the description of the anisotropic material in the weld is to consider it to be transversely isotropic, in which case the plane perpendicu- lar to the direction of the grain growth is considered to be isotropic, with the direction of the grain growth as- sumed to lie within the plane of the welded cross-section. This is known to be strictly incorrect, because the welding wire moves along the weld line (normal to this plane), so the heat flow and solidification direction are tilted out of this plane. There is also an influence of the orientation of the component while the weld is being made, when gravi- tational forces can skew the alignment of the solidifying material; this has a particularly large effect when the weld is vertical. Nevertheless, this simplifying assumption of material symmetry has been shown to be approximately correct from macrograph and electron back scattering diffraction (EBSD) measurements [10], and has been ad- opted widely [3], [5]–[8], [11]. The elastic constants are assumed to be the same everywhere within the weld, with the only variable parameter being the orientation of the unique material property axis in the plane of the cross sec- tion shown in Fig. 2(b). Several models have been developed, each involving only a few parameters to characterize the stiffness map. They have been discussed and compared by Apfel et al . [11], and so will only be briefly reviewed here. Ogilvy [1], [12] used empirical analytical functions to describe the continuous variation in anisotropy across a weld, and this model has been used by other researchers to model the weld [3]. Langenberg et al . [13] further simplified the structure and assumed the grains to be oriented at an angle of 45° to the vertical axis. Spies [14] divided the inhomogeneous region into layers of transversely isotropic material, with the orientation in each layer considered to be the same. Another common approach is to divide the weld geometry into several homogeneous sections, each having fixed orientation of the grains [4], [15], [16]. Most of these models only take into account the boundary ge- ometry of the fusion zone without considering other local geometry such as the grain structure associated with each pass; therefore, they cannot always capture the complex- ity of a heterogeneous structure resulting from multi-pass arc welding. FE models can provide a more precise defini- tion of these details inside the weld, but at cost, because FE models are relatively time consuming to build and solve. Our interest here is to develop a weld model having a small number of key parameters, that is not intended to be strictly precise in local detail, but that is sensibly representative of actual weld material and is quick to run. The MINA model was developed by researchers in France to predict the weld stiffness map for shielded metal arc welding from physical information about the forma- tion of the weld that would typically be documented by the welder [6]; it is now in use in relation to ultrasound inspection of power plant components [17]. It thus has a good physical foundation and validation in its context. A schematic of the MINA model is shown in Fig. 3. The in- formation it takes from the welding procedure includes the dimensions of the weld pool, dimension of the electrodes, the number of layers, and the number and order of passes in each layer. It also considers parameters that affect the direction of grain growth such as the inclination angle of the weld pass toward the weld groove θ B or another weld pass θ C , and two remelting rates which describe the overlapping of weld passes in the vertical ( R v ) and lat- eral ( R l ) directions. The physical phenomena describing the solidification mechanism, which include the influence of temperature gradients in a weld pass and the epitaxy and competition between grains, are then considered it- eratively in the modeling to obtain the global orientation map of the weld. The example weld that we use for the modeling and ex- perimental work in this study was constructed by manual and automated TIG, which leaves it strictly outside the specific context of shielded metal arc welding for which the MINA model was developed. However, it remains at- tractive because it is based on physical phenomena rather than geometric fitting to macrographs, and so has been selected for the inversion task in this work. Of course the proof comes from the comparison of the results, and we have found that this model, with appropriate parameters, is capable of delivering a good representation of both the macrograph geometry and ultrasonic performance. This is perhaps to be expected given the common thermal pro- cesses driving the formation of many kinds of welds and, critically, the fact that we are not pursuing accuracy at fine scale. Thus, using an implementation of the MINA model reported in [6], we have identified the following four MINA parameters θ B = 17.5°, θ C = 0°, R v = 0.15, and R l = 0.335 for the weld of Fig. 2. This was done by an opti- mization process comparing the weld map from the MINA model and the grain orientations inferred from the mac- rograph that are shown in Fig. 2(b). We note that other parameters of the MINA model may also have significant influence on the weld map, for example, Gueudre et al . [18] identified the order of the weld passes to be impor- tant; however, in the interests of simplicity over accuracy of detail, we have limited our study to these four param- eters. Future work could extend our inversion process to additional parameters without difficulty if it is thought to be ...

