Figure - available from: Nanomaterials
This content is subject to copyright.
Top-down and bottom-up approaches used in nanofabrication.

Top-down and bottom-up approaches used in nanofabrication.

Source publication
Article
Full-text available
There is already a societal awareness of the growing impact of nanoscience and nanotechnology, with nanomaterials (with at least one dimension less than 100 nm) now incorporated in items as diverse as mobile phones, clothes or dentifrices. In the healthcare area, nanoparticles of biocompatible materials have already been used for cancer treatment o...

Citations

... The applications of OCT are already well established in many medical areas such as ophthalmology [12,13] and dentistry [8]; the last one uses the technology for the identification of periodontal structures and their alterations, being an important non-invasive alternative for periodontal probes on clinical monitoring [14]. OCT has also been used for restorative dental materials evaluation, allowing margins integrity visualization and the interaction between dental bonding agents and dental substracts [9,15], and a recent study evaluated its application in nanodentistry [16]. In Gomes et al. [17] a comprehensive review of OCT application in dentistry is given, showing the promising applications of the technique, including its use for caries diagnostic [18]. ...
Article
Full-text available
Objective This study aimed to assess the effect of titanium dioxide (TiO2) and silver (Ag) nanoparticles dispersed in glycerol or water, serving as optical clearing agents nanocolloids (OCAs-NC), for improving optical coherence tomography (OCT) images and highlighting incipient lesions in ex vivo human teeth. Materials and methods Twelve human teeth with incipient lesions were divided into seven groups according to the OCA-NC; they were subjected to G1 (air), G2 (glycerol), G3 (TiO2 0.1%), G4 (TiO2 0.01%), G5 (TiO2 0.001%), G6 (AgNO3 10%), and G7 (AgNO3 100%). The OCA-NC was applied to the occlusal surface, and two-dimensional images of the specimens were analyzed using OCT (930 nm central wavelength; 100 nm bandwidth; 5 mW output power; axial resolution of 7/5.3 μm in water and air, respectively; lateral resolution of 8 μm; and light penetration depth of 1.6 mm inside the sample). Results The findings demonstrated that the utilization of OCAs-NC containing metallic or dielectric nanoparticles (AgNO3 and TiO2) led to improved differentiation between sound and demineralized enamel on occlusal surfaces. Additionally, it enhanced the depth of image penetration when analyzing this hard tissue with OCT. Clinical relevance In the current context of minimally invasive dentistry, the use of OCAs-NC in conjunction with OCT can provide clinicians with early diagnosis, allowing for the determination of less/more invasive therapies and consequently halting the disease before cavitation of dental tissues occurs.
... An in vitro study examined the presence of incipient and advanced caries using a laser beam light source of selective wavelength within the infrared and visible light spectrum [61,78]. The main advantage of acoustic imaging is its capability for higher penetration depth and better spatial resolution [79]. More studies are needed for the development of photoacoustic imaging into an accessible clinical tool for operators. ...
Article
Full-text available
The advance in digital diagnostic technologies has significantly facilitated the detection of dental caries. Despite the increase in clinically available digital diagnostic aids for dental caries, there is yet to be a comprehensive summary of all available technology. This review aims to provide an overview of digital diagnostic aids for the clinical detection of dental caries, particularly those at an initial stage. Currently available digital diagnostic aids for caries detection can be classified into four categories according to the initial source of energy, including radiation-based aids, light-based aids, ultrasound-based aids, and electric-based aids. Radiation-based aids use ionizing radiation, normally X-ray, to produce images of dental structures. Radiation-based aids encompass digital bitewing radiography and cone beam computed tomography. Light-based aids employ light or laser to induce signals for the detection of the changes in the carious dental hard tissue. Common light-based aids include digital transillumination and light/laser-induced fluorescence. Ultrasound-based aids detect the signal of ultrasound waves to assess the acoustic impedance of the carious teeth. The ultrasound caries detector is an available ultrasound-based aid. Electric-based aids assess the changes in the electric current conductance or impedance of the teeth with caries. Available electric-based aids include electrical conductance measurement and alternating current impedance spectroscopy. Except for these clinically available digital diagnostic aids, many digital diagnostic aids for caries detection are still under development with promising results in laboratory settings.
... Without the use of contrast agents, it can non-invasively provide three-dimensional (3D) images with micrometer scale resolution, yielding millimeter-scale depth information. It has been largely adopted in the ophthalmic field for imaging retina-related disease [7,8], but also has found applications in other fields, such as dermatology [9], rheumatology [10], dentistry [11], cardiovascular medicine [12], and in developmental biology and organoid models [13]. OCT may be employed in selecting ovary tissue with the highest density of primordial follicles for cryopreservation and/or reimplantation. ...
Article
Full-text available
