The ratios of different types of N and elemental contents of the typical samples.

The ratios of different types of N and elemental contents of the typical samples.

Source publication
Article
Full-text available
Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp3-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure am...

Similar publications

Article
Stabilization of ferromagnetic ordering in graphene-based systems up to room temperature remains an important challenge owing to huge scope for applications in electronics, spintronics, biomedicine, and separation technologies. To date, several strategies have been proposed, including edge engineering, introduction of defects and dopants, and coval...
Preprint
Full-text available
Using the Landauer-B\"utikker formalism, we study the graphene magneto-transport in the presence of Rashba spin-orbit interaction (RSOI). We show that the angle resolved transmission probability in the proposed structures can be tuned by the RSOI strength. The transmission spectrum show Klein tunneling in the parallel (P) magnetization configuratio...
Preprint
Full-text available
Electron motion in crystals is governed by the coupling between crystal momentum and internal degrees of freedom such as spin implicit in the band structure. The description of this coupling in terms of a momentum-dependent effective field and the resultant Berry phase has renovated the understanding of diverse phenomena including various Hall effe...

Citations

... E. Rodriguez-Acevedo et al. [20] demonstrated that shallow reservoirs could be effective for carbon capture after injecting nanofluids based on N-rich carbon nanospheres. Finally, the last articles of this Special Issue deal with the development of N-doped graphene films for high sensitivity electrodes [21]; the functionalization of graphene oxides with p-phenylenediamine as a modifier [22]; and the induction of magnetic moments in graphene by introducing sp 3 -defects [23]. ...
Article
Full-text available
Carbon materials are one of the most fascinating materials because of their unique properties and potential use in several applications. They can be obtained from agricultural waste, organic polymers, or by using advanced synthesizing technologies. The carbon family is very wide, it includes classical activated carbons to more advanced types like carbon gels, graphene, and so on. The surface chemistry of these materials is one of the most interesting aspects to be studied. The incorporation of different types of chemical functionalities and/or heteroatoms such as O, N, B, S, or P on the carbon surface enables the modification of the acidic–basic character, hydrophilicity–hydrophobicity, and the electron properties of these materials, which in turn determines the final application. This book collects original research articles focused on the synthesis, properties, and applications of heteroatom-doped functional carbon materials.
Article
The near-infrared light (NIR) absorption of nitrogen-doped graphene quantum dots (NGQDs) containing different N-doping sites is systematically investigated with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations with Perdew-Burke-Ernzerhof (PBE) functionals. The results show that the ultra-small HOMO-LUMO gaps (0.3-1.0 eV) of various N-doping structures (graphitic, amino, and pyridinic at center, and graphitic at edge) are attributed to the spin-polarization of the energy states, which effectively enhances the NIR absorption for NGQDs. Overall, the graphitic N-doping structure exhibits the best NIR absorption. Moreover, the electron attraction effect of the different N-sites is found to be crucial for the LUMO level, where stronger electron attraction lowers the LUMO energy. This work provides critical insight in further design of NGQDs for NIR absorption.
Article
Full-text available
Since the production of ferromagnetic graphene as an extremely important matter in spintronics has made a revolution in future technology, a great deal of efforts has recently been done to reach a simple and cost-effective method. Up to now, controlling the magnetic properties at extremely low temperature have been investigated only by adding and removing atoms in graphene lattice. In this regard, the effect of strain on the magnetic and electronic properties of graphene has been probed. Here, the ferromagnetic properties are what have been created by strain, magnetic field, and temperature along with observation of the parallel magnetic domains in ferromagnetic graphene for the first time as a great achievement. In this way, we have represented the following: First, introducing three novel methods based on temperature, magnetic field, and strain for producing ferromagnetic graphene; Second, obtaining ferromagnetic graphene at room temperature by significant magnetization saturation in mass-scale; Third, probing the electronic systems and vibrational modes by Raman and IR spectroscopy; Fourth, introducing stacking and aggregation as two types of gathering process for graphene sheets; Fifth, comparing the results with leidenfrost effect-based method which the temperature, magnetic fields, and strain are simultaneously applied to graphene flakes (our previous work).