Fig 1 - uploaded by Eleonora Sani
Content may be subject to copyright.
— Upper panel: L-band spectrum of NGC 6240. The 2 nuclei are clearly separated. Lower panel: Integrated emission along the slit. We extracted the spectrum of the faintest nucleus from the cyan shaded region on the right. The background was extracted from the yellow shaded region on the left, symmetric with the source region with respect to the emission peak of the brightest nucleus.  

— Upper panel: L-band spectrum of NGC 6240. The 2 nuclei are clearly separated. Lower panel: Integrated emission along the slit. We extracted the spectrum of the faintest nucleus from the cyan shaded region on the right. The background was extracted from the yellow shaded region on the left, symmetric with the source region with respect to the emission peak of the brightest nucleus.  

Source publication
Article
Full-text available
We present 3-5 μm spectroscopy of the interacting system NGC 6240, revealing the presence of two active galactic nuclei (AGNs). The brightest (southern) nucleus shows up with a starburst-like emission, with a prominent 3.3 μm emission feature. However, the presence of an AGN is revealed by the detection of a broad Brα emission line, with a width of...

Context in source publication

Context 1
... In particular, the contribution of the brightest nucleus to the emission in the extraction region of the faint nucleus is not negligible. In order to correct for this contamination, we subtracted from the faint nucleus a background extracted from the region symmetric to the extraction region with respect to the emission peak of the bright nucleus (Fig. ...

Similar publications

Article
Full-text available
Relativistic jets from AGN have a wide range of impacts on galaxy groups and clusters and are key for understanding their formation and physical properties. However, this non-gravitational process is not well understood. Galaxy groups with shallow gravitational potentials are ideal laboratories to study and constrain the AGN feedback model. We stud...
Article
Full-text available
We present results obtained from a detailed analysis of a deep Chandra observation of the bright FR II radio galaxy 3C~444 in Abell~3847 cluster. A pair of huge X-ray cavities are detected along North and South directions from the centre of 3C 444. X-ray and radio images of the cluster reveal peculiar positioning of the cavities and radio bubbles....
Article
Full-text available
We present an analysis of NuSTAR X-ray observations of three active galactic nuclei (AGN) that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries...
Article
Full-text available
High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per cent of the AGN population observed by Fermi so far, and gamma-ray flaring activity from these sour...
Preprint
Full-text available
Relativistic jets from AGN have a wide range of impacts on galaxy groups and clusters and are key for understanding their formation and physical properties. However, this non-gravitational process is not well understood. Galaxy groups with shallow gravitational potentials are ideal laboratories to study and constrain the AGN feedback model. We stud...

