Figure 2 - available via license: Creative Commons Attribution 3.0 Unported
Content may be subject to copyright.
Schematic diagram of compressed air energy storage.

Schematic diagram of compressed air energy storage.

Source publication
Article
Full-text available
Energy storage is one of the main problems bothering the power system. The present research situation of energy storage is outlined. The working principles, development process and technical features of pumped storage, compressed air energy storage, flywheel energy storage, electromagnetic energy storage and chemical energy storage are described in...

Similar publications

Article
Full-text available
The displacement and eventual replacement of fossil-derived fuel gases with biomass-derived alternatives can help the energy sector to achieve net zero by 2050. Decarboxylation of butyric acid, which can be obtained from biomass, can produce high yields of propane, a component of liquefied petroleum gases. The use of different gaseous reaction atmo...

Citations

... The distinction between high-energy and high-power storage solutions highlights their versatility in meeting diverse energy demands across different scales and applications. The effective deployment of these technologies enhances grid reliability and efficiency by addressing the varied energy needs of residential and utility-scale contexts [11][12][13][14]. The second category concerns high-power storage technologies. ...
Article
Full-text available
Energy storage systems are essential in modern energy infrastructure, addressing efficiency, power quality, and reliability challenges in DC/AC power systems. Recognized for their indispensable role in ensuring grid stability and seamless integration with renewable energy sources. These storage systems prove crucial for aircraft, shipboard systems, and electric vehicles, addressing peak load demands economically while enhancing overall system reliability and efficiency. Recent advancements and research have focused on high-power storage technologies, including supercapacitors, superconducting magnetic energy storage, and flywheels, characterized by high-power density and rapid response, ideally suited for applications requiring rapid charging and discharging. Hybrid energy storage systems and multiple energy storage devices represent enhanced flexibility and resilience, making them increasingly attractive for diverse applications, including critical loads. This paper provides a comprehensive overview of recent technological advancements in high-power storage devices, including lithium-ion batteries, recognized for their high energy density. In addition, a summary of hybrid energy storage system applications in microgrids and scenarios involving critical and pulse loads is provided. The research further discusses power, energy, cost, life, and performance technologies.