Fig 2 - uploaded by Natalia Shvachko
Content may be subject to copyright.
The frequencies of varieties with rare and unique alleles of 14 SSR loci in different breeding stages.  

The frequencies of varieties with rare and unique alleles of 14 SSR loci in different breeding stages.  

Source publication
Article
Full-text available
The genetic diversity of potato varieties from the VIR collection was analyzed based on microsatellite analysis. These varieties have been bred in Russia and near-abroad countries since the 1931. Application of 14 highly polymorphic nuclear microsatellites (SSR) enabled the complete discrimination of all 113 varieties. Additionally, we have studied...

Similar publications

Article
Full-text available
The genetic diversity of potato varieties from the collection of Vavilov Institute of Plant Genetic Resources (VIR) was analyzed based on microsatellite analysis. These varieties have been bred in Russia and its neighboring countries since 1931. Application of 14 highly polymorphic nuclear microsatellites (SSRs) has enabled 113 varieties to be full...

Citations

... The results have been used to elucidate changes during ex situ and in situ conservation (Cadima Fuentes et al., 2017). In Russia (RUS001), 237 accessions of cultivated potato species, 155 accessions of closely related wild potato of the VIR collections Gavrilenko et al., 2013) and 180 varieties were genotyped with SSR markers (Antonova et al., 2016;Antonova et al., 2020). In Germany (DEU159), the entire clonal collection was genotyped using SSR markers and ESP016 used fingerprinting of local potato varieties from Tenerife Island, La Palma and Spain to identify unique alleles that they may date back to the first introduction of potato in Europe (de Galarreta et al., 2011). ...
Book
Full-text available
Cultivated potato, Solanum tuberosum ssp. tuberosum, is the third most consumed crop globally and important not only for food but also for for the animal feed, pharmaceutical, textile and paper industries. To gain an overview on the current state of the conservation and use of potato genetic resources, the Global Crop Diversity Trust (Crop Trust), commissioned an update of the ‘Global conservation strategy for potato genetic resources’. This updated strategy aims to support the efficiency and effectiveness of potato diversity conservation at national, regional and international levels, and to identify priorities for strengthening the conservation and use of potato genetic resources. See also: https://www.croptrust.org/pgrfa-hub/ex-situ-conservation-strategies/
... In the case of Russian cultivars, molecular screening for H1 resistance was first applied by V. Birukova and colleagues [55] who screened with marker TG689 a set of 109 cultivars of different origin (Western European, Ukrainian, Belarusian) including 36 cultivars bred in Russia. Later in a series of our research, a bigger subset of 211 cultivars bred in the Russian Federation were screened with several markers of the H1 and Gro1-4 genes [42,[56][57][58][59]. These subsets included cultivars with declared resistance/susceptibility to Ro1 of golden nematode [22]. ...
... The obtained results indicated high (87%) predictive association between the presence of two markers of the H1 gene-57R and TG689-and phenotypic resistance to Ro1. The diagnostic value of these markers can be increased up to 90% in the case of counting moderately resistant cultivars as resistant genotypes [42,[56][57][58][59]. This study also demonstrated the extremely low frequency of Gro1-4 resistance-predictive allele within the subset of Russian potato cultivars. ...
... According to A. Barone with colleagues (1990) [84], a major dominant gene Gro1 confers resistance to all pathotypes of G. rostochiensis including Ro5. In our previous research it was shown the extremely low frequency of the Gro1-4 marker in the Russian cultivar genepool [42,[56][57][58][59]. A few Gro1-4-positive cultivars were involved in the present study, however, any association with resistance to Ro5 pathotype was not detected. ...
