FIGURE 5 - uploaded by Hirokazu Hashimoto
Content may be subject to copyright.
Restraint stress-induced PPI deficiency in Fut8 / mice. A, the effects of restraint stress (3 h) on prepulse inhibition of the startle reflex were assayed under different prepulse intensities (A) or without a prepulse (B). Data are mean S.E.; n 10 for each group of mice (2.5-3.5 months old). 

Restraint stress-induced PPI deficiency in Fut8 / mice. A, the effects of restraint stress (3 h) on prepulse inhibition of the startle reflex were assayed under different prepulse intensities (A) or without a prepulse (B). Data are mean S.E.; n 10 for each group of mice (2.5-3.5 months old). 

Source publication
Article
Full-text available
Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we...

Similar publications

Article
Full-text available
To identify and validate N-glycan biomarkers in gastric cancer (GC) and to elucidate their underlying molecular mechanism of action. In total, 347 individuals, including patients with GC (gastric cancer) or atrophic gastritis and healthy controls, were randomly divided into a training group (n=287) and a retrospective validation group (n=60). Serum...
Article
Golgi phosphoprotein 2 (GP73) is a type II Golgi protein, which was found on examination of the fucosylated proteome as a potential tumor marker for hepatocellular carcinoma (HCC). The serum levels of both total and fucosylated GP73 were increased in the sera of patients with HCC. Fucosylation is one of the most important oligosaccharide modificati...
Article
Full-text available
Fucosylation, which is catalyzed by fucosyltransferases (FUTs), is one of the most important glycosylation events involved in cancer. Studies have shown that fucosyltransferase 8 (FUT8) is overexpressed in NSCLC and promotes lung cancer progression. However, there are no reports about the pathological role of fucosyltransferase 2 (FUT2) in lung can...
Article
Full-text available
In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differen...

Citations

... Deletion of this gene in mice induced severe growth retardation and death during postnatal development [50]. Furthermore, FUT8 is an essential gene for maintaining normal physiological homeostasis [47,50,51], suggesting its role in adapting to environmental variations. The PPP1R12A gene (BTA5) is involved in insulin signaling regulation [52] and is associated with Nellore female sexual precocity [12]. ...
Article
Full-text available
Background The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. Results Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. Conclusions GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.
... Loss of function of Fut8 in humans remarkably reduces the level of core fucosylation and causes a congenital disorder of glycosylation . Fut8deficient mice show abnormal behaviors, including schizophrenia-like phenotypes and reduced working memory (Fukuda et al., 2011). Aberrant expression of fucosyltransferase has also been observed in the brains of schizophrenia patients (Mueller et al., 2017). ...
Article
Full-text available
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
... The distinct distribution of FUT7 and FUT8 expression in the mouse brain suggests that different fucosylation patterns may be involved in modulating distinct neuroimmune processes. For instance, the high expression of FUT8 in the hippocampal region might be associated with its role in mediating neuroimmune responses related to schizophrenia, as evidenced by the reported schizophrenic-like behavior in FUT8 KO mice (Fukuda, 2011) and the loss of hippocampal volume observed in schizophrenia research (Pujol et al., 2014). Future research should explore the functional consequences of distinct fucosylation patterns on N-glycans in relation to neuroimmune processes, as well as the potential therapeutic implications of targeting FUT7-or FUT8-mediated fucosylation in the context of psychoneuroimmunology. ...
Article
The Allen Institute Mouse Brain Atlas, with visualisation using the Brain Explorer software, offers a 3-dimensional view of region-specific RNA expression of thousands of mouse genes. In this Viewpoint, we focused on the region-specific expression of genes related to cellular glycosylation, and discuss their relevance towards psychoneuroimmunology. Using specific examples, we show that the Atlas validates existing observations reported by others, identifies previously unknown potential region-specific glycan features, and highlights the need to promote collaborations between glycobiology and psychoneuroimmunology researchers.
... FUT8 (α1-6-fucosyltransferase) is responsible for core fucosylation in mammals. In a study focused on FUT8-knockout in mice that monitored their behavior and neurological activity, the results in FUT8-deficient mice indicated the presence of a schizophrenia-like phenotype, which manifested as a decrease in social interaction or enhanced locomotor activity [35]. Changes in behavior and neurological activity were also found in connection with congenital disorders of glycosylation (CDG) in a study of three individuals with pathogenic variants in FUT8 [36]. ...
