Fig 3 - uploaded by Ali BenMoussa
Content may be subject to copyright.
The EUV solar corona seen by SOHO/EIT. It is a realistic preview of the images that will be produced with SWAP, that will have a slightly larger field of view (54 arcmin instead of 45 for EIT).

The EUV solar corona seen by SOHO/EIT. It is a realistic preview of the images that will be produced with SWAP, that will have a slightly larger field of view (54 arcmin instead of 45 for EIT).

Source publication
Conference Paper
Full-text available
Proba-II (Project for On-board Autonomy) is an ESA microsatellite development for a launch early in 2006. Aiming at technology demonstration, PROBA-2 will embark a scientific payload dedicated to Sun observations and monitoring, and innovative platform subsystems with new advanced technologies such as propulsion systems with cold gas generator, Li-...

Similar publications

Conference Paper
Full-text available
Os parâmetros �s, �r, � e n desenvolvidos por meio de PTF para o modelo de Van Genuchten foram introduzidos no modelo SWAP (Soil-Water-Atmosphere-Plant) com o objetivo de verificar a viabilidade da utilização de funções de pedotransferência para descrever atributos físico-hídricos do solo e previsão do rendimento agrícola. Essa viabilidade foi aval...
Conference Paper
Full-text available
Iran is located in an arid and semi-arid region of the world with average annual precipitation of about 250 mm. Due to lack of suitable water resources, many farmers are using saline river or groundwater for irrigation which causes gradual accumulation of salts in the soil. Salinity of soil and water resources is one of the major environmental fact...
Article
Full-text available
Simulation with the Soil Water Atmosphere Plant (SWAP) model is performed to quantify the spatial variability of evapotranspiration (ET) and soil moisture content (SMC) caused by topography-induced spatial wind and radiation differences. The field scale SWAP model is applied in a distributed way, i.e. for each grid, assuming linear groundwater tabl...
Article
Full-text available
This study was conducted to investigate the impact of changes in water management on water and salinity problems and crop production at field and basin level by analysing several probable scenarios. First, a simplified water and salinity basin model (WSBM) was developed for a quick analysis of river basin processes and was combined with the compreh...