Citations

... NGC 6240 is an interacting/merging galaxy hosting two nuclei that are separated by ∼1 5 (Beswick et al. 2001  ) has been reported in this galaxy (Henkel et al. 1984;Hagiwara et al. 2002;Nakai et al. 2002). NGC 6240 has a large far-infrared luminosity ≈ L FIR =10 11-12 L e , which cannot be accounted for by starburst activity alone, but which can be more naturally explained as a buried AGN heating surrounding dusty components (e.g., Depoy et al. 1986;Sanders et al. 1988;Risaliti et al. 2006). Neutral Fe Kα lines at 6.4 keV due to reflection from optically thick material are detected from both nuclei, which is clear evidence for both being AGNs (Komossa et al. 2003). ...
Article
We present the results of observations of 22 GHz H2O maser emission in NGC 6240 and M51 made with the Karl G. Jansky Very Large Array. Two major H2O maser features and several minor features are detected toward the southern nucleus of NGC 6240. These features are redshifted by about 300 km s-1 from the galaxy's systemic velocity and remain unresolved at the synthesized beam size. A combination of our two-epoch observations and published data reveals an apparent correlation between the strength of the maser and the 22 GHz radio continuum emission, implying that the maser excitation relates to the activity of an active galactic nucleus in the southern nucleus rather than star-forming activity. The star-forming galaxy M51 hosts H2O maser emission in the center of the galaxy; however, the origin of the maser has been an open question. We report the first detection of 22 GHz nuclear radio continuum emission in M51. The continuum emission is co-located with the maser position, which indicates that the maser arises from nuclear active galactic nucleus-activity and not from star-forming activity in the galaxy. © 2015. The American Astronomical Society. All rights reserved.
... NGC 6240 is a well known double-merging system 107 Mpc far away. Here the Xray imaging and spectroscopy performed with Chandra (Komossa et al. 2003) revealed a Compton Thick double AGN, that was confirmed at all wavelengths, plus a SB covering a projected ∼ 2 kpc scale (Risaliti et al. 2006, Medling et al. 2011, Feruglio et al. 2013). HST and Spitzer images (Bush et al. 2008) show how the thermal emission follows the optical dust obscuration very closely. ...
... In the following I show recent results concerning IR and X-ray statistical analysis. I ) The availability of a reliable measure of the relative AGN/SB contribution to ULIRGs (Risaliti et al. 2006, Sani et al. 2008, Nardini et al. 2008) allows a quantitative investigation of the relation between total luminosity and AGN contribution. It is known from optical spectroscopy that the fraction of Seyfert-like systems among IR galaxies grows along with luminosity (Veilleux et al. 1999; Goto 2005). ...
Article
Full-text available
Two main physical processes characterize the activity in the nuclear region of active galaxies: an intense star formation (starburst, SB) and an Active Galactic Nucleus (AGN). While the existence of a starburst-AGN connection is undisputed, still it is not clear which process dominates the energetic output in both local and high redshift Universe. Moreover there is no consensus on whether AGN fueling is synchronous with star formation or follows it during a post-starburst phase. Here I first review how to disentangle the relative SB-AGN contribution, then I focus on the physical and geometrical properties of the circumnuclear environment.
Article
Using archived data from the Chandra X-ray telescope, we have extracted the diffuse X-ray emission from 49 equal-mass interacting/merging galaxy pairs in a merger sequence, from widely separated pairs to merger remnants. After removal of contributions from unresolved point sources, we compared the diffuse thermal X-ray luminosity from hot gas (L(X)(gas)) with the global star formation rate (SFR). After correction for absorption within the target galaxy, we do not see strong trend of L(X)(gas)/SFR with SFR or merger stage for galaxies with SFR > 1 M(sun) yr^-1. For these galaxies, the median L(X)(gas)/SFR is 5.5 X 10^39 ((erg s^-1)/M(sun) yr^-1)), similar to that of normal spiral galaxies. These results suggest that stellar feedback in star forming galaxies reaches an approximately steady state condition, in which a relatively constant fraction of about 2% of the total energy output from supernovae and stellar winds is converted into X-ray flux. Three late-stage merger remnants with low SFRs and high K band luminosities (L(K)) have enhanced L(X)(gas)/SFR; their UV/IR/optical colors suggest that they are post-starburst galaxies, perhaps in the process of becoming ellipticals. Systems with L(K) < 10^10 L(sun) have lower L(X)(gas)/SFR ratios than the other galaxies in our sample, perhaps due to lower gravitational fields or lower metallicities. We see no relation between L(X)(gas)/SFR and Seyfert activity in this sample, suggesting that feedback from active galactic nuclei is not a major contributor to the hot gas in our sample galaxies.
Article
Full-text available
