| Scoparone inhibited PA-induced activation of JNK/Sab signaling pathway in hepatocytes. The expression and activation levels of JNK, SHP-1, Src, and Sab protein in HepG2 and AML12 cells with PA induction were detected and analyzed. *p < 0.05, ***p < 0.001 vs. Control; # p < 0.05 vs. Model.

| Scoparone inhibited PA-induced activation of JNK/Sab signaling pathway in hepatocytes. The expression and activation levels of JNK, SHP-1, Src, and Sab protein in HepG2 and AML12 cells with PA induction were detected and analyzed. *p < 0.05, ***p < 0.001 vs. Control; # p < 0.05 vs. Model.

Source publication
Article
Full-text available
The activated c-Jun N-terminal kinase (JNK) specifically combined with SH3 domain-binding protein 5 (Sab) may mediate damage to the mitochondrial respiratory chain. Whether mitochondrial dysfunction induced by the JNK/Sab signaling pathway plays a pivotal role in the lipotoxic injury of nonalcoholic steatohepatitis (NASH) remains a lack of evidence...

Context in source publication

Context 1
... protein expression of JNK/Sab signaling pathway-related molecules in HepG2 and AML12 cells were detected, which were shown in Figure 5. Compared with the control group, the ratio of P-JNK/JNK and P-SHP-1/SHP-1 increased, and the ratio of P-Src/Src decreased significantly. ...

