Figure - available from: Environmental Science and Pollution Research
This content is subject to copyright. Terms and conditions apply.
Variations of (A) humification index (HIX), (B) biological index (BIX), and (C) HIX/BIX ratio among different DOM size-fractions isolated by ultrafiltration in the four model/reference/freshly-collected NOMs (mean ± SD, n = 3)

Variations of (A) humification index (HIX), (B) biological index (BIX), and (C) HIX/BIX ratio among different DOM size-fractions isolated by ultrafiltration in the four model/reference/freshly-collected NOMs (mean ± SD, n = 3)

Source publication
Article
Full-text available
Humic acid (HA) and reference natural organic matter (NOM) have been widely used in environmental assessment, biogeochemistry, and ecotoxicity studies. Nevertheless, similarities and differences among the commonly used model/reference NOMs and bulk dissolved organic matter (DOM) have rarely been systematically evaluated. In this study, HA, SNOM (Su...

Similar publications

Article
Full-text available
Natural dissolved organic matter (DOM) is a heterogeneous mixture of a variety of organic compounds, with a great importance for the environmental fate of metals and their ecotoxicity. However, its complex nature and variable composition make the understanding of its role a challenge. Lanthanum (La) has a strong affinity for DOM and is one of the r...

Citations

Article
Full-text available
Micro-flocculation and ozone were applied as pretreatments of ultrafiltration to treat sodium alginate (SA) and humic acid (HA) simulated water, respectively, to investigate the effects of different pretreatments of ultrafiltration (UF) on filtration flux and removal of organic matters. Regarding the SA simulated water, micro-flocculation helped to improve the dissolved organic carbon (DOC) removal efficiency highly, maximum DOC removal efficiency reached to 79.77%, due to the rejection of gel layer introduced by the alginate-aluminum complexes, but the gel layer had a negative impact on membrane flux. Compared with micro-flocculation, ozone as pretreatments had better ability to enhance the membrane specific flux, the maximum final specific flux remained as 0.786, larger than that of MF-UF process (0.574). Ozonation oxidizing SA into small organic molecules significantly reduced membrane fouling and filtration resistance, but also produced some dissolved organic matters hindering DOC removal of effluent. As for HA simulated water, both the micro-flocculation and ozone could effectively improve the specific flux, the final specific flux of MF-UF and ozone-UF were about 0.930, but MF-UF exhibited better DOC removal than ozone-UF, which avoided the introduction of additional dissolved organic matters.
Article
Variations in molecular weight distributions of dissolved organic matter (DOM) and PARAFAC-derived fluorescent components were investigated along a transect in the seasonally hypereutrophic lower Fox River-Green Bay using the one-sample PARAFAC approach coupling flow field-flow fractionation for size-separation with fluorescence excitation-emission matrix (EEM) and PARAFAC analysis. Concentrations of dissolved organic carbon and nitrogen, chromophoric-DOM, specific UV absorbance at 254 nm, and humification index all decreased monotonically from river to open bay, showing a strong river-dominated DOM source and a dynamic change in DOM quality along the river-lake transect. The relative abundance of colloidal DOM (>1 kDa) derived from ultrafiltration exhibited minimal variation, averaging 71 ± 4 % of the bulk DOM, across the entire estuarine transect although the colloidal concentration decreased in general. Using the one-sample EEM-PARAFAC approach, the identified major fluorescent components were distinct between stations along the river-estuary-open bay continuum, with four components in river/upper-estuary but three components in open bay waters. Among the four common fluorescent components (C475, C410, C320 and C290), the most abundant and refractory humic-like component, C475, behaved conservatively and its relative abundance (%ΣFmax) remained fairly constant (50 ± 4 %) along the transect, while the semi-labile humic-like component, C410, consistently decreased from river to estuary and eventually vanished in open Green Bay. In contrast, the two autochthonous protein-like components (C320 and C290) increased from river to open bay along the trophic gradient. The new results presented here provide an improved understanding of the diverse and fluctuating characteristics in DOM composition, lability, and estuarine mixing behavior across the river-lake interface and demonstrate the efficacy of the one-sample PARAFAC approach.