Fig 6 - uploaded by Cong Tang
Content may be subject to copyright.
Simulated current distribution diagrams of the proposed antenna and slot antenna without CMRC at 2.45, 4.9, and 7.35 GHz. 

Simulated current distribution diagrams of the proposed antenna and slot antenna without CMRC at 2.45, 4.9, and 7.35 GHz. 

Source publication
Article
Full-text available
In this paper, a 2.45-GHz wideband harmonic rejection rectenna for wireless power transfer is proposed. The rectenna comprises a microstrip-fed circular ring slot antenna (CRSA) and a series-parallel rectifier (SPR). A compact micro strip resonant cell is inserted into the CRSA so that the harmonic suppression over a wide bandwidth (3–8 GHz) can be...

Context in source publication

Context 1
... visualize the harmonic suppression of the proposed antenna, the current distributions in the antenna are plotted in Fig. 6. It is clearly seen that the CMRC has blocked the signal at the 2nd-and 3rd-order harmonic, while only the fun- damental frequency goes through ...

Similar publications

Article
Full-text available
This paper presents a circularly polarized (CP) rectenna with the advantage of achieving high efficiency in both wide operating power and frequency ranges. The proposed rectenna is composed of a high-efficiency rectifier and broadband CP antenna. In the proposed rectifier, a novel wideband resistance compression technique is presented, highly impro...
Preprint
Full-text available
The paper describes a new formula for calculating the mutual inductance between a thin conical sheet inductor and a filamentary circular loop, which are coaxial. The presented formula is derived semi-analytically using the complete elliptic integrals of the first, second, and the third kind, along with the integral term which will be solved numeric...
Article
Full-text available
We consider a dual-hop wireless network where an energy constrained relay node first harvests energy through the received radio-frequency signal from the source, and then uses the harvested energy to forward the source's information to the destination node. The throughput and delay metrics are investigated for a decode-and-forward relaying mechanis...
Article
Full-text available
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to ex...
Preprint
Full-text available
p>Federated learning (FL) has recently emerged as a novel technique for training shared machine learning models in a distributed fashion while preserving data privacy. However, the application of FL in wireless networks poses a unique challenge on the mobile users (MUs)' battery lifetime. In this paper, we aim to apply reconfigurable intelligent su...

Citations

... In the traditional rectifying circuit, the low-pass filter is used to suppress the high-harmonic components generated by the nonlinear rectifying diode to improve the conversion efficiency of the rectifying circuit. A broadband matching network is used in some wide input power rectifying circuits to increase the conversion efficiency [13][14][15]. ...
Article
Full-text available
A 2.45 GHz high-efficiency rectifying circuit for a wireless radiofrequency (RF) energy collection system is proposed. The RF energy collection system is composed of a transmitting antenna, a receiving antenna, a rectifying circuit and a load. The designed receiving antenna is a kind of dual-polarised cross-dipole antenna; its bandwidth is 2.3–2.5 GHz and gain is 7.97 dBi. The proposed rectifying circuit adopts the technology of an output matching network, which can suppress the high-harmonic components. When the input power at 2.45 GHz is 13 dBm and the load is 2 kΩ, the highest conversion efficiency of RF-DC is 74.8%, and the corresponding maximum DC output voltage is 4.92 V. The experiment results are in good agreement with the simulation results, which shows a good application prospect.
... Overview of the pattern reconfigurability antennas for RF energy harvesting applications (a) [87], (b) [88], (c) [140], and (d) [126]. ...