Article
Full-text available
Potato is one of the most important food crops in the world and also in the Russian Federation. Among harmful organisms reducing potato yield potential, the potato cyst nematodes (PCN) are considered to be ones of the most damaging pests. Information on PCN resistant cultivars is important for potato breeding and production. Russian potato cultivars are characterized in the state-bio-test program for resistance to only one PCN species Globodera rostochiensis and one pathotype Ro1 which is reported to be present in the country. This study aimed to find domestic cultivars with multiple resistances to different PCN species and different pathotypes using phenotyping coupled with molecular marker analysis due to the risk of the occasional introduction of new pests. The phenotypic response was determined by the inoculation of plants with pathotypes Ro5 of G. rostochiensis and Pa3 of G. pallida. The obtained results were supplemented by the state-bio-test data on resistance to Ro1 of G. rostochiensis. Nine of 26 Russian cultivars were resistant both to Ro5 and Ro1 pathotypes and two cultivars possess multiple resistances to both PCN species. Most tested molecular markers associated with the Gpa2, GpaVvrn, GpaVsspl, Grp1 loci showed discrepancies with phenotyping. However, a predictive haplotype and epistatic effect were detected.
... Для генетической паспортизации сортов картофеля используются различные ДНК маркеры, например, AFLP (Vetelainen et al., 2005;Dyachenko et al., 2020), IRAP и REMAP (Sharma, Nandineni, 2014), однако наиболее широко для этой цели применяют ядерные SSR маркеры (Karaagac et al., 2014;Liao, Guo, 2014;Antonova et al., 2016;Salimi et al., 2016;Biniam et al 2016;Kolobova et al 2017;Tiwari et al., 2018;Bali et al., 2017;Wang et al., 2019), поскольку с их помощью детектируют большое число аллелей высокополиморфных микросателлитных локусов, они характеризуются кодоминантным наследованием, хорошо воспроизводятся, являются относительно доступными и малозатратными. ...
... В ВИР SSR-анализ для генотипирования и изучения генетического разнообразия культурных видов и селекционных сортов картофеля используется на протяжении 10 лет (Gavrilenko et al., 2010;Shvachko, 2012;Antonova et al., 2016). В эти исследования были включены разные наборы монолокусных хромосомспецифичных SSR маркеров, подобранные по литературным источникам (Milbourne et al., 1998;Ghislain et al., 2004Ghislain et al., , 2009Feingold et al., 2005). ...
Article
Full-text available
VIR is creating a collection of nomenclature standards for cultivars of different crops in line with the provisions of the International Code of Nomenclature for Cultivated Plants (ICNCP). The nomenclatural standards are designed in the form of a herbarium sample in cooperation with the authors of cultivars, who select plant material for each cultivar in the experimental field of their organization and forward it to the scientific herbarium together with the accompanying documents. Registering of herbarium specimen in the scientific herbarium is followed by the publication of nomenclatural standards. The article presents a new VIR genebank strategy for registering plant material of domestic cultivars received from breeders, which includes the design of nomenclatural standards; the development of a genetic passport of a cultivar using DNA samples from the plant delivered to the scientific herbarium; and application of biotechnological methods for keeping explants (isolated from the acquired plant material as buds or meristems) alive. The proposed integrated approach makes it possible to document cultivars not only with the help of nomenclatural standards, but also with the use of molecular-genetic methods, as well as to save genotyped specimens, transferred to herbarium, in in vitro and in cryo collections. This approach is applicable to any vegetatively propagated crop. The article summarizes the first results of our proposed strategy using modern domestic potato cultivars as an example. Collection, transfer and preparation of plant material for nomenclatural standards of potato varieties are specific; this article explains our protocol for this work. The implementation of this strategy in 2018-2020 led to the designation of nomenclatural standards for 66 Russian potato varieties and elaboration of their genetic passports, which are presented in a series of articles included into issues Nos.3 and 4, Volume 3, of the journal “Plant Biotechnology and Breeding”, containing an overview of methodological approaches to registration of modern domestic cultivars in the VIR collection. DNA samples obtained from the plant material provided by the cultivar authors for nomenclatural standard designation will continue to be used as a source of information on the genetic potential of a cultivar through the expansion of the list of DNA markers and the application of new genetic technologies.
... Швачко (Shvachko, 2012), и еще 10 белогорских сортов в работе О.Ю. Антоновой с соавторами (Antonova et al., 2016). ...
... 3-15, 17-20, 22, 23). Полученный результат подтвердил установленную для отечественных сортов высокую диагностическую ценность маркеров 57R и N195 гена Н1 (Antonova et al., 2016;Klimenko et al., 2017;Gavrilenko et al., 2018). Исключением является сорт 'Холмогорский', у которого эти маркеры были выявлены, но в Госреестре (2020) он охарактеризован как «восприимчивый к ЗКН (Rо1)». ...