Article
Full-text available
Changes in protein glycosylation are associated with most biological processes, and the importance of glycomic analysis in the research of disorders is constantly increasing, including in the neurodevelopmental field. We glycoprofiled sera in 10 children with attention-deficit hyperactivity disorder (ADHD) and 10 matching healthy controls for 3 types of samples: whole serum, sera after depletion of abundant proteins (albumin and IgG), and isolated IgG. The analytical methods used were a lectin-based glycoprotein microarray enabling high-throughput glycan analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) as a standard method for the identification of glycan structures. For microarray analysis, the samples printed on microarray slides were incubated with biotinylated lectins and detected using the fluorescent conjugate of streptavidin by a microarray scanner. In the ADHD patient samples, we found increased antennary fucosylation, decreased di-/triantennary N-glycans with bisecting N-acetylglucosamine (GlcNAc), and decreased α2-3 sialylation. The results obtained by both independent methods were consistent. The study’s sample size and design do not allow far-reaching conclusions to be drawn. In any case, there is a strong demand for a better and more comprehensive diagnosis of ADHD, and the obtained results emphasize that the presented approach brings new horizons to studying functional associations of glycan alterations in ADHD.
... Experimental results show that expression of Fut8 in serum was significantly related to the seizure of family history in refractory epilepsy group (p = 0.026). This is consistent with previous reports that Fut8 gene mutation can cause brain developmental disorders [23]. It is possible that partial refractory epilepsy caused by gene defects may be related to Fut8 gene mutation. ...
Article
Full-text available
With adequate serum concentration of antiepileptic drugs, the epilepsy symptoms in many patients still cannot be controlled well. The alteration of glycosyltransferase has obvious influence on the pathogenesis of epilepsy. In this study, we focus on the diagnostic and prognostic value of fucosyltransferase 8 (Fut8) on epilepsy and refractory epilepsy. Serum samples of 199 patients with epilepsy, 59 patients with refractory epilepsy and 22 healthy controls who were diagnosed in Shenzhen Children's hospital from August 2018 to August 2019 were collected. The level of lectins was further analyzed by lectin chip and enzyme linked immunosorbent assay (ELISA). The diagnostic value of serum Fut8 for epilepsy and refractory epilepsy was evaluated by receiver operating characteristic curve. Finally, the difference in the recurrence rate of convulsion in patients with epilepsy or refractory epilepsy within 2 years were observed in different Fut8 expression patients. The concentration of valproic acid (VPA) were significant different between epilepsy and refractory epilepsy group. The expression of α1, 6-fucosylation and Fut8 was significantly increased in the refractory epilepsy group compared with healthy controls. The area under the curve of Fut8 as a biomarker for predicting epilepsy or refractory epilepsy was 0.620 and 0.856, respectively. There was a significant difference in the recurrence rate of convulsion within 2 years in the children with refractory epilepsy (p = 0.0493) not epilepsy (p = 0.1865) between the high and low Fut8 expression groups. Fut8 was one of the effective indicators for the diagnosis and prognosis of refractory epilepsy.
... Bi-allelic mutations in the FUT8 gene, resulting in defective FUT8 α1,6 fucosyltransferase activity and the absence of the corefucosylated N-glycans, lead to the development of the severe metabolic congenital disorder of glycosylation with defective fucosylation 1 (FUT8-CDG) in humans [26]. Moreover, in mice, the complete deletion of this gene is highly lethal and causes severe growth retardation, emphysema-like changes in the lungs, and schizophrenia-like symptoms [27], possibly by interfering with TGF-1 receptor activation, vascular endothelial cell growth factor receptor-2 (VEGF-2) expression, EGF receptor signaling, and integrin α3β1-mediated cell adhesion [26,28,29]. ...
