Fig 3 - uploaded by Bernard Slippers
Content may be subject to copyright.
Saccharataceae (Saccharata proteae, CBS 121406). A. Symptomatic leaves with tip die-back. B. Superficial view of immersed ascomata, showing clypeus-like structure. C, D. Asci and ascospores. E-G. Conidiogenous cells and paraphyses. H, I. Conidia and spermatia. Scale bars = 10 µm.

Saccharataceae (Saccharata proteae, CBS 121406). A. Symptomatic leaves with tip die-back. B. Superficial view of immersed ascomata, showing clypeus-like structure. C, D. Asci and ascospores. E-G. Conidiogenous cells and paraphyses. H, I. Conidia and spermatia. Scale bars = 10 µm.

Source publication
Data
Full-text available
The order Botryosphaeriales represents several ecologically diverse fungal families that are commonly isolated as endophytes or pathogens from various woody hosts. The taxonomy of members of this order has been strongly influenced by sequence-based phylogenetics, and the abandonment of dual nomenclature. In this study, the phylogenetic relationship...

Similar publications

Article
Full-text available
The genus Panolis is a small group of noctuid moths with six recognized species distributed from Europe to East Asia, and best known for containing the widespread Palearctic pest species P. flammea, the pine beauty moth. However, a reliable classification and robust phylogenetic framework for this group of potentially economic importance are curren...
Article
Full-text available
As one of the most successful group of organisms, mammals occupy a variety of niches on Earth as a result of macroevolution. Transcription factors (TFs), the fundamental regulators of gene expression, may also have evolved. To examine the relationship between TFs and mammalian macroevolution, we analyzed 140,821 de novo-identified TFs and their bir...
Article
Full-text available
The order Botryosphaeriales represents several ecologically diverse fungal families that are commonly isolated as endophytes or pathogens from various woody hosts. The taxonomy of members of this order has been strongly influenced by sequence-based phylogenetics, and the abandonment of dual nomenclature. In this study, the phylogenetic relationship...
Article
Full-text available
Micropeltidaceae species are flyspeck fungi which have been subjected to few systematic studies. We re-examined 27 genera which were accepted in the Micropeltidaceae and re-described them based on herbaria materials and protologues. Based on morphology and phylogenetic investigations, we transfer Micropeltidaceae to a new order, Micropeltidales (Le...