Citations

... A growing number of studies have shown that inhibition of JNK alleviates mitochondrial dysfunction in acute lung injury, diabetic cardiomyopathy, and testicular ischemia-reperfusion injury [103][104][105]. Jiang and colleagues proved that downregulation of JNK/Sab signaling attenuated mitochondrial damage and histopathologic changes of liver tissue in mice with nonalcoholic steatohepatitis [106]. Gao by increasing JNK phosphorylation in HK-2 cells [65]. ...
Article
Full-text available
Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.
... These bacterial signatures are confirmed in various patient cohorts and geographical areas. In inducing oxidant stress in NAFLD, the importance of increased CYP2E1 expression (Diesinger, et al., 2020;Ma et al., 2021) and electron leakage from the mitochondrial respiratory chain (Ding, et al., 2022;Jiang et al., 2022) has been shown in several researches. This drives the progression from steatosis to steatohepatitis (Leung & Nieto, 2013). ...
... In addition, JNK activation in the stages of steatohepatitis contributes to the increase in SAB protein expression found on the outer mitochondrial membrane. Their combination is linked with defective mitochondrial electron transport chains, the discharge of oxidative stress products, and, as a final effect, hepatocyte death [97,98]. ...
Article
Full-text available
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Its incidence is progressively rising and it is possibly becoming a worldwide epidemic. NAFLD encompasses a spectrum of diseases accounting for the chronic accumulation of fat within the hepatocytes due to various causes, excluding excessive alcohol consumption. In this study, we aimed to focus on finding evidence regarding the implications of oxidative stress and inflammatory processes that form the multifaceted pathophysiological tableau in relation to thrombotic events that co-occur in NAFLD and associated chronic liver diseases. Recent evidence on the pathophysiology of NAFLD suggests that a complex pattern of multidirectional components, such as prooxidative, proinflammatory, and prothrombotic components, better explains the multiple factors that promote the mechanisms underlying the fatty acid excess and subsequent processes. As there is extensive evidence on the multi-component nature of NAFLD pathophysiology, further studies could address the complex interactions that underlie the development and progression of the disease. Therefore, this study aimed to describe possible pathophysiological mechanisms connecting the molecular impairments with the various clinical manifestations, focusing especially on the interactions among oxidative stress, inflammation, and coagulation dysfunctions. Thus, we described the possible bidirectional modulation among coagulation homeostasis, oxidative stress, and inflammation that occurs in the various stages of NAFLD.
... A few other coumarins have been isolated from the aerial parts of R. angustifolia, such as 6,7,8-trimethoxycoumarin and scoparone [88]. The latter is a well-known antioxidant and lipid-lowering agent, considered useful to alleviate alcohol-or high-fat diet-induced liver injuries [89,90]. It has osteogenic effects, potentially useful to avoid bone demineralization [91], and displays antiproliferative effects against tumor cells [92]. ...
... It is a classical antioxidant and anti- A few other coumarins have been isolated from the aerial parts of R. angustifolia, such as 6,7,8-trimethoxycoumarin and scoparone [88]. The latter is a well-known antioxidant and lipid-lowering agent, considered useful to alleviate alcohol-or high-fat diet-induced liver injuries [89,90]. It has osteogenic effects, potentially useful to avoid bone demineralization [91], and displays antiproliferative effects against tumor cells [92]. ...
Article
Full-text available
The genus Ruta in the family Rutaceae includes about 40 species, such as the well-known plants R. graveolens L. (common rue) or R. chalepensis L. (fringed rue), but also much lesser-known species such as R. angustifolia Pers. (narrow-leaved fringed rue). This rue specie, originating from the Mediterranean region, is well-distributed in Southeast Asia, notably in the Indo-Chinese peninsula and other territories. In some countries, such as Malaysia, the plant is used to treat liver diseases and cancer. Extracts of R. angustifolia display antifungal, antiviral and antiparasitic effects. Diverse bioactive natural products have been isolated from the aerial parts of the plant, notably quinoline alkaloids and furocoumarins, which present noticeable anti-inflammatory, antioxidant and/or antiproliferative properties. The present review discusses the main pharmacological properties of the plant and its phytoconstituents, with a focus on the anticancer activities evidenced with diverse alkaloids and terpenoids isolated from the aerial parts of the plant. Quinoline alkaloids such as graveoline, kokusaginine, and arborinine have been characterized and their mode of action defined. Arborinine stands as a remarkable inhibitor of histone demethylase LSD1, endowed with promising anticancer activities. Other anticancer compounds, such as the furocoumarins chalepin and rutamarin, have revealed antitumor effects. Their mechanism of action is discussed together with that of other bioactive natural products, including angustifolin and moskachans. Altogether, R. angustifolia Pers. presents a rich phytochemical profile, fully consistent with the traditional use of the plant to treat cancer. This rue species, somewhat neglected, warrant further investigations as a medicinal plant and a source of inspiration for drug discovery and design.
... T A B L E 1 Defatting agents used in ex-vivo NMP models Increase transcription of mRNAs involved in mitochondrial βoxidation of free fatty acids (FFAs) in the liver.34 Upregulate the expression of PPARγ.35 Forskolin Glucagon-mimetic cAMP activator Enhance βoxidation and ketogenesis by increasing intracellular cAMP levels.36 ...