Article
Full-text available
Due to the widespread use of low-power embedded devices in both industrial and consumer applications, research into the use of alternate energy sources has been sparked by the requirement for continuous power. Due to its accessibility and ability to be implanted, RF energy is always taken into consideration among the traditional energy sources that are currently available. There is a significant necessity for efficient RF front-ends, which must provide effective circular polarization (CP) features, effectiveness, feasibility from a design standpoint, and optimal usage of ambient RF signals accessible in the environment. So, for understanding their utilization in RF energy harvesting, a metasurface reflector-inspired CP-printed reconfigurable antenna integrated with a Greinacher voltage divider (GVD) rectifier circuit is reported. It offers broadband CP with fractional bandwidth > 25%, CP gain > 8.35 dBic, and directional radiation with the 3 dB angular beamwidth > 100° in the 3.5/5 GHz bands. With the integration of the rectifier circuit, a theoretical DC output > 4.8 V at 12 dBm is obtained. The acceptable impedance bandwidth, axial ratio bandwidth, antenna gain, antenna efficiency, and directional radiation with a 3 dB angular beamwidth value are studied and subsequently matched with the trade-offs (usage of diodes, complexity of DC biasing circuits, and attainment of polarization reconfigurability) obtained from the state of the art. A comprehensive study of the reconfigurable antennas is reported to highlight the findings as a widespread solution for these limitations in RF energy harvesting application.
... For the designing of compact antennas for 2.4 GHz ISM band applications, fractal antennas are one of best available techniques, as explained in [24,25]. The use of truncated corners is another well-studied technique to achieve compact antenna for microwave, as proposed in [26,27]. The open-ended stub loading technique is also widely studied, as explained in [28,29]. ...
... The open-ended stub loading technique is also widely studied, as explained in [28,29]. To obtain a satisfactory impedance fractional bandwidth of 2.4 GHz, a variety of different-shaped antennas of various sizes were proposed and measured [24][25][26][27]. For biotelemetry in biomedical investigative systems, a small, strong, and flexible bodyworn antenna was presented in [30]. ...
Article
Full-text available
Wireless communication technology integration is necessary for Internet of Things (IoT)-based applications to make their data easily accessible. This study proposes a new, portable L-shaped microstrip patch antenna with enhanced gain for IoT 2.4 GHz Industrial, Scientific, and Medical (ISM) applications. The overall dimensions of the antenna are 28 mm × 21 mm × 1.6 mm (0.22λ o × 0.17λ o × 0.013λ o , with respect to the lowest frequency). The antenna design is simply comprised of an L-shape strip line, with a full ground applied in the back side and integrated with a tiny rectangular slot. According to investigations, the developed antenna is more efficient and has a greater gain than conventional antennas. The flexibility of the antenna's matching impedance and performance are investigated through several parametric simulations. Results indicate that the gain and efficiency can be enhanced through modifying the rectangular back slot in conjunction with fine-tuning the front L-shaped patch. The finalized antenna operates at 2.4 GHz with a 98% radiation efficiency and peak gains of 2.09 dBi (measured) and 1.95 dBi (simulated). The performance of the simulation and measurement are found to be in good agreement. Based on the performance that was achieved, the developed L-shaped antenna can be used in a variety of 2.4 GHz ISM bands and IoT application environments, especially for indoor localization estimation scenarios, such as smart offices and houses, and fourth-generation (4G) wireless communications applications due to its small size and high fractional bandwidth.
... A microstrip resonator cell-inserted circular slot antenna is presented to suppress up to the third harmonic over a 3-8 GHz bandwidth, with a resonating frequency of 2.45 GHz. A new series-parallel rectifier [20] efficiency is increased by adding proper inductance under a low power input level. The proposed design has obtained a 70.2% conversion efficiency with a 1 KΩ load. ...
Article
Full-text available
With low-power gadgets proliferating, the development of a small, effective rectenna is crucial for wirelessly energizing devices. A simple circular patch with a partial ground plane for RF-energy harvesting at ISM (2.45 GHz) band is proposed in this work. The simulated antenna resonates at 2.45 GHz with an input impedance of 50 W and a gain of 2.38 dBi. An L-section matching a circuit with a voltage doubler is proposed to provide excellent RF-to-DC transformation efficiency at low power input. The proposed rectenna is fabricated and the results show that the return loss and realized gain have good characteristics at the ISM band with 52% of RF-to-DC transformation efficiency, with an input of 0 dBm power. The projected rectenna is apt for power-up low sensor nodes in wireless sensor applications.