Article
Full-text available
In the present paper, the potato cultivars bred at the Leningrad Research Institute for Agriculture “Belogorka”, were taken as an example for demonstrating the results of elaboration of methodological approaches that are currently developed at the N.I. Vavilov Institute of Plant Genetic Resources (VIR) for the preparing of nomenclatural standards and their genotyping. In 2018, joint research of VIR scientists and breeders from the Leningrad Research Institute for Agriculture “Belogorka” began in the field of preparing nomenclatural standards for potato cultivars bred at this institute. Nomenclatural standards were prepared according to the ‘International Code of Nomenclature for Cultivated Plants’. Plant material for herbarium specimens was collected in the experimental field of the “Belogorka” Institute in 2018 by cultivar authors and handed over to the VIR Herbarium of cultivated plants, their wild relatives and weeds (WIR). The plant material included stems with inflorescences and later - tubers of 21 cultivars which were bred at the “Belogorka” Institute. Two precultivars undergoing State variety testing and three breeding clones were also included in this study. Just before herbarium preparation, the obtained plant material was photographed, plant morphological characters described, and the results compared with the description given in such official documents as the “Cultivar Questionnaireˮ and “Description of selection achievementˮ. The nomenclatural standards of 21 cultivars registered in the VIR Herbarium Database and transferred for conservation to the VIR herbarium, are published in this paper. Before herbarium preparation, the plant material was sampled for DNA extraction and subsequent genotyping and molecular screening. The genetic passports include information about the polymorphism of 10 chromosome-specific microsatellite loci, as well as the data on the presence/absence of diagnostic fragments of 12 markers of the 11 R- genes conferring resistance to diseases and pests, and for some cultivars – the information about their cytoplasm type. These genetic passports are valuable not only because different types of DNA markers were used in their preparing (SSR, SCAR and CAPS markers of the R genes; markers specific to different loci of the nuclear and organelle genomes), but first of all because of the material itself, as the DNA samples were isolated from the plants with the assigned status of nomenclatural standard for each particular cultivar. Based on the genetic passports data, trueness to type of the “Belogorka” cultivar samples obtained from various sources was verified.
... Большинство сортов картофеля (55,8%), внесенных в Госреестр селекционных достижений, обладают устойчивостью к патотипам Ro1 и Ro4 G. rostochiensis (Mironenko et al., 2020). Эта устойчивость в большинстве случаев детерминирована генами H1 и Gro1-4 (Antonova et al., 2016;Gavrilenko et al., 2018). По данным молекулярного скрининга, среди отечественных сортов значительно преобладают сорта, защищенные геном Н1 (Klimenko et al., 2017). ...
... Из трех образцов S. brachystotrichum, у которых обнаружен маркер 57R, у двух образцов наличие маркера не совпадает с фенотипом устойчивости, что, по-видимому, свидетельствует о наличии в геноме этого вида участков ДНК, гомологичных сайтам праймирования для маркера 57R. Практически полное совпадение наличия маркера 57R с устойчивостью к ЗКН показано для сортов картофеля (Antonova et al., 2016;Gavrilenko et al., 2018). В связи с этим возможно, что полная устойчивость третьего образца S. brachystotrichum к-23201 связана не с геном Н1, а с другим неизвестным генетическим фактором. ...