Citations

... The Large-Yield RAdiometer (LYRA) instrument. PROBA-2 (PRoject for On-Board Autonomy-2) [ 12,13 ] is a small ESA satellite that launched on November 2, 2009, in order to explore the Sun activity and its effect on Space Weather. PROBA-2 is orbiting in a heliosynchronous orbit at an altitude of 725 km. ...
Article
The hydrogen Lyman-Alpha (Ly-α) spectral line (121.567 nm) is of importance for studying the solar atmospheric ultraviolet flux variability. We present high resolution spectral observations of the Ly-α line carried with the LYRA scientific instrument onboard the ESA/PROBA-2 mission. We followed the variations of the shape of the hydrogen Ly-α line through solar cycle 24 and compared LYRA with SOLSTICE data highlighting significant differences in their behaviour. Although we used level 2 of LYRA data, an important degradation effect is still affecting the data preventing accurate studies of long-term variations of the solar irradiance.
... Its nominal operation duration is two years with possible extension of 2 years. PROBA2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. The mission is tracked by the ESA Redu Mission Operation Center. ...
... ESA's Project for On-Board Autonomy 2 (PROBA2) mission [1][2][3] was launched on November 2, 2009 from Plesetsk, Russia, with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. It provides a technology demonstration platform for testing a number of instruments and techniques relevant to solar physics, space weather, aeronomy, avionics, spacecraft attitude control, power system, and propulsion. ...
Article
Full-text available
The Sun Watcher Using Active Pixel System Detector and Image Processing (SWAP) telescope and Large Yield Radiometer (LYRA) are the two Sun observation instruments on-board PROBA2. SWAP extreme ultraviolet images, if presented in terms of the integrated flux over solar disk, in general, correlate well with LYRA channel 2-4 (zirconium filter) and channels QD and 18 of EVE/ESP on-board SDO between 2010 and 2013. Hence, SWAP can be considered as an additional radiometric channel. We compare in detail LYRA channel 2-4 and SWAP integrated flux in July 2010 and in particular during the solar eclipse that occurred on July 11, 2010. During this eclipse, the discrepancy between the two data channels can be explained to be related to the occultation of active region 11087 by the Moon. In the second half of July 2010, LYRA channel 2-4 and SWAP integrated flux deviate from each other, but these differences can also be explained in terms of features appearing on the solar disk such as coronal holes and active regions. By additionally comparing with timeline of EVE/ESP, we can preliminarily interpret these differences in terms of the difference between the broad bandpass of LYRA channel 2-4 and the, relatively speaking, narrower bandpass of SWAP.
... Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. ...
Conference Paper
Full-text available
LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload. The PROBA-2 mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. LYRA monitors the solar irradiance at a high cadence (> 20Hz) in four soft X-Ray to VUV large passbands: the “Lyman-Alpha” channel, the “Herzberg” continuum range, the “Aluminium” and “Zirconium” filter channels. The radiometric calibration is traceable to synchrotron source standards. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics.
... The PROBA2 [1],[2] mission has been launched on 2 nd November2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. ...
Article
The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space weather sentinel from a low Earth orbit, providing images at 174 nm of the solar corona. The instrument concept has been adapted to the PROBA2 mini-satellite requirements (compactness, low power electronics and a-thermal opto-mechanical system). It also takes advantage of the platform pointing agility, on-board processor, Packetwire interface and autonomous operations. The key component of SWAP is a radiation resistant CMOS-APS detector combined with onboard compression and data prioritization. SWAP has been developed and qualified at the Centre Spatial de Liège (CSL) and calibrated at the PTBBessy facility. After launch, SWAP has provided its first images on 14th November 2009 and started its nominal, scientific phase in February 2010, after 3 months of platform and payload commissioning. This paper summarizes the latest SWAP developments and qualifications, and presents the first light results.
Article
Full-text available
In this paper, we statistically investigate an artifact in Langmuir Probe (LP) observations of Swarm satellites. A small peak of electron density (Ne) is frequently found in the Swarm data around the dayside dip equator. On the contrary, they appear in neither the Total Electron Content data of the Swarm/Global Positioning System Receivers nor COSMIC‐2 in‐situ measurements at similar altitudes but with low orbit inclination. Arguably, this peak does not represent natural ionospheric irregularities but is likely to result from artifacts. The phenomena are found regardless of the season, solar activity, and the velocity direction of the satellite (ascending and descending). They predominantly occur when the magnetic declination is close to zero, that is, when the Swarm ram direction and the Earth's magnetic field are aligned under sunlight. Hence, we attribute the phenomenon to intensified secondary electrons escape when the geomagnetic field lines are normal to conducting surfaces that emit secondary electrons. Since the magnitude of the artifact is only a few percent of the large‐scale background, it does not have a serious impact on the value of the Swarm/LP data in scientific research. Nevertheless, future efforts to determine the exact cause of the artifacts will contribute to improving the reliability and quality of plasma density and temperature measured by Swarm/LP.
Conference Paper
Full-text available
Two scientific instruments for Sun observations are being developed to be part of the payload of the ESA's second microsatellite, Proba-II (Project for On-board Autonomy). PROBA-2 is scheduled for launch in early 2007, on a low Earth orbit. Like Proba-1, in orbit since October 2001, Proba-2 is a 100-kilogram class spacecraft. PROBA-II will demonstrate new advanced technologies on its scientific payload but also on new platform subsystems such as star tracker, digital Sun sensor, cool gas generator, solar array concentrator, Li-Ion Battery, new central processor. This paper is dedicated to the solar payload, comprising the Sun Watcher using Active Pixel System detector and image Processing (SWAP) and the Lyman alpha Radiometer (LYRA), both aiming at Sun observations. SWAP, the Belgian-led main instrument, will continuously provide detailed images of the solar atmosphere, by the light of extreme ultraviolet rays, at 17.4 nm, completely absorbed by the terrestrial atmosphere. SWAP will perform as an operational solar monitoring tool for space weather forecasting while it will also demonstrate new technological solutions: CMOS/APS detector, new off-axis telescope design, a thermal structure. LYRA (LYman-alpha RAdiometer) is a small compact solar VUV radiometer. This instrument is designed, manufactured and calibrated by a Belgian-Swiss-German consortium. It will monitor the solar flux in four UV passbands. The spectral channels have been carefully selected for their relevance to space weather, solar physics and aeronomy, ranging from 1 nm to 220 nm. On the technological side, LYRA will benefit from the pioneering UV detectors program using diamond technology. The LYRA data will produce valuable solar monitoring information, for operational space weather nowcasting and research. This paper will detail the instrument concepts and their preparation for delivery to the platform.
Article
Full-text available
The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be part of the PROBA2 payload, an ESA technological mission to be launched in early 2008. SWAP is directly derived from the concept of the EIT telescope that we developed in the '90s for the SOHO mission. Several major innovations have been introduced in the design of the instrument in order to be compliant with the requirements of the PROBA2 mini-satellite: compactness with a new of-axis optical design, radiation resistance with a new CMOS-APS detector, a very low power electronics, an athermal opto-mechanical system, optimized onboard compression schemes combined with prioritization of collected data, autonomy with automatic triggering of observation and off-pointing procedures in case of Solar event occurrence, ... All these new features result from the low resource requirements (power, mass, telemetry) of the mini-satellite, but also take advantage of the specificities of a modern technological platform, such as quick pointing agility, new powerful on-board processor, Packetwire interface and autonomous operations. These new enhancements will greatly improve the operations of SWAP as a space weather sentinel from a low Earth orbit while the downlink capabilities are limited. This paper summarizes the conceptual design, the development and the qualification of the instrument, the autonomous operations and the expected performances for science exploitation.