Similar publications

Article
Full-text available
Motivation: Interpretation of ubiquitous protein sequence data has become a bottleneck in biomolecular research, due to a lack of structural and other experimental annotation data for these proteins. Prediction of protein interaction sites from sequence may be a viable substitute. We therefore recently developed a sequence-based random-forest metho...
Preprint
Full-text available
We propose a secure compilation chain for statically verified partial programs with input-output (IO). The source language is an F* subset in which a verified IO-performing program interacts with its IO-performing context via a higher-order interface that includes refinement types as well as pre- and post-conditions about past IO events. The target...
Article
Full-text available
Gene-set analysis (GSA) dominates the functional interpretation of omics data and downstream hypothesis generation. Despite its ability to summarise thousands of measurements into semantically interpretable components, GSA often results in hundreds of significantly enriched gene-sets. However, summarisation and effective visualisation of GSA result...
Article
Full-text available
Background Post-transcriptional regulation via RNA-binding proteins plays a fundamental role in every organism, but the regulatory mechanisms lack important understanding. Nevertheless, they can be elucidated by cross-linking immunoprecipitation in combination with high-throughput sequencing (CLIP-Seq). CLIP-Seq answers questions about the function...
Article
Full-text available
Motivation Proteins accomplish cellular functions by interacting with each other, which makes the prediction of interaction sites a fundamental problem. As experimental methods are expensive and time consuming, computational prediction of the interaction sites has been studied extensively. Structure-based programs are the most accurate, while the s...