Citations

... Until relatively recently, species of Botryosphaeriaceae have been identified solely based on morphological characteristics (Denman et al. 2000, Xenopoulos & Tsopelas 2000). However, since conidial septation and pigmentation evolved more than once within different genera of the family (Slippers et al. 2013) and are strongly influenced by cultural conditions (Alves et al. 2006), misidentifications have proven to be rather common in the literature. In this regard, molecular phylogenetic studies have provided a powerful tool to accurately identify members of Botryosphaeriaceae based on a combination of different partial gene regions, including β-tubulin (TUB), translation elongation factor1-α (EF1-α), the internal transcribed spacers (ITS) of the nrDNA, and the small and large-subunit ribosomal rRNA genes (SSU and LSU) (Slippers et al. 2004a, 2005, 2013, Crous et al. 2006). ...
... However, since conidial septation and pigmentation evolved more than once within different genera of the family (Slippers et al. 2013) and are strongly influenced by cultural conditions (Alves et al. 2006), misidentifications have proven to be rather common in the literature. In this regard, molecular phylogenetic studies have provided a powerful tool to accurately identify members of Botryosphaeriaceae based on a combination of different partial gene regions, including β-tubulin (TUB), translation elongation factor1-α (EF1-α), the internal transcribed spacers (ITS) of the nrDNA, and the small and large-subunit ribosomal rRNA genes (SSU and LSU) (Slippers et al. 2004a, 2005, 2013, Crous et al. 2006). ...
... Notes — Although the genus Aplosporella has previously been treated as a member of the Botryosphaeriaceae (Damm et al. 2007b), it was recently placed in its own family Aplosporel­ laceae (Slippers et al. 2013). Aplosporella artocarpi has been introduced as new species based on its distinct phylogenetic position and morphological features. ...
Article
Full-text available
Members of Botryosphaeriales are commonly encountered as endophytes or pathogens of various plant hosts. The Botryosphaeriaceae represents the predominant family within this order, containing numerous species associated with canker and dieback disease on a wide range of woody hosts. During the course of routine surveys from various plant hosts in Thailand, numerous isolates of Botryosphaeriaceae, including Aplosporellaceae were collected. Isolates were subsequently identified based on a combination of morphological characteristics and phylogenetic analysis of a combined dataset of the ITS and EF1-α gene regions. The resulting phylogenetic tree revealed 11 well-supported clades, correlating with different members of Botryosphaeriales. Other than confirming the presence of taxa such as Lasiodiplodia theobromae, L. pseudotheobromae and Neofusicoccum parvum, new records for Thailand include Pseudofusicoccum adansoniae and P. ardesiacum. Furthermore, four novel species are described, namely Diplodia neojuniperi from Juniperus chinensis, Lasiodiplodia thailandica from Mangifera indica, Pseudofusicoccum artocarpi and Aplosporella artocarpi from Artocarpus heterophyllus, while a sexual morph is also newly reported for L. gonubiensis. Further research is presently underway to determine the pathogenicity and relative importance of these species on different woody hosts in Thailand.
Article
Full-text available
Neoscytalidium Dimidiatum isolates are the most pathogens associated with sooty canker and dieback in the stem and twigs of Eucalyptus and Chinaberry trees in the Kurdistan region of Iraq. Young trees showed branch dieback and yellowing leaves. The symptoms were further developed to sooty canker and dieback appeared on the main branch and trunk. N. dimidiatum colonies on potato dextrose agar were dense white at first and became dark gray to black within seven to ten days. Arthric dark brown conidia (6.6x 4.3 µm) were observed in the chain of mycelium. The color of the colonies was white at the beginning, then eventually turned greenish in seven days, and finally became black. The fungus produced white to olivaceous aerial mycelium with chains of chlamydospores and arthroconidia. Conidia were initially hyaline, ellipsoidal to globose, 4.1-9.8 m × 2.8-3.5m, with muriform septa. The inoculated Eucalyptus and Chinaberry seedlings displayed necrosis streaks along with the barks and xylem of the inoculation points. Combined dataset of internal transcribed spacer (ITS), Nuclear Ribosomal Large Subunite (LSU), and Beta tublin 2a (Bt2a) using Maximum Likelihood and Maximum Parsimony analysis support the monophyletic on Neoscytalidium dimidiatum isolates from Iraq (N. hyalinum (No. B21), and Neoscytalidium novaehollandiae (No. B22)). This is the first time to report Neoscytalidium dimidiatum on Chinaberry in Iraq.
Chapter
Cashew is infested with a wide range of diseases and insects, which affect different parts of the crop ranging from the stems, leaves, inflorescences, apples (fleshy fruit) to the nuts, resulting in significant losses. The attack of a multitude of pests from seedling to fruiting stages is somewhat closely related. Some important diseases of cashew range from inflorescence blight (Lasiodiplodia theobromae), anthracnose (Colletotrichum gloeosporioides), damping-off (Fusarium sp., Sclerotium rolfsii), seedling dieback (Pythium sp., Fusarium sp., L. theobromae) to twig dieback (L. theobromae). Lasiodiplodia theobromae is a fungus common in many countries, widely distributed in tropics and subtropics, and also has a wide host range. This pathogen causes blight and dieback of cashew parts, which are major diseases. In this review, examples and case studies are taken mostly from cashew-growing areas in Nigeria. Survey of inflorescence blight in cashew trees in Nigeria showed variations in cultural isolates of Lasiodiplodia sp. This pathogen was spread across growing states with high incidences and severity in all farms. This disease caused significant crop losses to yield reduction in cashew. Economically important insect pests of cashew in Nigeria include Analeptes trifasciata, Selenothrips rubrocinctus, and Pachnoda cordata. Analeptes trifasciata caused significant damage to cashew production. Survey of A. trifasciata infestation showed the yield loss up to 54.8% in almost all cashew-producing states in Nigeria. Lasiodiplodia sp. and A. trifasciata distribution in Nigeria showed significant spread across major and minor growing areas with varying degree of severity depending on production status. However, the wide host range of Lasiodiplodia sp., its endophytic nature, and existence of strains are major hurdles to overcome in the development of effective disease management strategies.