Article
Full-text available
The molecular underpinnings of post-traumatic stress disorder (PTSD) are still unclear due to the complex interactions of genetic, psychological, and environmental factors. Glycosylation is a common post-translational modification of proteins, and different pathophysiological states, such as inflammation, autoimmune diseases, and mental disorders including PTSD, show altered N-glycome. Fucosyltransferase 8 (FUT8) is the enzyme that catalyzes the addition of core fucose on glycoproteins, and mutations in the FUT8 gene are associated with defects in glycosylation and functional abnormalities. This is the first study that investigated the associations of plasma N-glycan levels with FUT8-related rs6573604, rs11621121, rs10483776, and rs4073416 polymorphisms and their haplotypes in 541 PTSD patients and control participants. The results demonstrated that the rs6573604 T allele was more frequent in the PTSD than in the control participants. Significant associations of plasma N-glycan levels with PTSD and FUT8-related polymorphisms were observed. We also detected associations of rs11621121 and rs10483776 polymorphisms and their haplotypes with plasma levels of specific N-glycan species in both the control and PTSD groups. In carriers of different rs6573604 and rs4073416 genotypes and alleles, differences in plasma N-glycan levels were only found in the control group. These molecular findings suggest a possible regulatory role of FUT8-related polymorphisms in glycosylation, the alternations of which could partially explain the development and clinical manifestation of PTSD.
... In humans, these mutants exhibit marked growth retardation, respiratory failure, neurological symptoms, and dysphagia [13,14]. In mice, most mutants die within three days after birth, and surviving mice have growth defects, emphysema-like alveolar abnormalities [10], and neuronal disorders [15]. Zebrafish injected with morpholino oligonucleotides (MOs) for fut8a develop eye dysplasia and abnormal midline patterning during development [16]. ...
Article
Full-text available
Glycosylation is an important mechanism regulating various biological processes, including intercellular signaling and adhesion. α-1,6-fucosyltransferase (Fut8) belongs to a family of enzymes that determine the terminal structure of glycans. Fut8 is widely conserved from Caenorhabditis elegans to humans, and its mutants have been reported in humans, mice, and zebrafish. Although mutants show various symptoms, such as spinal deformity and growth retardation, its effects on skeletal muscles are unknown. We aimed to elucidate the function of Fut8 in skeletal muscle using zebrafish and C2C12 cells for evaluation. We observed that most fut8a morphants died at 2 days post-fertilization (dpf) or in earlier developmental stages even at low concentrations of morpholino oligonucleotides (MOs). Mutant juveniles also had small body sizes, and abnormal myocepta and sarcomere structures, suggesting that Fut8a plays important roles in myogenesis. Moreover, treatment of C2C12 cells with 2-fluorofucose (2FF), a fucosylation inhibitor, during cell differentiation dramatically reduced the expression of myogenic genes, such as Myomaker and other myogenic fusion genes, and inhibited myotube formation. These results indicate that Fut8 is an important factor in myogenesis, and myofusion in particular.
... Here, we identify an important regulatory role for FUT8 in the regulating of susceptibility to E. coli F18, as well as glycosylation, which is an important mode of the posttranslational modification of proteins. FUT8 is a very important glycosyltransferase that catalyzes the modification of core protein fucose and plays an important role in regulating the normal physiological function of glycoproteins [26]. FUT8-catalyzed core fucosylation plays a role in a variety of life processes in the body and is involved in the regulation of a variety of physiological and pathological processes. ...
... Li et al. found that FUT8 affected Here, we identify an important regulatory role for FUT8 in the regulating of susceptibility to E. coli F18, as well as glycosylation, which is an important mode of the posttranslational modification of proteins. FUT8 is a very important glycosyltransferase that catalyzes the modification of core protein fucose and plays an important role in regulating the normal physiological function of glycoproteins [26]. FUT8-catalyzed core fucosylation plays a role in a variety of life processes in the body and is involved in the regulation of a variety of physiological and pathological processes. ...
