Figure - available from: Journal of Sensors
This content is subject to copyright. Terms and conditions apply.
The environment geometry of the tracking and positioning system.

The environment geometry of the tracking and positioning system.

Source publication
Article
Full-text available
Pipeline robot, as a new type of equipment for pipeline operations such as pigging and detection, will play an increasingly important role in the operation and maintenance of oil and gas pipeline networks. The tracking and positioning technology during its operation process is one of the essential topics to improve the operating performance of pipe...

Similar publications

Preprint
Full-text available
In mobile networks, unmanned aerial vehicles (UAVs) acting as flying base stations (FlyBSs) can effectively improve performance. Nevertheless, such potential improvement requires an efficient positioning of the FlyBS. In this paper, we study the problem of sum downlink capacity maximization in FlyBS-assisted networks with mobile users and with a co...

Citations

Article
Full-text available
The demand for pipeline inspection has promoted the development of pipeline robots and associated localization and communication technologies. Among these technologies, ultra-low-frequency (30–300 Hz) electromagnetic waves have a significant advantage because of their strong penetration, which can penetrate metal pipe walls. Traditional low-frequency transmitting systems are limited by the size and power consumption of the antennas. In this work, a new type of mechanical antenna based on dual permanent magnets was designed to solve the above problems. An innovative amplitude modulation scheme that involves changing the magnetization angle of dual permanent magnets is proposed. The ultra-low-frequency electromagnetic wave emitted by the mechanical antenna inside the pipeline can be easily received by the antenna outside to localize and communicate with the robots inside. The experimental results showed that when two N38M-type Nd–Fe–B permanent magnets with a volume of 3.93 cm3 each were used, the magnetic flux density reached 2.35 nT at 10 m in the air and the amplitude modulation performance was satisfactory. Additionally, the electromagnetic wave was effectively received at 3 m from the 20# steel pipeline, which preliminarily verified the feasibility of using the dual-permanent-magnet mechanical antenna to achieve localization of and communication with pipeline robots.