Article
Full-text available
Background Ex-vivo normothermic machine perfusion (NMP) preserves the liver metabolism at 37°C and has rapidly developed as a promising approach for assessing the viability and improving the performance of organs from expanded criteria donors, including fatty liver grafts. NMP is an effective method for defatting fatty livers when combined with pharmaceutical therapies. Pharmacological agents have been shown to facilitate liver defatting by NMP. Observations This systematic review summarizes available pharmacological therapies for liver defatting, with a particular emphasis on defatting agents that can be employed clinically as defatting components during liver NMP as an ex vivo translational paradigm. Conclusion NMP provides an opportunity for organ treatment and can be used as a defatting platform in the future with defatting agents. Nagrath's cocktail is the most commonly used defatting cocktail in NMP; however, its carcinogenic components may limit its clinical application. Thus, the combination of a defatting cocktail with a new clinically applicable component, for example, a polyphenolic natural compound, may be a novel pharmacological option.
... Therefore, an effective therapeutic management is required for NAFL disease to prevent progression to NASH and its resulting complications. While the mechanism of developing NAFL/NASH is not fully understood, the hepatic metabolic stress response via JNK activation has been identified as a common pathway in numerous models of liver injury [10][11][12][13][14][15]. The relationship of JNK activation pathway to oxidative stress, lipotoxic stress and cell death, inflammation, and cytokines, fibrogenesis, de novo lipogenesis, lipolysis, lipid oxidation and transport are being studied to determine the mechanistic significant of MAPKs in the development of NASH ( Figure 1) [6,[16][17][18][19][20]. ...
Article
Full-text available
Non-alcoholic fatty liver (NAFL) is the most common chronic liver disease. Activation of mitogen-activated kinases (MAPK) cascade, which leads to c-Jun N-terminal kinase (JNK) activation occurs in the liver in response to the nutritional and metabolic stress. The aberrant activation of MAPKs, especially c-Jun-N-terminal kinases (JNKs), leads to unwanted genetic and epi-genetic modifications in addition to the metabolic stress adaptation in hepatocytes. A mechanism of sustained P-JNK activation was identified in acute and chronic liver diseases, suggesting an important role of aberrant JNK activation in NASH. Therefore, modulation of JNK activation, rather than targeting JNK protein levels, is a plausible therapeutic application for the treatment of chronic liver disease.
... However, there is no obvious difference found in the serum TG between model and control mice for all the timepoint. This result was similar to our previous experimental result, demonstrating no change in serum TG level in the mice fed with HFD for 18 weeks [23,24]. Another study for the NAFLD model also showed mild downregulated trend of serum TG in C57BL/6, CD-1, and 129Sv mice after HFD feeding for 9 weeks [25]. ...
Article
Full-text available
Background Salvia-Nelumbinis naturalis (SNN), the extract of Chinese herbal medicine, has shown effects on NAFLD. This study aims to explore the underlying mechanism of SNN for regulating the lipid metabolism disorder in NAFLD based on the SIRT1/AMPK signaling pathway. Methods Male C57BL/6J mice fed with a high-fat diet (HFD) were used to establish the NAFLD model. Dynamic changes of mice including body weight, liver weight, serological biochemical indexes, liver histopathological changes, and protein level of AMPK and SIRT1 were monitored. After18 weeks, SNN treatment was administrated to the NAFLD mice for another 4 weeks. Besides the aforementioned indices, TC and TG of liver tissues were also measured. Western blot and quantitative RT-PCR were used to detect the expression and/or activation of SIRT1 and AMPK, as well as the molecules associated with lipid synthesis and β-oxidation. Furthermore, AML12 cells with lipid accumulation induced by fatty acids were treated with LZG and EX527 (SIRT1 inhibitor) or Compound C (AMPK inhibitor ) to confirm the potential pharmacological mechanism. Results Dynamic observation found the mice induced by HFD with gradually increased body and liver weight, elevated serum cholesterol, hepatic lipid accumulation, and liver injury. After 16 weeks, these indicators have shown obvious changes. Additionally, the hepatic level of SIRT1 and AMPK activation was identified gradually decreased with NAFLD progress. The mice with SNN administration had lower body weight, liver weight, and serum level of LDL-c and ALT than those of the NAFLD model. Hepatosteatosis and hepatic TG content in the liver tissues of the SNN group were significantly reduced. When compared with control mice, the NAFLD mice had significantly decreased hepatic expression of SIRT1, p-AMPK, p-ACC, ACOX1, and increased total Acetylated-lysine, SUV39H2, and SREBP-1c. The administration of SNN reversed the expression of these molecules. In vitro experiments showed the effect of SNN in ameliorating hepatosteatosis and regulating the expression of lipid metabolism-related genes in AML12 cells, which were diminished by EX527 or Compound C co-incubation. Conclusions Taken together, the SIRT1/AMPK signaling pathway, involved in hepatic lipid synthesis and degradation, plays a pivotal role in the pathogenesis of NAFLD development. The regulation of SIRT1/AMPK signaling greatly contributes to the underlying therapeutic mechanism of SNN for NAFLD.
Article
Full-text available
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Article
Full-text available
In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%–130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.
Article
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.