Similar publications

Preprint
Full-text available
In this study, we present an artificial neural network (ANN)-based approach for travel-time tomography of a volcanic edifice. We employ ray tracing to simulate the propagation of seismic waves through the heterogeneous medium of a volcanic edifice, and an inverse modeling algorithm that uses an ANN to estimate the velocity structure from the "obser...

Citations

... Affichage des résultats sous forme d'échodynamiques (amplitudes maximales reçues en fond de pièce) pour plusieurs position de l'émetteur par rapport à l'axe de la soudure L'efficacité du modèle MINA a ensuite été confirmée lors d'une collaboration avec le CANDE (Centre of Advanced Non Destructive Evaluation) de l'université Sungkyunkwan de Corée du Sud(Ye et al., 2012). D'autres équipes de recherche ont également utilisé MINA pour modéliser leurs soudures et ainsi simuler la propagation ultrasonore, comme l'Imperial College LondonMark et al., 2014;Fan et al., 2015), l'université de Bristol(Nowers et al., 2015(Nowers et al., , 2016, ou encore EDF et le CEA(Chassignole et al., , 2015Leymarie et al., 2022), et le consortium européen ADVISE ("ADVISE Project H2020," n.d.). ...
Thesis
Full-text available
La contrôlabilité ultrasonore d’un matériau ou d’une structure désigne la facilité avec laquelle on peut pratiquer un CND par ultrasons. Les caractéristiques d’un milieu réel, rencontré dans l’industrie, influencent la propagation ultrasonore, qui peut donc s’écarter de la théorie établie dans un milieu parfait. Améliorer la contrôlabilité nécessite de bien comprendre la propagation ultrasonore, et donc le milieu dans lequel les ondes se propagent. Cette expertise dans la complexité des interactions entre ultrasons et matériau réel est à la base des travaux de recherche présentés dans ce manuscrit. C’est le cas des soudures austénitiques épaisses, qui sont des matériaux métalliques anisotropes et hétérogènes, soudés, dont la structure dépend du procédé de soudage. Ces structures très particulières impliquent un contrôle ultrasonore réputé complexe, du fait des fortes déviations et atténuation subies par le faisceau ultrasonore. Le dépôt des passes successives pour remplir le chanfrein implique des croissances de grains non aléatoires, déterminées par des processus qu’il faut connaître, pour ainsi prévoir la propagation des ondes et donc le contrôle ultrasonore. L’objectif est donc de comprendre et fiabiliser le diagnostic, en améliorant la modélisation. Cela passe par l’étude de l’orientation des grains, de l’évaluation de l’atténuation, et d’autres paramètres d’influence de la modélisation comme les constantes d’élasticité. D’autres milieux et structures complexes sont également étudiés, tout d’abord dans le cadre des réacteurs nucléaires de 4ème génération, refroidis au sodium liquide (RNR-Na). Ce métal liquide est opaque et interdit tout contrôle visuel interne. On étudie la mesure de télémétrie d’objets ou de structures positionnés derrière des écrans (plaques d’acier). Pour cela, on introduit des cibles dont la réponse acoustique spécifique est analysée. On s’intéresse ensuite à la problématique du contrôle de structures multi-plaques immergées, en utilisant de manière originale les ondes de Lamb associées au retournement temporel, afin de détecter et localiser des défauts dans chaque plaque. L’application visée est le contrôle, depuis l’extérieur, des structures internes de la cuve de réacteur nucléaire. Puis la propagation ultrasonore dans des fluides avec écoulement et hétérogénéité de température est analysée et modélisée, avec pour objectif la mesure de température du sodium liquide en sortie du cœur. D’autres cas complexes de CND sont étudiés : la présence d’une fissure partiellement fermée, invisible aux méthodes ultrasonores classiques, l’évaluation de structures en béton, et la modélisation de la propagation dans les matériaux composites épais. A chaque fois, l’objectif est soit de contrôler les structures (et caractériser les éventuels défauts), soit d’évaluer un ou plusieurs paramètres du milieu de propagation. Enfin des matériaux d’apparence simple, comme des métaux homogènes isotropes, peuvent également perturber un diagnostic de CND. On montre que des caractéristiques micrométriques comme les distributions de tailles de grains, ou encore les défauts dans le réseau cristallin (comme les dislocations ou les macles), peuvent influencer de manière non négligeable la propagation des ultrasons, en particulier la vitesse et l'atténuation.
