Figure - available from: The Visual Computer
This content is subject to copyright. Terms and conditions apply.
Wrapped phase and binarization results. (a) Wrapped phase φmask\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi^{{\text{mask}}}$$\end{document}; (b) binarization result φPmask\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi_P^{{\text{mask}}}$$\end{document}; (c) binarization result φNmask\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi_N^{{\text{mask}}}$$\end{document}

Wrapped phase and binarization results. (a) Wrapped phase φmask\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi^{{\text{mask}}}$$\end{document}; (b) binarization result φPmask\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi_P^{{\text{mask}}}$$\end{document}; (c) binarization result φNmask\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi_N^{{\text{mask}}}$$\end{document}

Source publication
Article
Full-text available
Reducing the number of images in fringe projection profilometry has emerged as a significant research focus. Traditional temporal phase unwrapping algorithms typically require an additional set of coding fringe or phase shift fringe images to determine the fringe order and facilitate phase unwrapping, in addition to the essential sinusoidal phase s...

Similar publications

Article
Full-text available
The acquisition of precise deformation data, including the entirety of the subsidence basin resulting from subterranean mining operations, assumes critical significance in the context of surface impairment monitoring during the course of mining activities. In light of the constraints associated with InSAR technology when applied to the surveillance...

Citations

Chapter
To autonomously explore and densely recover an unknown indoor scene is a nontrivial task in 3D scene reconstruction. It is challenging for scenes composed of compact and complicated interconnected rooms with no priors. To address this issue, we aim to use autonomous scanning, reconstruct multi-room scenes, and produce a complete reconstruction in as few scans as possible. With a progressive discrete motion planning module, we introduce submodular-based planning for automated scanning scenarios to efficiently guide the active scanning by Next-Best-View until marginal gains diminish. The submodular-based planning gives an approximately optimal solution of “Next-Best-View” which is NP-hard in case of no prior knowledge. Experiments show that our method can improve scanning efficiency significantly for multi-room scenes while maintaining reconstruction errors.