... Significant efforts have been made in the literature to design antennas capable of harmonic suppression [23][24][25][26][27][28]. The antennas operating at the 2.45 GHz band offer the advantage of high-order harmonics suppression up to 8 GHz [23][24][25][26]. ...
... Significant efforts have been made in the literature to design antennas capable of harmonic suppression [23][24][25][26][27][28]. The antennas operating at the 2.45 GHz band offer the advantage of high-order harmonics suppression up to 8 GHz [23][24][25][26]. Although the antennas provide high gain and broadband characteristics, they have larger dimensions, rigidness, and a single-band operation. ...
... The typical way to mitigate the harmonics from an antenna is to utilize a separate low-pass or band-stop filter [24][25][26]. However, several setbacks are associated with the usage of additional filters, which are not limited to the increase in the size of the antenna, the need for another matching circuit to match impedances of the antenna with the filter, and so on [24]. ...
Article
Full-text available
This paper presents the design and realization of a flexible and frequency-reconfigurable antenna with harmonic suppression for multiple wireless applications. The antenna structure is derived from a quarter-wave monopole by etching slots. Afterward, the high-order unwanted harmonics are eliminated by adding a filtering stub to the feedline to avoid signal interference. Lastly, frequency reconfigurability is achieved using pin diodes by connecting and disconnecting the stubs and the rectangular patch. The antenna is fabricated on the commercially available thin (0.254 mm) conformal substrate of Rogers RT5880. The proposed antenna resonates (|S11| < –10 dB) at five different reconfigurable bands of 3.5 GHz (3.17–3.82 GHz), 2.45 GHz (2.27–2.64 GHz), 2.1 GHz (2.02–2.29 GHz), 1.9 GHz (1.81–2.05 GHz), and 1.8 GHz (1.66–1.93 GHz), which are globally used for 5G sub-6 GHz in industrial, medical, and scientific (ISM) bands, 4G long-term evolution (LTE) bands, and global system for mobile communication (GSM) bands. The simulated and measured results show that the antenna offers excellent performance in terms of good impedance matching with controllable resonant bands, high gain (>2 dBi), stable radiation patterns, and efficiency (>87%). Moreover, the conformal analysis shows that the antenna retains its performance both in flat and bending conditions, making it suitable for flexible electronics. In addition, the antenna is compared with the state-of-the-art works for similar applications to show its potential for the targeted band spectrums.
... En la Tabla 3 se registran los rangos de los parámetros de comparación para las antenas flexibles y rígidas revisadas, los cuales están categorizado por cada sistema inalámbrico. 10 -8,89 -54,00 --21,64 456,0 -9216,0 (Ahmed et al., 2017;Benayad y Tellache, 2019;Chuma et al., 2018;Contreras y Rodríguez, 2021;Contreras et al., 2020a;Contreras et al., 2020b;Kang et al., 2017;Liu et al., 2019;Mansour et al., 2018;Meor et al., 2017;Naqvi y Khan, 2018;Partal y Partal, 2018;Shen et al., 2017;Shi et al., 2018;Wang et al., 2018) Flexible 1, 05 -7,60 -41,00 --5,70 125,0 -9696,0 (Adami et al., 2018;Agbor et al., 2018;Al-Sehemi et al., 2017;Arif et al., 2019;Ferreira et al., 2017;Guo et al., 2017;Hamouda et al., 2018b;Kavitha y Swaminathan, 2018;Krykpayev et al., 2017;X. Zhang et al., 2019) ISM/WLAN (5 GHz) Rígida 2, 89 -5,10 -33,00 --23,00 237,6 -5625,0 (Kumar et al., 2020;Lu et al., 2019;Mishra et al., 2017) Flexible 0, 51 -3,12 -24,00 --10,00 105051 -3,12 -24,00 --10,00 ,0 -4524,0 (Abdel et al., 2019Desai et al., 2020;Hamouda et al., 2018b;Vashi y Upadhyaya, 2020;Venkateswara et al., 2019) UWB Rígida 2,30 -7,3 -40,00 --20,00 1225,0 -3190,0 (Agrawal et al., 2018Lv et al., 2019;Mansour et al., 2019;Mathur et al., 2018;Singh et al., 2018) Flexible 2, 21 -6,12 -35,00 --12,10 517,0 -200021 -6,12 -35,00 --12,10 517,0 - ,0 (Gupta et al., 2016Hamouda et al., 2018a;Hosseini y Afsahi, 2019;Kumar et al., 2016;Reddy et al., 2017;Wang et al., 2019;Zahran y Gaafar, 2016) Fuente: elaboración propia Las rígidas revisadas son de distintos tipos, predominando la selección de las antenas monopolares con diferentes formas en el parche radiante, tal como sucedió con las antenas flexibles. ...