Article
Full-text available
Background . Predominant use of the H1 and Gro1-4 genes of resistance to golden nematode (PGN) in potato breeding requires widening the gene pool of resistance to this pathogen. Materials and methods . Thirty-four genotypes of wild potatoes from North and South Americas, 14 interspecific hybrids, and 10 Russian potato cultivars were studied for PGN resistance. Screening for resistance to PGN pathotype Ro1 and molecular screening for the presence of H1 and Gro1-4 gene markers were performed. Amplification products of the Gro1- 4 gene marker were sequenced. Results . Only seven among the studied 34 potato genotypes (two of S. brachystotrichum (Bitt.) Rydb., four of S. lesteri Hawkes et Hjerting, and one of S. kurtzianum Bitt. et Wittm.) were susceptible to PGN, while the rest demonstrated high or medium resistance. Molecular screening for the presence of H1 and Gro1-4 gene markers allowed us to identify Gro1-4 in 13 South American genotypes of S. alandiae Cárd., S. × doddsii Corr., S. kurtzianum, S. leptophyes Bitt., and S. yungasense Hawkes. The remaining 14 genotypes may supposedly contain resistance genes non-identical to H1 or Gro1-4. Hybrids of S. tuberosum L. with medium-resistant wild accessions of S. kurtzianum, S. leptophyes, S. sparsipilum (Bitt.) Juz. et Buk., S. alandiae, and S. × doddsii inherited PGN resistance determined either by the Gro1-4 gene or genes non-identical to H1 or Gro1-4. Sequencing a fragment of the Gro1-4 gene showed that changes in the structure of this fragment in orthologous genes did not affect the feature of resistance to PGN pathotype Ro1. Conclusion . For the first time, sources of resistance to PGN were found among the North American species S. brachystotrichum (k-23201) and S. lesteri (k-24475). Among the wild South American Solanum spp., sources of resistance determined by genes different from H1 or Gro1-4 were identified. Resistant interspecific hybrids can serve as donors of the Gro1-4 resistance gene or new resistance genes.
... In the hybrid grr × Bd.R5 derived from the hexaploids S. guerreroense and S. demissum and the tetraploid S. tuberosum, marker Gro1 was amplified, but in a few cases was not correlated with phenotypic resistance. The markers of the H1 gene conferring resistance to G. rostochiensis pathotype Ro1 and Gro 1-4 revealed differing predictive abilities (Antonova et al., 2016). To obtain reliable molecular screening results for disease resistance of potato clones, several markers should be used. ...
Article
Full-text available
Late blight (agent Phytophthora infestans) and potato cyst nematode (PCN) caused by Globodera rostochiensis are economically important pathogens, which may significantly reduce potato yields. In this study interspecific potato hybrids were used as a source of resistance for combined resistance to economically important potato pathogens: late blight and cyst nematode. The aim of our study was to identify hybrid progenies with combined resistance to both pathogens and to verify the applicability of several molecular markers associated with resistance to G. rostochiensis pathotype Ro1 to identify resistant plants. Ninety-two clones of eleven original interspecific potato hybrids obtained in crosses with the cultivated S. tuberosum group tuberosum, S. tuberosum group Andigena, S. tuberosum group Phureja and wild S. guerreroense, S. microdontum, S. kurtzianum, S. neoantipoviczii and S. tarijense potato species were screened in bioassays and by molecular markers. PCN resistant or moderately resistant clones were found among the progenies of nine hybrids. Results were highly correlated with resistance status detected by molecular markers linked to the H1 (marker 57R) and Gro1-4 (marker Gro1) genes. Marker CP113 (linked to the H1 gene) was not polymorphic and failed to detect resistance status. Combination of foliar late blight resistance and resistance to PCN was identified in hybrids obtained in crosses with plants of species S. microdontum, S. tarijense and S. phureja and in the hybrid between S. guerreroense and Black’s P. infestans race differential carrying gene R-5.
... Использование MAS особенно актуально для карантинных объектов, работа с которыми сопряжена с большими ограничениями. Сорта и селекционные клоны, выведенные сибирскими и уральскими селекционерами, вовлекали в молекулярный скрининг с маркерами генов устойчивости к патотипу Ro1 ЗКН (Biryukova et al., 2008;Antonova et al., 2016;Klimenko et al., 2017;Pakul et al., 2019), широко распространенному на территории нашей страны (Khiutti et al., 2017;Mironenko et al., 2020). Сибирские и уральские сорта, а также перспективные селекционные клоны, созданные селекционерами этих регионов, участвовали и в исследованиях по SSRгенотипированию (Antonova et al., 2016;Kolobova et al., 2017;Potato cultivars, 2018). ...