... A first attempt has been made to solve such inverse problem order of passes [69], but it is a very complex mathematical issue. This strategy is applied by Fan et al. in [70]. The novelty is to propose a measurement setting where there is no need to access the remote side of a butt-welded plate. ...
Article
Full-text available
To ensure and to demonstrate the mechanical integrity of a welded structure, precise ultrasonic testing (UT) is often mandatory. The importance of the link between nondestructive testing (NDT) and the assessment of structural integrity is recalled. However, it is difficult to achieve great efficiency as the welding of thick and heavy structural part produces heterogeneous material. Heterogeneity results from the welding process itself as well as from the material solidification laws. For thick components, several welding passes are deposited, and temperature gradients create material grain elongation and/or size variations. In many cases, the welded material is also anisotropic, this anisotropy being due to the metal used, for example, austenitic stainless steel. At the early stages of ultrasonic testing, this kind of welded material was considered too unpredictable, and thus too difficult to be tested by ultrasounds without possible diagnosis errors and misunderstandings. At the end of the 1990s, an algorithmic solution to predict the material organisation began to be developed using data included in the welding notebook. This algorithm or modelling solution was called MINA. This present work recalls, in a synthetic form, the path followed to create this algorithm combining the use of solidification laws and the knowledge of the order of passes in the case of shielded metal arc welding (SMAW). This work describes and questions the simplifications used to produce a robust algorithm able to give a digital description of the material for wave simulation code. Step by step, advances and demonstrations are described as well as the limitations, and ways to progress are sketched. Recent developments are then explained and discussed for modelling in the case of gas tungsten arc welding (GTAW), in addition to discussions about 3D modelling for the future. The discussion includes alternative ways to represent the welded material and challenges to continue to produce more and more convincing weld material model to qualify and to make use of UT methods.
... Problems of this approach included the uncertainty related to transducer coupling when measuring amplitudes and the limited range of configurations it could cover. The same parameters were later determined from the ToF maps by Fan et al. [10], also based on a genetic algorithm. Inversion based on Bayesian updating and the Ogilvy map was proposed in [11], where Bayes inference helped estimate the parameters ...
... An alternative, offering a potentially more efficient solution, is to use a ray tracing model. Previous research on ultrasound in inhomogeneous welds [1,10] used a ray-stepping algorithm based on scattering at fictitious grain boundaries according to a chosen step size. While accurate, it provided the dominant energy path for a given shoot angle (not a selected transmitter-receiver pair) and hence was difficult to be implemented efficiently. ...
... This is analogous to previously published research (e.g. [10][11][12]). ...
Article
Full-text available
The complex structure of inhomogeneous welds poses a long-standing challenge in ultrasonic non-destructive testing. Elongated grains with spatially varying dominant orientations can distort and split the ultrasonic beam, hindering inspection data interpretation. One way to tackle this problem is to include material information in imaging and signal analysis; however, such information is often only gathered using destructive methods. This paper reports the development of a physics-based weld inversion strategy determining grain orientations using a ray tomography principle. The considered approach does not rely on a macroscopic weld description but may incorporate it to facilitate inversion. Hence, it is more general than other available approaches. The methodology is demonstrated in both numerical and experimental examples. The experimental work focuses on mock-up samples from the nuclear industry and a sample manufactured during this research. The ‘ground truth’ for the latter comes from an EBSD evaluation—the most accurate (yet destructive) examination technique available. Across the considered specimens, our methodology yielded orientation maps with average errors well below 20∘, leading to time-of-flight errors below 0.05 μs. Applying the result from inversion to ultrasonic imaging offered between 5 and 14 dB signal-to-noise ratio improvement for defect signatures.