Chapter
Full-text available
Las antenas son elementos cruciales en los sistemas inalámbricos que permiten realizar la transducción entre las ondas electromagnéticas y las señales eléctricas. Entre los tipos de antenas que han tomado relevancia en los últimos años están las flexibles, debido a su aplicación en propósitos que requieran curvaturas, para lo cual se ha empleado una diversidad de materiales. Sin embargo, esta área aún está en desarrollo, por lo que se requiere profundizar en el desempeño que se ha obtenido y así dar a conocer sus ventajas y los materiales que han originado mejores resultados. Para ello se propuso la comparación de los distintos tipos de antenas con sustratos flexibles y rígidos que funcionan en la banda de microondas, para determinar aspectos relevantes en sus parámetros técnicos. Las antenas flexibles revisadas tuvieron un amplio rango de permitividad eléctrica relativa y distintos sustratos (papel, algodón, tereftalato de polietileno, politetrafluoroetileno, polímero cristalino líquido, poliamida, teslin, kapton, dianhídrido piromelítico oxidianilina, caucho de butadieno-nitrilo e híbrido). Los resultados obtenidos muestran que las curvaturas en las antenas flexibles producen una reducción en su desempeño, originada por la elongación o contracción de los materiales. Adicionalmente, las flexibles tienen como ventajas la miniaturización de la antena y la adaptación a curvaturas del lugar de instalación, pero presentaron menores niveles de ganancia y de magnitud S11, con respecto a las antenas rígidas. Las antenas flexibles tienen aún margen de mejora, mediante procesos de optimización que consideren la influencia de las curvaturas y otros factores que degradan su comportamiento.
... Configuración básica de las antenas empleadas: a) corbatín, b) dipolo, c) espiral, d) lazo, e) monopolo, f) ranura, g) vivaldi y h) yagi-uga. 31,42,47,70,72,[76][77][78], ranura (8%) [16,41,48,66,79,80], espiral (6%) [52,53,69,81,82], lazo (4%) [23,83], corbatín (2%) [35,84], yagi-uda (1%) [36] y vivaldi (1%) [68]. Por su parte, los arreglos de antenas se han empleado en un 21% de las rectenas revisadas, ordenadas de manera estratégica para mejorar el rendimiento en la captación de las ondas e incrementar la ganancia en las bandas de interés. ...
... Con respecto a los filtros, se han implementado para prevenir que las componentes armónicas, las cuales pueden generarse por los elementos no lineales del rectificador, sean re-radiadas a la antena y aumenten las perdidas por desacoplamiento. Se han usado sus cuatro tipos, es decir, el pasa bajo [26,38,45,47,51,56,64,72,85,88], el pasa alto [17], el pasa banda [24] y el rechaza banda mediante una celda resonante microcinta compacta (Compact Microstrip Resonant Cell, CMRC) para suprimir una banda superior a la de diseño [48]. Cuando se han combinado ambos elementos, se emplea un filtro pasa bajo y un acoplador de impedancia [46,104] o un filtro pasa banda y un acoplador de impedancia [15] para obtener la mejora que aporta cada elemento. ...