Article
Full-text available
Symptoms of leaf blight, stem canker, and pod rot were observed on T. cacao during a series of samplings conducted in several states of Malaysia from September 2018 to March 2019. The identity of the pathogen that was responsible for the diseases was determined using morphological characteristics, DNA sequences, and phylogenetic analyses of multiple genes, namely, internal transcribed spacer (ITS), elongation translation factor 1-alpha (tef1-α), β-tubulin (tub2), and RNA polymerase subunit II (rpb2). A total of 57 isolates recovered from diseased leaves of T. cacao (13 isolates), stems (20 isolates), and pods (24 isolates) showed morphological features that resembled Lasiodiplodia sp. The identity of the isolates was further determined up to the species level by comparing DNA sequences and phylogenetic analyses of multiple genes. The phylogenetic analysis of the combined dataset of ITS, tef1-α, tub2, and rpb2 elucidated that all of the isolates obtained were Lasiodiplodia theobromae as supported by 97% bootstrap value. The results of pathogenicity tests revealed L. theobromae as the causal pathogen of leaf blight, stem canker, and pod rot of T. cacao.
Article
Phytopathogens are a global threat to plant agriculture and biodiversity. The genomics era has lead to an exponential rise in comparative gene and genome studies of both economically significant and insignificant microorganisms. In this review we highlight some recent comparisons and discuss how they identify shared genes or genomic regions associated with host virulence. The two major mechanisms of rapid genome adaptation - horizontal gene transfer and hybridisation - are reviewed and we consider how intra-specific pan-genome sequences encode alternative host specificity. We also discuss the power that access to expansive gene databases provides in aiding the study of phytopathogen emergence. These databases can rapidly enable the identification of an unknown pathogen and its origin, as well as genomic adaptations required for emergence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
Variation of Diplodia seriata, a fungal species associated with Botryosphaeria dieback of grapevine, was investigated with respect to its genetic, phenotypic and pathogenic characteristics. The Inter-Simple Sequence Repeat (ISSR) technique was used to investigate the genetic diversity of 83 isolates of D. seriata. Five ISSR primers were able to provide reproducible and polymorphic DNA fingerprint patterns, thus showing a relevant genetic variability in the species. Analyses of ISSR data by different clustering methods grouped the isolates into two distinct clusters through the Bayesian and DAPC analyses. No relationships between either geographic or host origin of isolates and genetic clusters were observed. Several representative isolates from all the clusters were chosen for studying their conidial dimensions, in vitro mycelial growth, vegetative and mating compatibility, and pathogenicity on detached grapevine canes and potted vines. No significant differences in conidial dimensions were detected among the groups. Vegetative compatibility reactions were observed among isolates but this was not related with the genetic clustering. Production of sexual fruiting bodies in vegetative compatible crossings was not observed under the experimental conditions used in the study. All 14 isolates tested for pathogenicity were confirmed to be pathogenic according to the length of the necrotic lesions that they caused and their reisolation frequencies from the infected plant tissues. Differences in the length of necroses were detected among isolates thus revealing the existence of different virulence levels in the species.This article is protected by copyright. All rights reserved.
Article
Full-text available
Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chryso­sporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Article
Full-text available
Unlabelled: In this paper we give an account of the genera and species in the Botryosphaeriaceae. We consider morphological characters alone as inadequate to define genera or identify species, given the confusion it has repeatedly introduced in the past, their variation during development, and inevitable overlap as representation grows. Thus it seems likely that all of the older taxa linked to the Botryosphaeriaceae, and for which cultures or DNA sequence data are not available, cannot be linked to the species in this family that are known from culture. Such older taxa will have to be disregarded for future use unless they are epitypified. We therefore focus this paper on the 17 genera that can now be recognised phylogenetically, which concentrates on the species that are presently known from culture. Included is a historical overview of the family, the morphological features that define the genera and species and detailed descriptions of the 17 genera and 110 species. Keys to the genera and species are also provided. Phylogenetic relationships of the genera are given in a multi-locus tree based on combined SSU, ITS, LSU, EF1-α and β-tubulin sequences. The morphological descriptions are supplemented by phylogenetic trees (ITS alone or ITS + EF1-α) for the species in each genus. Taxonomic novelties: New species - Neofusicoccum batangarum Begoude, Jol. Roux & Slippers. New combinations - Botryosphaeria fabicerciana (S.F. Chen, D. Pavlic, M.J. Wingf. & X.D. Zhou) A.J.L. Phillips & A. Alves, Botryosphaeria ramosa (Pavlic, T.I. Burgess, M.J. Wingf.) A.J.L. Phillips & A. Alves, Cophinforma atrovirens (Mehl & Slippers) A. Alves & A.J.L. Phillips, Cophinforma mamane (D.E. Gardner) A.J.L. Phillips & A. Alves, Dothiorella pretoriensis (Jami, Gryzenh., Slippers & M.J. Wingf.) Abdollahz. & A.J.L. Phillips, Dothiorella thailandica (D.Q. Dai., J.K. Liu & K.D. Hyde) Abdollahz., A.J.L. Phillips & A. Alves, Dothiorella uruguayensis (C.A. Pérez, Blanchette, Slippers & M.J. Wingf.) Abdollahz. & A.J.L. Phillips, Lasiodiplodia lignicola (Ariyawansa, J.K. Liu & K.D. Hyde) A.J.L. Phillips, A. Alves & Abdollahz., Neoscytalidium hyalinum (C.K. Campb. & J.L. Mulder) A.J.L. Phillips, Groenewald & Crous, Sphaeropsis citrigena (A.J.L. Phillips, P.R. Johnst. & Pennycook) A.J.L. Phillips & A. Alves, Sphaeropsis eucalypticola (Doilom, J.K. Liu, & K.D. Hyde) A.J.L. Phillips, Sphaeropsis porosa (Van Niekerk & Crous) A.J.L. Phillips & A. Alves. Epitypification (basionym) - Sphaeria sapinea Fries. Neotypifications (basionyms) - Botryodiplodia theobromae Pat., Physalospora agaves Henn, Sphaeria atrovirens var. visci Alb. & Schwein.