Ovarian tissue cryopreservation has been successfully applied worldwide for fertility preservation. Correctly selecting the ovarian tissue with high follicle loading for freezing and reimplantation increases the likelihood of restoring ovarian function, but it is a challenging process. In this work, we explore the use of three-dimensional spectral-domain optical coherence tomography (SD-OCT) to identify different follicular stages, compare the identifications with H&E images, and measure the size and age-related follicular density distribution differences in mice ovaries. We use the thickness of the layers of granulosa cells to differentiate primordial and primary follicles from secondary follicles. The measured dimensions and age-related follicular distribution agree well with histological images and physiological aging. Finally, we apply attenuation coefficient map analyses to significantly improve the image contrast and the contrast-to-noise ratio (p < 0.001), facilitating follicle identification and quantification. We conclude that SD-OCT is a promising method to noninvasively evaluate ovarian follicles for ovarian tissue cryopreservation.
... It depends on a wide variety of nanoparticle parameters, including size, shape, surface charge, core composition and ability to form protein/lipid biocorona at their surface during their interaction with physiological fluids [17]. Photoacoustic imaging, as a hybrid imaging modality, can provide sufficient optical contrast and high spatial resolution, making it a powerful tool for in vivo vascular imaging [18], blood lymphatic vessels [19], in nanodentistry [20] and in many others medical applications. Various methods for analysis of nanoparticle biodistribution, for example: histology and diverse microscopies require labor-intensive sample preparation. ...
Article
Full-text available
Carbon-based nanomaterials are promising for a wide range of biomedical applications, i.e. drug delivery, therapy, and imaging including photoacoustic tomography, where they can serve as contrast agents, biocompatibility and biodistribution of which should be assessed before clinical setting. In this paper, localization of carbon flurooxide nanoparticles, carbon nanodots from β -alanine, carbon nanodots from urea and citric acid and glucose-ethylenediamine nanoparticles (NPs) in organs of Wistar rats were studied by photoacoustic measurements after 24 h of their intravenous injection. 16 ns light pulse from a Q-switched Nd:YAG laser with 1064 nm wavelength was used as an excitation source. The laser-induced photoacoustic signals were recorded with a ring piezoelectric detector. Light absorption by carbon NPs resulted in noticeable enhancement of the photoacoustic amplitude in the tissues where the NPs were accumulated. The NPs were preferably accumulated in liver, kidneys and spleen, and to a lesser extent in heart and gastrocnemius muscles. Together with remarkable fluorescent properties of the studied carbon nanomaterials, their photoacoustic responses allow their application for bi-modal fluorescence-photoacoustic bio-imaging.
... To overcome the penetration depth-resolution duality, a combination OCT +PAI system was reported. 283 For example, contrast-enhanced dual-modal OCT/PAM for evaluating retinal diseases was shown with gold nanostars. 166 Functionalized with an RGD peptide, the gold nanostars exhibited strong optical absorption in the NIR window and excellent photostability, leading to visualization of choroidal neovascularization. ...
Article
Full-text available
Significance: Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim: We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach: First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results: Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions: The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
... The results showed that OCT detection with AuNPs improved resolution by 150%. However, due to absorption and scattering limitations, the penetration depth is only a few millimeters [105], so further investigation and improvements are needed for better clinical use. In recent years, a new optical technique, diffuse reflectance spectroscopy (DR), has been developed for biological imaging. ...
Article
Full-text available
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Article
Full-text available
Background and Aims Cytotoxicity is a key disadvantage of using chemotherapeutic drugs to treat cancer. This can be overcome by encapsulating chemotherapeutic drugs in suitable carriers for targeted delivery, allowing them to be released only at the cancerous sites. Herein, we aim to review the recent scientific developments in the utilization of nanotechnology‐based drug delivery systems for treating oral malignancies that can lead to further improvements in clinical practice. Methods A comprehensive literature search was conducted on PubMed, Google Scholar, ScienceDirect, and other notable databases to identify recent peer‐reviewed clinical trials, reviews, and research articles related to nanoplatforms and their applications in oral cancer treatment. Results Nanoplatforms offer a revolutionary strategy to overcome the challenges associated with conventional oral cancer treatments, such as poor drug solubility, non‐specific targeting, and systemic toxicity. These nanoscale drug delivery systems encompass various formulations, including liposomes, polymeric nanoparticles, dendrimers, and hydrogels, which facilitate controlled release and targeted delivery of therapeutic agents to oral cancer sites. By exploiting the enhanced permeability and retention effect, Nanoplatforms accumulate preferentially in the tumor microenvironment, increasing drug concentration and minimizing damage to healthy tissues. Additionally, nanoplatforms can be engineered to carry multiple drugs or a combination of drugs and diagnostic agents, enabling personalized and precise treatment approaches. Conclusion The utilization of nanoplatforms in oral cancer treatment holds significant promise in revolutionizing therapeutic strategies. Despite the promising results in preclinical studies, further research is required to evaluate the safety, efficacy, and long‐term effects of nanoformulations in clinical settings. If successfully translated into clinical practice, nanoplatform‐based therapies have the potential to improve patient outcomes, reduce side effects, and pave the way for more personalized and effective oral cancer treatments.