... Сорта и селекционные клоны, выведенные сибирскими и уральскими селекционерами, вовлекали в молекулярный скрининг с маркерами генов устойчивости к патотипу Ro1 ЗКН (Biryukova et al., 2008;Antonova et al., 2016;Klimenko et al., 2017;Pakul et al., 2019), широко распространенному на территории нашей страны (Khiutti et al., 2017;Mironenko et al., 2020). Сибирские и уральские сорта, а также перспективные селекционные клоны, созданные селекционерами этих регионов, участвовали и в исследованиях по SSRгенотипированию (Antonova et al., 2016;Kolobova et al., 2017;Potato cultivars, 2018). ...
... Во Всероссийском институте генетических ресурсов растений имени Н.И. Вавилова (ВИР) параллельно с методами молекулярно-генетической паспортизации cелекционных сортов картофеля (Antonova et al., 2016;Antonova et al., в этом выпуске) получили развитие подходы к созданию номенклатурных стандартов отечественных сортов . В настоящей работе представлены номенклатурные стандарты 11 сортов, созданных селекционерами из пяти сибирских институтов, включая сорта, выведенные ими в соавторстве со Всероссийским научно-исследовательским институтом картофельного хозяйства имени А.Г. ...
Article
Full-text available
The present paper discusses methodological approaches to the creation of nomenclatural standards and genetic passports for Russian cultivars, currently being developed at the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in collaboration with different breeding research centers. Plant material of potato cultivars bred in the Siberian Research Institute of Plant Cultivation and Breeding was collected by the cultivar creator A.D. Safonova in the experimental field of this institute and transferred to the VIR herbarium for preparation of their nomenclatural standards. Plant shoots and tubers of potato cultivars bred in other Siberian research centers in collaboration with the A.G. Lorkh All-Russian Research Institute of Potato Farming (VNIIKH) was collected by the representative of this institute in the experimental field of VNIIKH. As a result of joint research, nomenclatural standards were accomplished for 11 cultivars, namely ‘Аntonina’, ‘Zlatka’, ‘Lina’, ‘Lûbava’, ‘Nakra’, ‘Pamâti Rogačeva’, ‘Sarovskij’, ‘Safo’, ‘Solnečnyj’, ‘Tuleevskij’, ‘Ûna’** bred in five different Siberian breeding institutes including cultivars developed in collaboration with VNIIKH. Nomenclatural standards were prepared according to the ‘International Code of Nomenclature for Cultivated Plants’. DNA samples isolated from nomenclatural standards were used for preparation of genetic passports of these 11 cultivars. These genetic passports include information of the polymorphism of eight chromosome-specific microsatellites, data on the markers of 11 R-genes conferring resistance to various harmful organisms, as well as the information about cytoplasm types. Voucher specimens of additional three Siberian cultivars ‘Kemerovčanin’, ‘Kuznečanka’, ‘Tanaj’ and five Ural cultivars ‘Аlâska’, ‘Bravo’, ‘Irbitskij’, ‘Lûks’, ‘Terra’ from the Ural Research Institute for Agriculture were also registered in the VIR herbarium collection. For these eight cultivars, the genetic passports were not issued, but the results of SSR genotyping and molecular screening of voucher specimens performed with the same set of the DNA markers are presented in this report. A similar set of DNA markers was used for genotyping cultivar accessions from the in vitro and field collections of various institutes as well as cultivar specimens from eco-geographical tests performed within the framework of the Comprehensive Research Plan of the subprogram “Development of potato breeding and seed production in the Russian Federation”. The comparison of cultivar genetic passport data with genotyping results of specimens having the same name, but obtained from different sources made it possible to verify this plant material.
... В настоящее время для генотипирования сортов картофеля, сохраняемых в коллекциях различных генбанков, а также селекционных учреждений как за рубежом, так и в нашей стране, широко используются различные маркеры ДНК, среди них наиболее эффективны AFLР- (Solis et al., 2007;Cicatelli et al., 2014;Dyachenko et al., 2020), ISSR- (Gorji et al., 2011;Onamu et al., 2016;Pechenkina et al., 2018) и SSR-маркеры (Ghislain et al., 2009;Ryzhova et al., 2010;Shvachko et al., 2012;Liao, Guo, 2014;Antonova et al., 2016;Kolobova et al., 2017;Tierno, de Galarreta, 2015;Yessimseitova et al., 2015;Salimi et al., 2016;Diekmann et al., 2017;Tillault, Yevtushenko, 2019;Klimenko et al., 2020;Antonova et al., в этом выпуске;Fomina et al. (b), в этом выпуске). Микросателлитные маркеры позволяют получать воспроизводимые результаты, особенно при использовании стандартных наборов хромосомспецифичных SSR-маркеров, таких как набор PGI (potato genetic identification kit, Ghislain et al., 2009). ...
