Figure 10 - uploaded by Isaac Cano
Content may be subject to copyright.
Web-socket simulation launch sequence diagram.

Web-socket simulation launch sequence diagram.

Source publication
Article
Full-text available
Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming...

Similar publications

Article
Full-text available
The unprecedented use of Earth's resources by humans, in combination with increasing natural variability in natural processes over the past century, is affecting the evolution of the Earth system. To better understand natural processes and their potential future trajectories requires improved integration with and quantification of human processes....
Preprint
Full-text available
Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote ( https://github...
Conference Paper
Full-text available
In the proposed concept, an ontology-based information model is designed to support the data-driven model development process of industrial energy systems. Smart Services for data-driven model development are conceptually deployed in the context of the Reference Architecture Model for Industry 4.0 (RAMI4.0) residing inside the information layer. Th...
Article
Full-text available
This paper proposes a model for a Smart Field Artillery Information System (SFAIS) that can be used in a military environment. It is based on Service Oriented Architecture (SOA) and Command, Control, Communications, Computers, and Intelligence Information Systems (C4I), as well as Geographical Information System (GIS) technology. The system aims to...
Conference Paper
Full-text available
Currently, many different tools exist aimed at the simulation of models that represent the human physiology. These models and simulation tools are developed in specific languages, and models are interoperable with other models represented in the same or similar languages. In this paper, we present a new tool, which is developed to offer a common fr...

