Figure 2 - uploaded by Philippe Lattes
Content may be subject to copyright.
Seismic vessel with 77° degrees feather angle.

Seismic vessel with 77° degrees feather angle.

Source publication
Conference Paper
Full-text available
Offshore South Africa, Outeniqua basin is well known for being exposed to harsh weather and sea state conditions. Moreover, on the top of these challenging conditions, this area faces the second strongest oceanic current namely the Agulhas current. It is in this new frontier area that, following the Brulpadda-1AX discovery, Total E&P has started an...

Citations

Article
Full-text available
Many features indicative of natural gas and oil leakage are delineated in the deep-water Orange Basin offshore South Africa using 3D reflection seismic data. These features are influenced by the translational and compressional domains of an underlying Upper Cretaceous deep-water fold-and-thrust belt (DWFTB) system detaching Turonian shales. The origin of hydrocarbons is postulated to be from both: (a) thermogenic sources stemming from the speculative Turonian and proven Aptian source rocks at depth; and (b) biogenic sources from organic-rich sediments in the Cenozoic attributed to the Benguela Current upwelling system. The late Campanian surface has a dense population of > 950 pockmarks classified into three groups based on their variable shapes and diameter: giant (> 1500 m), crater (~ 700–900 m) and simple (< 500 m) pockmarks. A total of 85 simple pockmarks are observed on the present-day seafloor in the same area as those imaged on the late Campanian surface found together with mass wasting. A major slump scar in the north surrounds a ~ 4200 m long, tectonically controlled mud volcano. The vent of the elongated mud volcano is near-vertical and situated along the axis of a large anticline marking the intersection of the translational and compressional domains. Along the same fold further south, the greatest accumulation of hydrocarbons is indicated by a positive high amplitude anomaly (PHAA) within a late Campanian anticline. Vast economical hydrocarbon reservoirs have yet to be exploited from the deep-water Orange Basin, as evidenced by the widespread occurrence of natural gas/fluid escape features imaged in this study.