Article
Full-text available
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection in pigs remains unknown. In this study, we systematically verified the relationship between FUT8 expression and E. coli resistance. The results showed that FUT8 was expressed in all detected tissues of Meishan piglets and that its expression was significantly increased in the duodenum and jejunum of E. coli F18-sensitive individuals when compared to E. coli F18-resistant individuals. FUT8 expression increased after exposure to E. coli F18 (p < 0.05) and decreased significantly after LPS induction for 6 h (p < 0.01). Then, the IPEC-J2 stable cell line with FUT8 interference was constructed, and FUT8 knockdown decreased the adhesion of E. coli F18ac to IPEC-J2 cells (p < 0.05). Moreover, we performed a comparative transcriptome study of IPEC-J2 cells after FUT8 knockdown via RNA-seq. In addition, further expression verification demonstrated the significant effect of FUT8 on the glycosphingolipid biosynthesis and Toll-like signaling pathways. Moreover, the core promoter of FUT8, which was located at −1213 bp to −673 bp, was identified via luciferase assay. Interestingly, we found a 1 bp C base insertion mutation at the −774 bp region, which could clearly inhibit the transcriptional binding activity of C/EBPα to an FUT8 promoter. Therefore, it is speculated that FUT8 acts in a critical role in the process of E. coli infection; furthermore, the low expression of FUT8 is conducive to the enhancement of E. coli resistance in piglets. Our findings revealed the mechanism of pig FUT8 in regulating E. coli resistance, which provided a theoretical basis for the screening of E. coli resistance in Chinese local pig breeds.
... Core-α(1,6)fucose plays a relevant role in cell homeostasis, as revealed by its neonatal lethality in FUT8-null mice [22,23], and the phenotypic complications of individuals harboring pathogenic variants of FUT8 [24,25]. Cancer is not an exception and, as a result, core fucosylation disorders have proven to be relevant in the pathogenesis and clinical outcome of cancer patients [26,27]. ...
Article
Full-text available
The present study explored the impact of inhibiting α(1,6)fucosylation (core fucosylation) on the functional phenotype of a cellular model of colorectal cancer (CRC) malignization formed by the syngeneic SW480 and SW620 CRC lines. Expression of the FUT8 gene encoding α(1,6)fucosyltransferase was inhibited in tumor line SW480 by a combination of shRNA-based antisense knockdown and Lens culinaris agglutinin (LCA) selection. LCA-resistant clones were subsequently assayed in vitro for proliferation, migration, and adhesion. The α(1,6)FT-inhibited SW480 cells showed enhanced proliferation in adherent conditions, unlike their α(1,6)FT-depleted SW620 counterparts, which displayed reduced proliferation. Under non-adherent conditions, α(1,6)FT-inhibited SW480 cells also showed greater growth capacity than their respective non-targeted control (NTC) cells. However, cell migration decreased in SW480 after FUT8 knockdown, while adhesion to EA.hy926 cells was significantly enhanced. The reported results indicate that the FUT8 knockdown strategy with subsequent selection for LCA-resistant clones was effective in greatly reducing α(1,6)FT expression in SW480 and SW620 CRC lines. In addition, α(1,6)FT impairment affected the proliferation, migration, and adhesion of α(1,6)FT-deficient clones SW480 and SW620 in a tumor stage-dependent manner, suggesting that core fucosylation has a dynamic role in the evolution of CRC.
... Core fucosylation is ubiquitously expressed in mammalian tissues and participate in the regulation of numerous biological events of physiological and pathological conditions (25), including cell growth (8,26), cell signal transduction (9, 10), protein-protein interaction (9, 10), cell-cell interaction (11,12) and tumorigenesis (23,27,28). FUT8 knockout (FUT8 -/-) mice exhibit early postnatal death (29), retardant growth (26,30), emphysema-like changes (29,31), schizophrenia-like phenotype (32) and so on. ...
Article
Full-text available
Most of the membrane molecules involved in immune response are glycosylated. N-glycans linked to asparagine (Asn) of immune molecules contribute to the protein conformation, surface expression, stability, and antigenicity. Core fucosylation catalyzed by core fucosyltransferase (FUT8) is the most common post-translational modification. Core fucosylation is essential for evoking a proper immune response, which this review aims to communicate. First, FUT8 deficiency suppressed the interaction between μHC and λ5 during pre-BCR assembly is given. Second, we described the effects of core fucosylation in B cell signal transduction via BCR. Third, we investigated the role of core fucosylation in the interaction between helper T (TH) cells and B cells. Finally, we showed the role of FUT8 on the biological function of IgG. In this review, we discussed recent insights into the sites where core fucosylation is critical for humoral immune responses.