Sunspot actual vs predicted values for Encoder-Decoder LSTM Model

Sunspot actual vs predicted values for Encoder-Decoder LSTM Model

Source publication
Preprint
Full-text available
Time series prediction with neural networks have been focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it is important to evaluate their strengths and weaknesses. In this paper, we present an evaluation study t...

Similar publications

Article
Full-text available
Time series prediction with neural networks has been the focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it is important to evaluate their strengths and weaknesses. In this paper, we present an evaluation stud...
Preprint
Full-text available
In this work, we highlight our novel evolutionary sparse time-series forecasting algorithm also known as EvoSTS. The algorithm attempts to evolutionary prioritize weights of Long Short-Term Memory (LSTM) Network that best minimize the reconstruction loss of a predicted signal using a learned sparse coded dictionary. In each generation of our evolut...
Article
Full-text available
In this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network. The technique can hel...
Article
Full-text available
Stochastic control problems with delay are challenging due to the path-dependent feature of the system and thus its intrinsic high dimensions. In this paper, we propose and systematically study deep neural network-based algorithms to solve stochastic control problems with delay features. Specifically, we employ neural networks for sequence modeling...
Article
Full-text available
We study adaptive (or online) nonlinear regression with Long-Short-Term-Memory (LSTM) based networks, i.e., LSTM-based adaptive learning. In this context, we introduce an efficient Extended Kalman filter (EKF) based second-order training algorithm. Our algorithm is truly online, i.e., it does not assume any underlying data generating process and fu...