... The framework presented includes several stages: (1) the generation of training data using the AMSFMM method, for the deep learning training process (e.g. genetic algorithms [24], conjugate gradient least squares algorithms [46] and the simultaneous iterative reconstruction technique [57]). These algorithms involve sampling possible models multiple times (e.g. a family of 20 models for 100 generations using a genetic algorithm as in [24]), and depending on the speed of the forward model technique, this process can range from minutes to hours of compute time. ...
... genetic algorithms [24], conjugate gradient least squares algorithms [46] and the simultaneous iterative reconstruction technique [57]). These algorithms involve sampling possible models multiple times (e.g. a family of 20 models for 100 generations using a genetic algorithm as in [24]), and depending on the speed of the forward model technique, this process can range from minutes to hours of compute time. While this may be faster than the DNN training process, a repeated inversion (as is required for monitoring) would require the whole process to be restarted, whereas the DNN approach is real time once trained. ...
Article
Full-text available
Estimating the spatially varying microstructures of heterogeneous and locally anisotropic media non-destructively is necessary for the accurate detection of flaws and reliable monitoring of manufacturing processes. Conventional algorithms used for solving this inverse problem come with significant computational cost, particularly in the case of high-dimensional, nonlinear tomographic problems, and are thus not suitable for near-real-time applications. In this paper, for the first time, we propose a framework which uses deep neural networks (DNNs) with full aperture, pitch-catch and pulse-echo transducer configurations, to reconstruct material maps of crystallographic orientation. We also present the first application of generative adversarial networks (GANs) to achieve super-resolution of ultrasonic tomographic images, providing a factor-four increase in image resolution and up to a 50% increase in structural similarity. The importance of including appropriate prior knowledge in the GAN training data set to increase inversion accuracy is demonstrated: known information about the material’s structure should be represented in the training data. We show that after a computationally expensive training process, the DNNs and GANs can be used in less than 1 second (0.9 s on a standard desktop computer) to provide a high-resolution map of the material’s grain orientations, addressing the challenge of significant computational cost faced by conventional tomography algorithms.
... Thus, it is of vital importance to develop intelligent structures with self-sensing abilities, the essence of which resides in the development and integration of structural health monitoring (SHM) techniques (Bhalla and Soh 2004;Qing et al. 2007;Sohn et al. 2007). As ultrasonic guided waves in thin-walled structures exhibit unique advantages, including long propagation distance and high sensitivity to small damage (Su et al. 2006;Fan et al. 2015;Borate et al. 2020), guided wave-based SHM methods have been widely applied for rapid, long-range damage diagnosis in metallic and composite structures Yu et al. 2017;Qing et al. 2019). In recent years, guided wave-based damage diagnostic imaging techniques have attracted considerable preference because of their inherent capacity in damage quantification. ...
Article
Full-text available
Large-scale plate-like structural components have been widely used in various aerospace structures. Subject to complex loading conditions and environmental factors, the integrity of plate-like structures is threatened by the occurrence and accumulation of structural damages, calling for the development of structural health monitoring (SHM) methods and techniques. Guided wave-based SHM methods have been demonstrated with a high sensitivity to small-scale damage. In particular, the probability-based diagnostic imaging (PDI) algorithm is able to achieve enhanced accuracy and efficiency of damage localization. Typically, the PDI defines damage index (DI) in terms of the deviation between the baseline and real-time guided wave signals. However, as the baseline signals are highly sensitive to environmental factors, such as temperature, the DI may exhibit large instability subject to varied environmental factors and lead to inaccurate damage detection results. In this study, a novel damage diagnostic imaging approach free of a baseline signal is presented for nonpenetrating damages. The approach is established based on the modification of conventional baseline-dependent PDI, into which the converted mode extraction (CME) strategy is integrated to give rise to the DI in terms of the energy of the converted modes. As the essential part of the CME-PDI approach, the converted modes caused by nonpenetrating damages as structural thickness variation are extracted from the primitive multimode wave signals according to a recently proposed CME method featured by intrinsic basis mode reconstruction. The effectiveness of the approach is first examined numerically, and then an experiment is carried out by taking into account the temperature effect. Compared with conventional PDI, the CME-PDI approach shows apparently enhanced accuracy and stability in damage localization.