... Методы молекулярного скрининга активно используются и в отечественном картофелеводстве в целях маркер-опосредованной селекции (Biryukova et al., 2015;Saynakova et al., 2018;Gadjiyev et al., 2020), а также для изучения генетического разнообразия (Antonova et al., 2016;Klimenko et al, 2017;2019a;2019b), происхождения и родословных сортов Biryukova et al., 2019). Целью настоящей работы было создание номенклатурных стандартов сортов картофеля, выведенных во ВНИИКХ им. ...
... Сопоставление результатов молекулярного скрининга, полученных с использованием препаратов ДНК номенклатурных стандартов, и данных литературы. Для большинства сортов селекции ВНИИКХ, информация о наличии/отсутствии у них определенных маркеров генов устойчивости к болезням и вредителям была опубликована ранее (Beketova, Khavkin, 2006;Biryukova et al., 2008;2015;Sokolova et al., 2010;Zaynullin et al., 2019), в том числе и с участием авторов данной статьи (Antonova et al., 2016;Klimenko et al., 2017;2019a, b;Gavrilenko et al., 2019). В процитированных выше работах были использованы образцы из коллекций: ВНИИКХ им. ...
Article
Full-text available
In order to preserve the genetic diversity of cultivars, it is recommended to develop documentation approaches through the registration of cultivar nomenclatural standards in accordance with the International Code of Nomenclature for Cultivated Plants. The N.I Vavilov Institute of Plant Genetic Resources keeps developing this approach along with the DNA marker technologies: SSR genotyping and molecular screening with DNA markers of genes controlling valuable traits. In 2018, VIR, together with the leading national centre for potato breeding – the A.G. Lorkh All-Russian Scientific-Research Institute of Potato Farming (now the A.G. Lorkh Russian Potato Research Center), initiated the preparation of nomenclatural standards for potato cultivars bred both at the A.G. Lorkh institute and in co-authorship with other breeding institutions. This paper presents 30 nomenclatural standards which are maintained in the Nomenclature standard fund of the Herbarium of cultivated plants and their wild relatives and weeds (VIR Herbarium, WIR). Also, the paper presents genetic passports of the mentioned 30 cultivars, developed using DNA samples extracted from the plant material of nomenclatural standards. Genetic passports include information about the polymorphism of the 8 chromosome-specific microsatellites and data on the results of molecular screening with 15 markers of 11 genes conferring resistance to the most dangerous pathogens and pests: potato viruses Y and X, late blight and potato cyst nematodes. A comparison of SSR-profiles of nomenclatural standards with those of 66 cultivar samples obtained from various sources made it possible to verify authenticity and homogeneity of the latter.
... Для развития селекции картофеля важное значение имеет скрининг сортов и исходных родительских форм на наличие генов устойчивости к болезням и вредителям (15)(16)(17). Постоянным источником ценной гермоплазмы для селекционных учреждений России и ближнего зарубежья служит коллекция картофеля Всероссийского института генетических ресурсов растений имени Н.И. Вавилова (ВИР) (18)(19)(20). ...
