Representative photographs before and after ILI-PDT. Wart lesions on the foot at baseline (A,C) and 1 month after three sessions of ILI-PDT (B,D). Marked reduction of warts was shown on the great toe and little toe [67]. 

Representative photographs before and after ILI-PDT. Wart lesions on the foot at baseline (A,C) and 1 month after three sessions of ILI-PDT (B,D). Marked reduction of warts was shown on the great toe and little toe [67]. 

Source publication
Article
Full-text available
Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the i...

Context in source publication

Context 1
... a trial reported by Kim et al., intralesional injection (ILI) combined with PDT was used to increase the efficacy of PDT in the treatment of viral warts. Eight patients with multiple viral warts on their hands and feet were treated with IPL after an injection of ALA solution directly into the warts. The wart clearance rates were about 60% after this treatment ( Figure 3). The authors proposed that ILI-PDT may be a new therapeutic strategy for the treatment of thick recalcitrant viral warts [67]. ...

Similar publications

Article
Full-text available
Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the i...

Citations

... PDT represents a non-invasive therapeutic approach that is beneficial in the treatment of various cancerous (reviewed in Agostinis et al., 2011) and even non-cancerous lesions and disorders (reviewed in Kim et al., 2015). In general, it is based on the combined action of a photosensitizer, light and molecular oxygen. ...
Article
Full-text available
Hypericin (4,5,7,4′,5′,7′-hexahydroxy-2,2′-dimethylnaphtodianthrone) is a naturally occurring chromophore found in some species of the genus Hypericum, especially Hypericum perforatum L. (St. John's wort), and in some basidiomycetes (Dermocybe spp.) or endophytic fungi (Thielavia subthermophila). In recent decades, hypericin has been intensively studied for its broad pharmacological spectrum. Among its antidepressant and light-dependent antiviral actions, hypericin is a powerful natural photosensitizer that is applicable in the photodynamic therapy (PDT) of various oncological diseases. As the accumulation of hypericin is significantly higher in neoplastic tissue than in normal tissue, it can be used in photodynamic diagnosis (PDD) as an effective fluorescence marker for tumor detection and visualization. In addition, light-activated hypericin acts as a strong pro-oxidant agent with antineoplastic and antiangiogenic properties, since it effectively induces the apoptosis, necrosis or autophagy of cancer cells. Moreover, a strong affinity of hypericin for necrotic tissue was discovered. Thus, hypericin and its radiolabeled derivatives have been recently investigated as potential biomarkers for the non-invasive targeting of tissue necrosis in numerous disorders, including solid tumors. On the other hand, several light-independent actions of hypericin have also been described, even though its effects in the dark have not been studied as intensively as those of photoactivated hypericin. Various experimental studies have revealed no cytotoxicity of hypericin in the dark; however, it can serve as a potential antimetastatic and antiangiogenic agent. On the contrary, hypericin can induce the expression of some ABC transporters, which are often associated with the multidrug resistance (MDR) of cancer cells. Moreover, the hypericin-mediated attenuation of the cytotoxicity of some chemotherapeutics was revealed. Therefore, hypericin might represent another St. John's wort metabolite that is potentially responsible for negative herb–drug interactions. The main aim of this review is to summarize the benefits of photoactivated and non-activated hypericin, mainly in preclinical and clinical applications, and to uncover the “dark side” of this secondary metabolite, focusing on MDR mechanisms.
... Photo-activation consists of the excitation of the PS, which leads to the generation of reactive oxygen species through energy and/or electron transfer to molecular oxygen. Photodynamic actions have been used to treat several nonmalignant diseases and microorganisms [3][4][5][6][7][8][9]. However, for the treatment of microorganisms, the technique is called photodynamic inactivation (PDI), photodynamic antimicrobial chemotherapy (PACT), antimicrobial photodynamic therapy (aPDT) or antimicrobial photodynamic inactivation [3][4][5][6][7][8][9]. ...
... Photodynamic actions have been used to treat several nonmalignant diseases and microorganisms [3][4][5][6][7][8][9]. However, for the treatment of microorganisms, the technique is called photodynamic inactivation (PDI), photodynamic antimicrobial chemotherapy (PACT), antimicrobial photodynamic therapy (aPDT) or antimicrobial photodynamic inactivation [3][4][5][6][7][8][9]. The main mechanism of action of photosensitizer drugs is based on their photophysical characteristics, which are governed by their physicochemical properties [10]. ...