... The main assets of our approach are that, unlike other approaches, it does not rely on any foreknowledge on the nature nor on the position of an artificial reflector located near the weld [12,13], and it does not need a dedicated experimental setup to estimate the material properties before the weld inspection [14][15][16][17][18][19]. ...
... It is an instantaneous description of the weld and only adds four degrees of freedom to the optimization problem, when the model is applied in its simplest form for a symmetrical weld. This description is preferred over other approaches that would be more time consuming and add more parameters to the problem [15,16,21,22]. ...
Article
Full-text available
The quality of ultrasound images of welds is highly penalized by the dendritic structure of the material that forms during cooling. The image of a flaw is all the more degraded as a reliable description of such a medium is most of the time not possible, due to the poor knowledge on the weld at time of inspection. In a previous work, we demonstrated the efficiency of an optimization procedure to correct a degraded Total Focusing Method (TFM) image of a point-like reflector inside a homogeneous weld, with uniaxial grain orientation. In the present contribution, this procedure is extended to more realistic welds with a varying grain orientation, and it is evaluated with a 64-element array emitting at 5 MHz on stainless steel weld samples featuring side-drilled holes of 1 mm diameter. A first proof of concept with simulated echoes, and then two experiments show that defects that were hardly visible on TFM images before the optimization are now well reconstructed and with positioning errors inferior to 1 mm.
... Le modèle de reconstruction est alors erroné, ce qui a pour conséquence de fortement dégrader la qualité de l'image reconstruite, et rendre indétectable un défaut pourtant bien présent dans la zone d'intérêt. En CND, pour corriger ces dégradations, une première approche repose sur une étape de caractérisation au préalable de l'inspection, en utilisant généralement des techniques d'inversion basées sur des méthodes numériques pour simuler les signaux de l'expérience [45,46,47,48,49,50,51]. Cette approche est très utile pour mieux connaître les propriétés des soudures, en particulier si on dispose d'un grand nombre de maquettes, et pour valider les codes de simulation. ...
... Cette étude menée par EDF était une première preuve de concept basée uniquement sur des données numériques. Plus récemment, cette méthode a été mise en oeuvre expérimentalement avec une configuration de type « pitch-catch » [46], où deux capteurs sont placés en vis-à-vis à gauche et à droite de la soudure (voir Figure 1.20b). Les paramètres du modèle de soudure mesurés selon ce principe peuvent ensuite être exploités dans un algorithme d'imagerie avec une autre configuration dédiée au contrôle, comme celle sur la Une autre approche d'inversion exploite la méthode de Monte-Carlo par chaînes de Markov, avec pour objectif de déterminer l'orientation locale des grains dans une soudure décrite par le modèle d'Ogilvy [47]. ...
... Cet exemple conforte l'idée d'optimiser l'image à partir de l'information qu'elle contient plutôt que d'exploiter directement les signaux dans un processus d'inversion reposant sur la simulation de signaux [45,46,47,49,55]. Ces résultats montrent aussi que l'anisotropie n'est pas toujours seule responsable des dégradations de l'image. ...
