Figure - available from: Remote Sensing
This content is subject to copyright.
Test site of the study. (a) Overview; the yellow line region represents the spatial coverage of COSMO-SkyMed. (b) Enhanced view of the region shown in (a) by the white polygon.

Test site of the study. (a) Overview; the yellow line region represents the spatial coverage of COSMO-SkyMed. (b) Enhanced view of the region shown in (a) by the white polygon.

Source publication
Article
Full-text available
Tunneling work, including the construction of municipal tunnels and metro lines, may disturb the structural health of aging buildings in densely built urban areas. Deformation monitoring and risk assessments of aging buildings are crucial to mitigate incidents and prevent losses of people’s lives and properties. Time-series InSAR reveals spatio-tem...

Similar publications

Article
Full-text available
Ground deformation is one of the crucial issues threatening many cities in both societal and economic aspects. Interferometric synthetic aperture radar (InSAR) has been widely used for deformation monitoring. Recently, there has been an increasing availability of massive archives of SAR images from various satellites or sensors. This paper introduc...

Citations

Article
Full-text available
Persistent Scatterer InSAR (PS-InSAR) technology enables the monitoring of displacement in millimeters. However, without the use of external parameter correction, radar scatterers exhibit poor geopositioning precision in meters, limiting the correlation between observed deformation and the actual structure. The integration of PS-InSAR datasets and building databases is often overlooked in deformation research. This paper presents a novel strategy for matching between PS points and building contours based on spatial distribution characteristics. A convex hull is employed to simplify the building outline. Considering the influence of building height and incident angle on geometric distortion, an adaptive buffer zone is established. The PS points on a building are further identified through the nearest neighbor method. In this study, both ascending and descending TerraSAR-X orbit datasets acquired between 2016 and 2019 were utilized for PS-InSAR monitoring. The efficacy of the proposed method was evaluated by comparing the PS-InSAR results obtained from different orbits. Through a process of comparison and verification, it was demonstrated that the matching effect between PS points and building contours was significantly enhanced, resulting in an increase of 29.2% in the number of matching PS points. The results indicate that this novel strategy can be employed to associate PS points with building outlines without the need for complex calculations, thereby providing a robust foundation for subsequent building risk assessment.
Article
Full-text available
InSAR (Interferometric Synthetic Aperture Radar) is widely recognized as a crucial remote sensing tool for monitoring various geological disasters because it provides all-day and all-weather monitoring. Nevertheless, the current interpretation methods for InSAR heavily depend on the interpreter’s experience, which hinders efficiency and fails to meet the requirements for the timely detection of geologic hazards. Furthermore, the results obtained through current InSAR processing carry inherent noise interference, further complicating the interpretation process. To address those issues, this paper proposes an approach that enables automatic and rapid identification of deformation zones. The proposed method leverages IPTA (Interferometric Point Target Analysis) technology for SAR data processing. It combines the power of HNSW (Hierarchical Navigable Small Word) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms to cluster deformation results. Compared with traditional methods, the computational efficiency of the proposed method is improved by 11.26 times, and spatial noise is suppressed. Additionally, the clustering results are fused with slope units determined using DEM (Digital Elevation Model), which facilitates the automatic identification of slopes experiencing deformation. The experimental verification in the western mountainous area of Beijing has identified 716 hidden danger areas, and this method is superior to the traditional technology in speed and automation.