Nuclear starbursts and AGN activity are the main heating processes in luminous infrared galaxies (LIRGs) and their relationship is fundamental to understand galaxy evolution. In this paper, we study the star-formation and AGN activity of a sample of 11 local LIRGs imaged with subarcsecond angular resolution at radio (8.4GHz) and near-infrared ($2.2\mu$m) wavelengths. This allows us to characterize the central kpc of these galaxies with a spatial resolution of $\simeq100$pc. In general, we find a good spatial correlation between the radio and the near-IR emission, although radio emission tends to be more concentrated in the nuclear regions. Additionally, we use an MCMC code to model their multi-wavelength spectral energy distribution (SED) using template libraries of starburst, AGN and spheroidal/cirrus models, determining the luminosity contribution of each component, and finding that all sources in our sample are starburst-dominated, except for NGC6926 with an AGN contribution of $\simeq64$\%. Our sources show high star formation rates ($40$ to $167M_\odot\mathrm{yr}^{-1}$), supernova rates (0.4 to $2.0\mathrm{SN}\mathrm{yr}^{-1}$), and similar starburst ages (13 to $29\mathrm{Myr}$), except for the young starburst (9Myr) in NGC6926. A comparison of our derived star-forming parameters with estimates obtained from different IR and radio tracers shows an overall consistency among the different star formation tracers. AGN tracers based on mid-IR, high-ionization line ratios also show an overall agreement with our SED model fit estimates for the AGN. Finally, we use our wide-band VLA observations to determine pixel-by-pixel radio spectral indices for all galaxies in our sample, finding a typical median value ($\alpha\simeq-0.8$) for synchrotron-powered LIRGs.
Article
Full-text available
We present a broad-band (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240, combined with archival Chandra, XMM-Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1."5. Previous Chandra observations have resolved the two nuclei, showing that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, thanks to the unprecedented quality of the NuSTAR data at energies >10 keV, we clearly detect, for the first time, both the primary and the reflection continuum components. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau ~ 1.2, N_H ~ 1.5 x 10^(24) cm^-2). We detect moderate hard X-ray (> 10 keV) flux variability up to 20% on short (15-20 ksec) timescales. The amplitude of the variability is maximum at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability of the material along the line of sight with column densities N_H <~ 2 x 10^(23) cm-2 over long (~3-15 years) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.
Article
We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.
Article
We present the first subarcsecond-resolution mid-infrared (MIR) atlas of local active galactic nuclei (AGN) containing 253 objects with a median redshift of z = 0.016. It comprises all available MIR imaging observations performed to date with ground-based 8-meter class telescopes and includes in total 895 independent photometric measurements, of which more than 60% are previously unpublished.We detect extended nuclear emission in at least 21% of the objects, while another 19% appear clearly point-like, and the remaining objects cannot be constrained. Subarcsecond resolution allows us to isolate the emission of the AGN on scales of a few tens of parsecs for the bulk of the sample and obtain nuclear photometry in multiple filters for the objects. The photometry is used to construct median spectral energy distributions (SEDs) for the different optical AGN types and estimate the individual MIR 12 and 18 um continuum luminosities, which range over more than six orders of magnitude. We also analyse the arcsecond-scale MIR emission as probed by Spitzer and compare it to the subarcsecond-scale emission. The continuum emission is on average 20% lower on subarcsecond scales with a large scatter that depends mostly on the object distance or luminosity. The silicate feature strength is similar on both scales and generally appears in emission (absorption) in type I (II) AGN. However, the PAH emission appears weaker or absent on subarcsecond scales, indicating that most of the star formation has been resolved out. The differences of the MIR SEDs on both scales are particularly large for AGN/starburst composites and close-by (and weak) AGN. Because of its size and characteristics, the AGN MIR atlas is well-suited not only for detailed investigation of individual sources but also for sample studies of AGN unification.
Article
We construct a 2D-dynamical model in order to study the motion in a galaxy with a double nucleus. Numerical calculations show that the majority of high energy stars, near the double nuclear region, are on chaotic orbits. On the contrary, low energy stars are on chaotic orbits only near massive nuclei while, for less massive nuclei, the motion is regular. Using a semi-numerical approach we explain the chaotic scattering of orbits near each nucleus. The high values of the velocities near the dense nuclei are also explained. Computation of the LCEs indicates a very high degree of chaos. The results derived from our double nucleus dynamical model are compared with models with single ones. Our outcomes are in satisfactory agreement with observational data for the double nucleus system NGC6240.
Article
We present a 5–8 μm analysis of the Spitzer spectra of 71 ultraluminous infrared galaxies (ULIRGs) with redshift z < 0.15, devoted to the study of the role of active galactic nuclei (AGN) and starbursts (SBs) as the power source of the extreme infrared emission. Around ∼5 μm, an AGN is much brighter (by a factor of ≈30) than an SB of equal bolometric luminosity. This allows us to detect the presence of even faint accretion-driven cores inside ULIRGs: signatures of AGN activity are found in ∼70 per cent of our sample (50/71 sources). Through a simple analytical model, we are also able to obtain a quantitative estimate of the AGN/SB contribution to the overall energy output of each source. Although the main fraction of ULIRG luminosity is confirmed to arise from star formation events, the AGN contribution is non-negligible (∼23 per cent) and is shown to increase with luminosity. The existence of a rather heterogeneous pattern in the composition and geometrical structure of the dust among ULIRGs is newly supported by the comparison between individual absorption features and continuum extinction.
Article
Full-text available
We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10–3 cm–3, and a total mass of ~1010M ☉, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s–1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.