Thesis
En contrôle non-destructif par ultrasons, la qualité de l’imagerie échographique repose sur l’adéquation entre le modèle direct de propagation des ondes élastiques et la propagation dans le milieu physique. C’est notamment le cas des structures anisotropes, comme les soudures en acier du domaine nucléaire, où la méconnaissance de l’anisotropie au moment de l’inspection peut conduire à des images très dégradées et inexploitables. Cette dégradation est d’autant plus marquée que l’anisotropie d’une soudure est fortement inhomogène en raison de la croissance dendritique de la matière au moment de son refroidissement. La fiabilité des diagnostics en imagerie ultrasonore requiert alors de bien connaître les propriétés du matériau au moment de l’inspection.Dans cette thèse, une méthode adaptative basée sur une procédure d’optimisation est étudiée pour améliorer l’imagerie des soudures anisotropes du domaine nucléaire. On s’intéresse notamment à l’imagerie TFM (Total Focusing Method) dont l’intérêt principal est que le mode d’acquisition des signaux ne présuppose aucun a priori sur les propriétés du matériau. Dans la procédure d’optimisation, une première image est calculée à partir d’un modèle de reconstruction isotrope. Si l’image fait apparaître une indication au-dessus du niveau de bruit, un algorithme d’optimisation itère le calcul des images en faisant varier les paramètres du modèle de soudure jusqu’à maximiser l’amplitude de l’écho d’intérêt. Dans ce travail, l’optimisation est validée statistiquement avec des échos simulés, en s’appuyant sur des outils d’apprentissage machine qui permettent d’accélérer les temps de calcul. La procédure est également évaluée expérimentalement sur diverses soudures de complexité croissante. Dans chacun des cas, la procédure produit une image avec un rapport signal/bruit satisfaisant, tout en minimisant les erreurs de localisation des défauts.
... Le modèle de reconstruction est alors erroné, ce qui a pour conséquence de fortement dégrader la qualité de l'image reconstruite, et rendre indétectable un défaut pourtant bien présent dans la zone d'intérêt. En CND, pour corriger ces dégradations, une première approche repose sur une étape de caractérisation au préalable de l'inspection, en utilisant généralement des techniques d'inversion basées sur des méthodes numériques pour simuler les signaux de l'expérience [45,46,47,48,49,50,51]. Cette approche est très utile pour mieux connaître les propriétés des soudures, en particulier si on dispose d'un grand nombre de maquettes, et pour valider les codes de simulation. ...
... Cette étude menée par EDF était une première preuve de concept basée uniquement sur des données numériques. Plus récemment, cette méthode a été mise en oeuvre expérimentalement avec une configuration de type « pitch-catch » [46], où deux capteurs sont placés en vis-à-vis à gauche et à droite de la soudure (voir Figure 1.20b). Les paramètres du modèle de soudure mesurés selon ce principe peuvent ensuite être exploités dans un algorithme d'imagerie avec une autre configuration dédiée au contrôle, comme celle sur la Une autre approche d'inversion exploite la méthode de Monte-Carlo par chaînes de Markov, avec pour objectif de déterminer l'orientation locale des grains dans une soudure décrite par le modèle d'Ogilvy [47]. ...
... Cet exemple conforte l'idée d'optimiser l'image à partir de l'information qu'elle contient plutôt que d'exploiter directement les signaux dans un processus d'inversion reposant sur la simulation de signaux [45,46,47,49,55]. Ces résultats montrent aussi que l'anisotropie n'est pas toujours seule responsable des dégradations de l'image. ...
Thesis
Full-text available
In non-destructive ultrasound testing, the quality of the imaging relies on the adequacy between a direct model of elastic wave propagation and the propagation in the physical medium. This is particularly the case for anisotropic structures, such as nuclear-domain welds, for which not knowing the anisotropy at the time of inspection can lead to severly degraded and unusable images. This degradation is all the more marked as the anisotropy of a weld is highly inhomogeneous, due to the dendritic growth of the material during its cooling. The reliability of an array imaging diagnosis therefore requires a good knowledge on the material at the time of inspection. In this thesis, an adaptive method based on an optimization procedure is studied in order to improve the imaging in nuclear anisotropic welds. We are especially interested in TFM (Total Focusing Method) imaging, whose acquisition principle does not rely on any foreknowledge on the material properties. In the optimization procedure, a first image is computed with an isotropic reconstruction model. If the image shows an indication above the noise level, an optimization algorithm iterates image computations by varying the parameters of the model that describes the structure, until the amplitude of the echo of concern is maximized. The optimization is statistically validated with simulated data, using machine learning tools to speed up computation times. This method is also evaluated experimentally on different welds of increasing complexity. In each case, the procedure produces an image with a high level of signal-to-noise ratio, while minimizing the defect localization error.