Article
Full-text available
The breeding of potatoes with the traditional technology of hybridization and selection of individual plants is a time-consuming process. The use of DNA markers linked to genes underlying resistance to diseases and pests can significantly improve the efficiency of the selection of valuable genotypes in the early stages of breeding process. The aims of the work were i) screening of potato genetic resources from the VIR collection (Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg) for the presence of genes encoding resistance to cyst-forming nematodes, potato wart, potato viruses X and Y (PVX and PVY) by the multiplex PCR method; ii) evaluation of the effectiveness of molecular markers for the identification of potato genotypes resistant to the golden nematode, potato wart and PVY. A total of 90 accessions from the VIR collection were studied, among them the cultivated potatoes from two subspecies, the S. tuberosum subsp. chiloense (native varieties of Chile) and S. tuberosum subsp. tuberosum (breeding varieties), as well as hybrid clones have been distinguished as sources and donors of potato resistance to pathogens of the economically significant or quarantine diseases. In this work, several molecular markers that were early recommended for the identification of potato genes responsible for the resistance to cyst nematodes, Y and X viruses, and potato wart were first used for the multiplex PCR analysis of genetically diverse material. Ten markers used were TG 689, 57 R, N 195 of H1 gene and Gro1-4-1 of Gro1-4 gene (resistance to the golden nematode Globodera rostochiensis pathotypes Ro1, Ro4), marker Gpa 2-2 of Gpa2 gene (resistance to the pale nematode G. pallida pathotype Pa2), RYSC3 marker of Ry adg gene, Ry 186 marker of Ry chc gene and YES3-3A marker of Ry sto gene (all genes provide immunity to the potato virus Y), the PVX marker of the Rx gene (immunity to potato virus X) and the NL 25 marker of the Sen1 for resistance to potato wart caused by Synchytrium endobioticum (Schilb.) Percival. The PCR screening results were matched with the phenotypic characteristics of the test potato genotypes for resistance to the golden nematode, wart and potato virus Y. Multiplex PCR analysis allowed us to identify potato genotypes with several (up to five) resistance genes, including those providing resistance to the nematode G. rostochiensis patotype Ro1, S. endobioticum patotype 1 and potato virus Y. A significant association was established between the molecular markers linked to the H1 gene and the resistance of potato genotypes to the nematode G. rostochiensis Ro1 (r A = 0.59, r s = 0.72-0.79), and between the marker N L25 of Sen1 gene and potato resistance to wart (r A = 0.62). No association was detected between Ry adg and Ry sto molecular markers and plant resistance to potato virus Y due to a large number of tested resistant potato genotypes which possibly carry unknown immunity genes. © 2019 Russian Academy of Agricultural Sciences. All rights reserved.
... Ранее большинство (144 из 160) изученных в данной работе сортов из коллекции ВИР было также протестировано нами на наличие маркеров генов устойчивости к другому виду цистообразующих нематод -золотистой картофельной нематоде G. rostochiensis (патотип Ro1) (Antonova et al., 2016;Klimenko et al., 2017). Сопоставление этих данных с результатами настоящей работы позволило выявить пять сортов (Бежицкий, Живица, Пранса, Пролисок, Россиянка) с маркерами генов устойчивости к обоим видам нематод -G. ...
... Согласно Bradshaw et al. (2006) ген Н1 обеспечивает эффективную защиту сортов картофеля против патотипа Ro1 G. rostochiensis уже более 50 лет. Доминантный аллель гена Н1 широко распространен в зарубежных сортах и часто (30-60%) встречается в проанализированных российских сортах (Birjukova et al., 2008;Antonova et al., 2016;Klimenko et al., 2017). Создание сортов картофеля, устойчивых к золотистой картофельной нематоде является одним из приоритетных направлений отечественной селекции уже несколько десятилетий. ...
Article
Full-text available
Genome editing using the CRISPR/Cas system is a breakthrough tech­nology in plant genetics and breeding. The most large-scale application of this new technology on crop species is observed for rice. This fact is explained not only by the significance of this crop, but also by the relatively high transformation amenability. Although the end result of genome editing is a non-transgenic plant with desired mutation (muta­tions), an unavoidable step in the process of creating such a new mutant is the use of genetic engineering methods. To date, the CRISPR/Cas sys­tem has been tested on dozens of rice target genes, of which mutations in more than 30 genes have led to the desired improvement of economically important traits. The remaining experiments are related mainly to the verification of the genes’ functions, and belong to the field of reverse genetics. Improvement or acquisition of new properties is associated with mutations in the genes that affect productivity, grain fragrance and chemical composition, flowering time, the resistance to biotic and abiotic stress factors, and herbicides, as well as pollination control needed in hybrid breeding. These achievements are reviewed in the current article. It is important to note that about fifty different genotypes are already involved in improving rice varieties with the help of genome editing. This creates the prerequisites for a wide practical application of genome editing technologies in rice breeding programs