The clinical improvement in SJS/TEN patients after etanercept treatment

The clinical improvement in SJS/TEN patients after etanercept treatment

Source publication
Conference Paper
Full-text available
Table of contents Oral Abstracts O1 Functionally distinct HMGB1 isoforms correlate with physiological processes in drug-induced SJS/TEN Daniel F. Carr, Wen-Hung Chung, Rosalind E. Jenkiins, Mas Chaponda, Gospel Nwikue, Elena M. Cornejo Castro, Daniel J. Antoine, Munir Pirmohamed O2 Hypersensitivity reactions to beta-lactams, does the t cell recogni...

Citations

... Current data for desensitization protocols to G-CSF molecules[93][94][95]98,99]. ...
Article
Full-text available
Human granulocyte colony-stimulating factor (G-CSF) is a granulopoietic growth factor used in the treatment of neutropenia following chemotherapy, myeloablative treatment, or healthy donors preparing for allogeneic transplantation. Few hypersensitivity reactions (HRs) have been reported, and its true prevalence is unknown. We aimed to systematically characterize G-CSF-induced HRs while including a comprehensive list of adverse reactions. We reviewed articles published before January 2024 by searching in the PubMed, Embase, Cochrane Library, and Web of Science databases using a combination of the keywords listed, selected the ones needed, and extracted relevant data. The search resulted in 68 entries, 17 relevant to our study and 7 others found from manually searching bibliographic sources. A total of 40 cases of G-CSF-induced HR were described and classified as immediate (29) or delayed (11). Immediate ones were mostly caused by filgrastim (13 minimum), with at least 9 being grade 5 on the WAO anaphylaxis scale. Delayed reactions were mostly maculopapular exanthemas and allowed for the continuation of G-CSF. Reactions after first exposure frequently appeared and were present in at least 11 of the 40 cases. Only five desensitization protocols have been found concerning the topic at hand in the analyzed data. We believe this study brings to light the research interest in this topic that could benefit from further exploration, and propose regular updating to include the most recently published evidence.
Article
Full-text available
SCARs are rare and life-threatening hypersensitivity reactions. In general, the increased duration of hospital stays and the associated cost burden are common issues, and in the worst-case scenario, they can result in mortality. SCARs are delayed T cell-mediated hypersensitivity reactions. Recovery can take from 2 weeks to many months after dechallenging the culprit drugs. Genetic polymorphism of the HLA genes may change the selection and presentation of antigens, allowing toxic drug metabolites to initiate immunological reactions. However, each SCARs has a different onset latency period, clinical features, or morphological pattern. This explains that, other than HLA mutations, other immuno-pathogenesis may be involved in drug-induced severe cutaneous reactions. This review will discuss the clinical morphology of various SCARs, various immune pathogenesis models, diagnostic criteria, treatments, the association of various drug-induced reactions and susceptible alleles in different populations, and the successful implementation of pharmacogenomics in Thailand for the prevention of SCARs.
Article
Cutaneous adverse drug reactions are unpredictable and include various different skin conditions of varying degrees of severity. The most concerning are usually referred to as severe cutaneous adverse reactions (SCARs) and include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DiHS) or hypersensitivity syndrome (HSS), Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). All are delayed type IV hypersensitivity reactions in which a T-cell-mediated drug-specific immune response is responsible for causing the disease. Nonetheless, specific T-cell subpopulations develop in response to certain environmental conditions and produce cytokines that orchestrate the various phenotypes. Cytotoxic T lymphocytes (CTLs), T-helper type 1 (Th1), Th2, Th17, and regulatory T cells (Treg), among other T-cell subpopulations, participate in the development of SCAR phenotypes. Cell subpopulations belonging to the innate immune system, comprising natural killer cells, innate lymphoid cells, monocytes, macrophages and dendritic cells, can also participate in shaping specific immune responses in various clinical conditions. Additionally, tissue-resident cells, including keratinocytes, can contribute to epidermal damage by secreting chemokines that attract pro-inflammatory immunocytes. The final phenotypes in each clinical entity result from the complex interactions between a variety of cell lineages, their products, soluble mediators and genetic and environmental factors. Although the pathophysiology of these reactions is not fully understood, intensive research in recent years has led to major progress in our understanding of the contribution of certain cell types and soluble mediators to the variability of SCAR phenotypes.