... Description réalisteLe modèle MINA (Modelling anIsotropy from Notebook of Arc welding)(Moysan et al. 2003) a été développé à partir d'analyses macrographiques de soudures multipasses à l'électrode enrobée réalisées en position de soudage à plat, dont quelques-unes ont été présentées dans la partie 2.5. Ce modèle permet une description réaliste de la direction de croissance des grains(Fan et al. 2015;Fan et Lowe 2012;Moysan et al. 2012;Nowers, Duxbury, et Drinkwater 2016).Le modèle MINA a été programmé à l'aide du logiciel Matlab ® . Les propriétés des matériaux de la soudure et du métal de base sont décrites par une matrice possédant n lignes et p colonnes. ...
Thesis
Le contrôle par ultrasons de soudures multipasses épaisses en acier inoxydable austénitique est complexe. La propagation du faisceau ultrasonore est altérée (déviation, division, atténuation, …). Pour maîtriser ces phénomènes, il est nécessaire de modéliser la propagation des ondes ultrasonores. Pour cela, la description de la macrostructure est requise. Depuis les années 2000, le LMA, EDF et Naval Group ont développé le modèle MINA-EE pour prédire la macrostructure de soudures multipasses fabriquées à l’électrode enrobée (EE). Le travail de thèse consiste à développer un nouveau modèle nommé MINA-TIG basé sur la philosophie de MINA-EE pour les soudures Tungsten Inert Gas (TIG). L'originalité du modèle est que les paramètres d'entrée phénoménologiques sont obtenus à partir des informations du cahier de soudage et de mesures réalisées sur des lignes de soudage. Le calcul des directions du gradient thermique est tout d'abord établi au sein d’une passe puis tient compte de l'effet multipasses. La connaissance du gradient thermique permet de calculer les directions de croissance de grains, basé également sur les observations des macrographies et sur les connaissances théoriques de la croissance des grains. La pertinence du modèle est évaluée en deux étapes. La validation intermédiaire, où nous comparons d’une part les macrostructures réelles à celles modélisées, et d’autre part les résultats de propagation ultrasonore simulés à partir des macrostructures réelles et modélisées. Puis la validation finale, où nous comparons les résultats de propagation ultrasonore simulés aux résultats expérimentaux. Une bonne concordance est observée permettant de valider le modèle MINA-TIG 2D.
... The difference with the following study lies in that our procedure maximizes the detection amplitude of a reflector without prior information about its properties (location, geometry, size or orientation). The present approach is an interesting alternative to destructive characterization techniques, which require a sample to be taken from the structure in order to characterize its properties using specific various experimental setups, such as ultrasonic transmission measurements with two monolithic transducers [11] or two transducer arrays [12], pitch-catch ultrasonic measurements with two arrays [13,14], EBSD (Electron Backscatter Diffraction) scans [15], SAW (Surface Acoustic Wave) scans [16], etc. ...
Article
Full-text available
In this paper, we investigate the ability of an adaptive ultrasonic method to image point-like reflectors inside anisotropic and homogeneous nuclear steels with unknown properties, such as V-shape welds or cladded components. The optimization scheme combines the Total Focusing Method (TFM) imaging algorithm with a customized gradient ascent method to improve both the quality and the reliability of ultrasound images. A statistical analysis of its robustness is performed with simulated echoes and using a surrogate model to speed up the computation times of the TFM images. Then, the optimization procedure is evaluated with several experimental cases and provides highly enhanced images with a 5 MHz array. The positioning of the artificial defects of 2.0 mm diameter is estimated with less than 1 mm error with respect to their actual position, and the signal-to-noise ratio is increased by up to 10 dB. The elastic properties are also estimated with less than 10% error when compared to their actual values.