Figure - available from: Frontiers in Pharmacology
This content is subject to copyright.
Structures of artemisinin, DHA, cryptotanshinone, cinobufotalin, norcantharidin, β-elemene, GS-Rh2, ginsenoside Rg3 (GS-Rg3), curcumin.

Structures of artemisinin, DHA, cryptotanshinone, cinobufotalin, norcantharidin, β-elemene, GS-Rh2, ginsenoside Rg3 (GS-Rg3), curcumin.

Source publication
Article
Full-text available
Lymphatic vessels, as an important part of the lymphatic system, form a fine vascular system in humans and play an important role in regulating fluid homeostasis, assisting immune surveillance and transporting dietary lipids. Dysfunction of lymphatic vessels can cause many diseases, including cancer, cardiovascular diseases, lymphedema, inflammatio...

Similar publications

Article
Full-text available
The lymphatic system plays vital roles in interstitial fluid balance and immune cell surveillance. The effect of alcohol on the lymphatic system is poorly understood. This review article explores the role of the lymphatic system in the pathogenesis of alcohol-related disease including alcoholic liver disease (ALD) and the therapeutic potential of t...

Citations

... In recent years, many studies (Benvenuti et al., 2010) have confirmed that lymphatic capillaries are rare and the diameter of myocardial lymphatic vessels has decreased in myocardial interstitial fibrosis in patients with dilated cardiomyopathy. Therapeutic lymphangiogenesis may be a promising new approach for the treatment of DCM-induced heart failure (Peng et al., 2020), but there are few effective and safe drugs promoting lymphangiogenesis. ...
Article
Full-text available
Background: Inadequate lymphangiogenesis is closely related to the occurrence of many kinds of diseases, and one of the important treatments is to promote lymphangiogenesis. Kuoxin Decoction (KXF) is an herbal formula from traditional Chinese medicine used to treat dilated cardiomyopathy (DCM), which is associated with lymphangiogenesis deficiency. In this study, we comprehensively verified whether KXF promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Methods: We performed virtual screening of the active compounds of KXF and potential targets regarding DCM based on network analysis. Tg (Flila: EGFP; Gata1: DsRed) transgenic zebrafish embryos were treated with different concentrations of KXF for 48 h with or without the pretreatment of MAZ51 for 6 h, followed by morphological observation of the lymphatic vessels and an assessment of lymphopoiesis. RT-qPCR was employed to identify VEGF-C , VEGF-A , PROX1 , and LYVE-1 mRNA expression levels in different groups. After the treatment of lymphatic endothelial cells (LECs) with different concentrations of salvianolic acid B (SAB, the active ingredient of KXF), their proliferation, migration, and protein expression of VEGF-C and VEGFR-3 were compared by CCK-8 assay, wound healing assay, and western blot. Results: A total of 106 active compounds were identified constituting KXF, and 58 target genes of KXF for DCM were identified. There were 132 pathways generated from KEGG enrichment, including 5 signaling pathways related to lymphangiogenesis. Zebrafish experiments confirmed that KXF promoted lymphangiogenesis and increased VEGF-C and VEGF-A mRNA expression levels in zebrafish with or without MAZ51-induced thoracic duct injury. In LECs, SAB promoted proliferation and migration, and it could upregulate the protein expression of VEGF-C and VEGFR-3 in LECs after injury. Conclusion: The results of network analysis showed that KXF could regulate lymphangiogenesis through VEGF-C and VEGF-A , and experiments with zebrafish confirmed that KXF could promote lymphangiogenesis. Cell experiments confirmed that SAB could promote the proliferation and migration of LECs and upregulate the protein expression of VEGF-C and VEGFR-3. These results suggest that KXF promotes lymphangiogenesis by a mechanism related to the upregulation of VEGF-C/VEGFR-3, and the main component exerting this effect may be SAB.
Article
Full-text available
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer’s disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Article
Full-text available
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Article
Background: Macrophage-mediated inflammatory infiltration and pathological lymphangiogenesis around atherosclerotic plaques are newly highlighted treatment targets of atherosclerosis. Although the effect of Hydroxysafflor yellow A(HSYA) on atherosclerosis was clear, few studies focus on the regulation of HSYA on such mechanisms. Purpose: This study aimed to uncover the key site of HSYA on improving atherosclerosis by regulating macrophage-induced inflammation and lymphangiogenesis. Study design: This study was designed to explore the new mechanism of HSYA on alleviating atherosclerosis in vitro and in vivo. Methods: We determined the expression of vascular endothelial growth factor C(VEGF-C) in Raw264.7 cells and high-fat diet fed ApoE knockout (ApoE-/-) mice. Raw264.7 cells were treated with HSYA under the stimulation of LPS and ox-LDL. HFD induced ApoE-/- mice were given different concentrations of HSYA-saline solution by tail vein injection and ATV-saline suspension by gavage. C57/B6j mice fed with chow diet were used for the control group. H&E, oil red O and immunofluorescence staining analysis were used for visualizing the pathological changes. The biological impact of HSYA was evaluated by body weight, lipid metabolism, inflammation levels, and corresponding function indexes of kidney and liver. RT-qPCR and western blot methods were conducted to determine the expression of the inflammation and lymphangiogenesis factors. Molecular docking and microscale thermophoresis analysis were used to verify the combination of HSYA and PI3K. Results: In vivo, HSYA reduced the plaque formation, hepatic steatosis and inflammation-related lymphangiogenesis (IAL). It also changed the serum levels of inflammation (VEGF-C, TNF-α, IL-6, VCAM1, MCP1), lipid indexes (LDL, CHOL, TRIG) and relevant lymphangiogenesis (VEGF-C and LYVE-1) and inflammation (VCAM-1 and IL-6) signals in the aorta. In vitro, HSYA regulated Akt/mTOR and NF-κB activation by the inhibition of PI3K in macrophages. Conclusion: HSYA affects inflammation and inflammation-associated lymphangiogenesis via suppressing PI3K to affect AKT/mTOR and NF-B pathway activation in macrophages, showing a comprehensive protective effect on atherosclerosis.
Article
Prostate cancer (PCa) incidence and mortality have rapidly increased in China. Notably, unique epidemiological characteristics of PCa are found in the Chinese PCa population, including a low but rising incidence and an inferior but improving disease prognosis. Consequently, the current treatment landscape of PCa in China demonstrates distinct features. Establishing a more thorough understanding of the characteristics of Chinese patients may help provide novel insights into potential treatment strategies for PCa patients. Herein, we review the epidemiological status and differences in treatment modalities of Chinese PCa patients. In addition, we discuss the underlying socioeconomic and biological factors that contribute to such diversity and further propose directions for future efforts in optimizing the PCa treatment in China.