Article
Full-text available
El presente artículo tuvo como objetivo caracterizar el desempeño de las rectenas utilizadas en los sistemas de comunicaciones en radiofrecuencia, con la finalidad de identificar aspectos relevantes en las distintas etapas que conforman esta fuente de energía. En esta investigación, se realizó una revisión documental de artículos acerca de rectenas que recolectan energía de los sistemas de telefonía móvil, redes de área local inalámbrica (WLAN) y aplicaciones ISM. Los resultados muestran que la antena más empleada en estos sistemas ha sido la monopolo con parche rectangular. El rectificador más usado ha sido el doblador de voltaje, con el cual se ha obtenido una eficiencia de conversión RF-DC máxima de 93%. Adicionalmente, se obtuvo que el elemento de interconexión más utilizado ha sido el acoplador de impedancia de sección L convencional. La máxima eficiencia de conversión obtenida fue 87% para el sistema WLAN a 2,45 GHz. Se concluye que existe una variedad de criterios para el diseño de rectenas para una aplicación dada. Como futuras investigaciones se plantea establecer criterios particulares para cada aplicación que permitan obtener el mejor rendimiento posible y optimizar las etapas de las rectenas para alcanzar una mayor eficiencia de conversión y cosechar más energía.
... Unfortunately, the filters will increase both the antenna size and complexity. To overcome these challenges, various techniques have been proposed by using slotted antenna with compact micro-strips resonant cell (CMSRC) [18], slotted filtering antenna [19], or a square ring slotted antenna with rectangular slots in the ground [20]. However, large antenna size is still the critical problem of these aforementioned designs. ...
... For RF energy transfer over a long distance, microwave power transmission (MPT) is preferred where a rectifying antenna (rectenna) is an essential component and converts the received RF power to DC power for energy supply of low-power electronic devices. [1][2][3][4] Since the first rectenna was proposed by Brown in 1963, 5 various types of rectennas have been reported and investigated including the circularly polarized rectenna, 6 monopole rectenna, 7 and dipoles rectenna. 8 The miniaturization of the configuration should be considered in the design of the rectenna in medical implantable applications or low-power electronic devices. ...
Article
Full-text available
A compact dual‐circinal rectenna with omnidirectional characteristic is designed for microwave wireless power transmission at 2.45 GHz. A novel dual‐circinal receiving antenna with the reflection coefficient of −32.5 dB is proposed which is formed by expanding folded curves. By designing an impedance matching network with a 60 ° radial stub and a single stub, a rectifier is presented with the maximum efficiency of 55.6 % and the output dc voltage of 1.19 V under the input power of 0 dBm. Simulation and measurements have been carried out for the antenna and the rectifier. The measured results agree well with the simulated value. The results of rectenna experiment show that the maximum conversion efficiency is 51% at 2.45 GHz when the input power is 0 dBm. The proposed rectenna has the characteristics of compact size and omnidirectional harvesting which are advantageous in RF energy harvesting applications.
... [26][27][28][29] In addition, different structures used as rectifier-integrated antennas are called as rectennas. [30][31][32][33][34][35] Gao et al. 26 proposed a rectifier structure using CMOS technology that can be used in wireless power transfer applications such as 2.40 GHz. In the literature, there are many studies that contain rectification of 2.45 GHz with high efficiencies. ...
Article
We propose a microwave imaging structure with GSM, ISM, Wi-Fi, and WiMAX operating frequencies at 1.80, 2.45, and 5.80 GHz, respectively. The suggested structure is based on a microwave antenna-inspired absorber with cavities in resonator layers. Our study, which is validated using simulation and experimental techniques, deals with the absorption of the incident electromagnetic waves at 1.80, 2.45, and 5.80 GHz for creating the image when radio frequency microwave is employed. The above-mentioned three operating frequencies, by which electromagnetic waves are radiated from three different antennas, are read via digital oscilloscope and finally these voltages are converted to 256 gray-leveled pixel values of each cell. During the experimental testing, simulated and tested values complied with each other. Small differences occurred due to calibration and testing errors. The novelty of this study is having image capability with most commonly used frequency bands by absorbing microwave energy.