Citations

... Personalized model of M2: M2 model is personalized by a Bayesian network that predicts the values of UQCR2 (oxidative phosphorylation chain) by inflammation-associated measurements (IL11RA and TNFRSF25). All models can be simulated in the Simulation Environment[58] and the patient specific values can be obtained through a COPD Knowledge Based[7]. ...
Article
Full-text available
Chronic Obstructive Pulmonary Disease (COPD) patients are characterized by heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD heterogeneity is in part the result of complex interactions between several genes and pathways. We explored the possibility of using a Systems Medicine approach to identify such pathways, as well as to generate predictive computational models that may be used in clinic practice. Our overarching goal is to generate clinically applicable predictive models that characterize COPD heterogeneity through a Systems Medicine approach. To this end we have developed a general framework, consisting of three steps/objectives: (1) feature identification, (2) model generation and statistical validation, and (3) application and validation of the predictive models in the clinical scenario. We used muscle dysfunction and co-morbidity as test cases for this framework. In the study of muscle wasting we identified relevant features (genes) by a network analysis and generated predictive models that integrate mechanistic and probabilistic models. This allowed us to characterize muscle wasting as a general de-regulation of pathway interactions. In the co-morbidity analysis we identified relevant features (genes/pathways) by the integration of gene-disease and disease-disease associations. We further present a detailed characterization of co-morbidities in COPD patients that was implemented into a predictive model. In both use cases we were able to achieve predictive modeling but we also identified several key challenges, the most pressing being the validation and implementation into actual clinical practice. The results confirm the potential of the Systems Medicine approach to study complex diseases and generate clinically relevant predictive models. Our study also highlights important obstacles and bottlenecks for such approaches (e.g. data availability and normalization of frameworks among others) and suggests specific proposals to overcome them.
... These were mainly used to provide molecular connections and mechanisms between different diseases derived, for example, from co-morbidity analysis. As described separately [33], the COPDKB also forms the knowledge backbone for the Simulation Environment. It provides the mappings between different models that are required by the SE for integrative multi-scale model execution and it subsequently holds the simulation results and maps them back to corresponding clinical data for validation. ...
Article
Full-text available
Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data. The COPDKB has now been extended to integrate over 40 public data sources on functional interaction (e.g. signal transduction, transcriptional regulation, protein-protein interaction, gene-disease association). In addition we integrated COPD-specific expression and co-morbidity networks connecting over 6 000 genes/proteins with physiological parameters and disease states. Three mathematical models describing different aspects of systemic effects of COPD were connected to clinical and experimental data. We have completely redesigned the technical architecture of the user interface and now provide html and web browser-based access and form-based searches. A network search enables the use of interconnecting information and the generation of disease-specific sub-networks from general knowledge. Integration with the Synergy-COPD Simulation Environment enables multi-scale integrated simulation of individual computational models while integration with a Clinical Decision Support System allows delivery into clinical practice. The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.
... In addition, standard data analytic tools commonly used by clinical researchers should be made available within the exploitation layer. Moreover, such user-profiled portals may include links to new tools such as the Synergy-COPD multi-scale simulation environment [20], designed to enable the explorative execution of computational models. Ultimately, this data exploitation process should enable the translation of novel biomedical research outcomes into real clinical practice via generation of rules feeding novel CDSS. ...
Article
Full-text available
This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement a biomedical research platform.
... disease ontologies such as ICD9); and, (3) it includes the different network models obtained during the lifetime of Synergy-COPD from data of COPD projects. All-in-all the COPD-KB, described in detail in Chapter 6 [34] represents the status of the art in COPD knowledge management and has been widely used as a required resource in the development of novels tools for System Medicine [32], and to provide support to the Simulation Environment (by storing all information on models in a easily accessible manner) [35]. ...
... Medicare ICD9 codes from hospital registries. [85], [85] Health Insurance Program See Table 1 in COPDKB [35] repositories [66]. Despite the increasing number of tools, the resources are not yet being used in clinical research due majorly to complexity of their management. ...
... Therefore, the Synergy-COPD project prioritized to develop environments where clinicians may make use of models and may start running simulations on their own. To this end a Simulation Environment (SE) was developed to host a set of preselected mechanistic and probabilistic (Bayesian networks) models ( [35,32]) that are associated to COPDrelated physiological processes; models were coded in different programming languages (e.g. C++ and Fortran). ...
Article
Full-text available
Chronic diseases (CD) are generating a dramatic societal burden worldwide that is expected to persist over the next decades. The challenges posed by the epidemics of CD have triggered a novel health paradigm with major consequences on the traditional concept of disease and with a profound impact on key aspects of healthcare systems. We hypothesized that the development of a systems approach to understand CD together with the generation of an ecosystem to transfer the acquired knowledge into the novel healthcare scenario may contribute to a cost-effective enhancement of health outcomes. To this end, we designed the Synergy-COPD project wherein the heterogeneity of chronic obstructive pulmonary disease (COPD) was addressed as a use case representative of CD. The current manuscript describes main features of the project design and the strategies put in place for its development, as well the expected outcomes during the project life-span. Moreover, the manuscript serves as introductory and unifying chapter of the different papers associated to the Supplement describing the characteristics, tools and the objectives of Synergy-COPD
... The COPDkb combines genetic information with molecular, physiological and clinical data. It provides data integration and semantic mapping connected with mathematical modelling and the Simulation Environment [17]. The second group of ICT developments was associated with different types of mathematical model- ling [18] aiming at addressing the biomedical questions alluded to above. ...
... They encompassed different types of: (i) qualitative and semi-quantitative network analyses; (ii) classical mechanistic modelling based on ordinary differential equations (ODE), as well as (iii) research on the interplay between network analysis and mechanistic modelling. The third ICT product was the Simulation Environment (SE) [17] aiming at supporting biomedical researchers to concurrently run heterogeneous modelling approaches that may have complementary roles in exploring a given biomedical phenomenon. Transfer to healthcare -A last and most important aspect of the project was the transfer of the acquired knowledge, as novel rules for patient management, into the clinical practice through the generation of clinical decision support systems (CDSS) embedded into the clinical processes defined within different integrated care services (ICS) for chronic patient management [19,20] . ...
... A network search enables the use of interconnecting information and the generation of disease-specific sub-networks from general knowledge. Integration with the Synergy-COPD Simulation Environment [17] enables multi-scale integrated simulation of individual computational models. The current COPDkb [39] is the only publicly available knowledge resource dedicated to COPD which combines genetic information with molecular, physiological and clinical data, as well as mathematical modelling. ...
Article
Full-text available
Chronic Obstructive Pulmonary Disease (COPD) is a major challenge for healthcare. Heterogeneities in clinical manifestations and in disease progression are relevant traits in COPD with impact on patient management and prognosis. It is hypothesized that COPD heterogeneity results from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering. To assess the potential of systems medicine to better understand non-pulmonary determinants of COPD heterogeneity. To transfer acquired knowledge to healthcare enhancing subject-specific health risk assessment and stratification to improve management of chronic patients. Underlying mechanisms of skeletal muscle dysfunction and of co-morbidity clustering in COPD patients were explored with strategies combining deterministic modelling and network medicine analyses using the Biobridge dataset. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was done (ICD9-CM data from Medicare, 13 million people). A targeted network analysis using the two studies: skeletal muscle dysfunction and co-morbidity clustering explored shared pathways between them. (1) Evidence of abnormal regulation of pivotal skeletal muscle biological pathways and increased risk for co-morbidity clustering was observed in COPD; (2) shared abnormal pathway regulation between skeletal muscle dysfunction and co-morbidity clustering; and, (3) technological achievements of the projects were: (i) COPD Knowledge Base; (ii) novel modelling approaches; (iii) Simulation Environment; and, (iv) three layers of Clinical Decision Support Systems. The project demonstrated the high potential of a systems medicine approach to address COPD heterogeneity. Limiting factors for the project development were identified. They were relevant to shape strategies fostering 4P Medicine for chronic patients. The concept of Digital Health Framework and the proposed roadmap for its deployment constituted relevant project outcomes.
Chapter
Computational Biology has increasingly become an important tool for biomedical and translational research. In particular, when generating novel hypothesis despite fundamental uncertainties in data and mechanistic understanding of biological processes underpinning diseases. While in the present book, we have reviewed the necessary background and existing novel methodologies that set the basis for dealing with uncertainty, there are still many “grey”, or less well-defined, areas of investigations offering both challenges and opportunities. This final chapter in the book provides some reflections on those areas, namely: (1) the need for novel robust mathematical and statistical methodologies to generate hypothesis under uncertainty; (2) the challenge of aligning those methodologies in a context that requires larger computational resources; (3) the accessibility of modeling tools for less mathematical literate researchers; and (4) the integration of models with—omics data and its application in clinical environments.
Article
Full-text available
The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.