Article
Full-text available
Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.
Article
Warts are caused by human papillomavirus (HPV) infection and can involve multiple parts of skin and mucosa, of which periungual and subungual warts are the most difficult to treat. Periungual or subungual wart is verruca vulgaris growing around or under the fingernail, destroying and deforming the nail and nail bed. Currently, liquid nitrogen cryotherapy and CO 2 laser are often used for the treatment. Clinically, few doctors routinely use photodynamic therapy (PDT) to treat viral warts. We used PDT combined with liquid nitrogen cryotherapy and curettage to successfully treat a case of intractable periungual and subungual warts.
Article
Full-text available
Background: Plantar warts are a common cutaneous disease of the sole of the foot caused by human papillomavirus. Photodynamic therapy has gained increasing attention in the treatment of plantar warts. Objective: To investigate the effect of photodynamic therapy combined with transfer factor capsules in the treatment of multiple plantar warts. Methods: Sixty-one patients with multiple plantar warts who visited our outpatient department from September 2017 to August 2019 were randomly divided into two groups. Twenty-three patients received photodynamic therapy (treatment group) and thirty-eight received cryotherapy (control group). Both groups also received immune modulator transfer factor capsules. Skin lesion score, numeric rating scale- (NRS-) 10 score, recurrence rate, adverse reactions, and Dermatology Life Quality Index (DLQI) were analyzed in both groups. Results: The mean skin lesion score improved from 13.39 ± 3.88 before treatment to 1.48 ± 2.50 after the last treatment in the treatment group and from 12.47 ± 2.99 before treatment to 4.47 ± 3.67 after the last treatment in the control group. The success rate after 3 months of treatment was 86.96% in the treatment group and 39.47% in the control group. After 3 months of follow-up, the recurrence rate was significantly lower in the treatment group (20%) than in the control group (53.33%). The mean DLQI score at three months after treatment was significantly lower in the treatment group (3.61 ± 1.16) than in the control group (6.31 ± 2.59). Conclusion: Photodynamic therapy combined with immunomodulators significantly increased the cure rate and reduced the recurrence rate of multiple plantar warts compared with traditional cryotherapy combined with immunomodulators.
Article
Photodynamic therapy (PDT), as the name suggests is a light-based, non-invasive therapeutic treatment method that has garnered immense interest in the recent past for its efficacy in treating several pathological conditions. PDT has prominent use in the treatment of several dermatological conditions, which consequently have cosmetic benefits associated with it as PDT improves the overall appearance of the affected area. PDT is commonly used for repairing sun-damaged skin, providing skin rejuvenation, curbing pre-cancerous cells, treating conditions like acne, keratosis, skin-microbial infections, and cutaneous warts, etc. PDT mediates its action by generating oxygen species that are involved in bringing about immunomodulation, suppression of microbial load, wound-healing, lightening of scarring, etc. Although there are several challenges associated with PDT, the prominent ones being pain, erythema, insufficient delivery of the photosensitizing agent, and poor clinical outcomes, still PDT stands to be a promising approach with continuous efforts towards maximizing clinical efficacy while being cautious of the side effects and working towards lessening them. This article discusses the major skin-related conditions which can be treated or managed by employing PDT as a better or comparable alternative to conventional treatment approaches such that it also brings about aesthetic improvements thereof.
Article
Full-text available
Photodynamic therapy (PDT) has been used to treat cancers and non-malignant skin diseases. In this study, a chlorin e6–curcumin conjugate (Ce6-PEG-Cur), a combination of chlorin e6 (Ce6) and curcumin via a PEG linker, was used as a photosensitizer. The in vitro and in vivo effects of PDT using Ce6-PEG-Cur were analyzed in UVB-irradiated fibroblasts and hairless mice. The UVB-induced expression of MMPs was reduced in Hs68 fibroblast cells, and procollagen type Ⅰ expression was enhanced by Ce6-PEG-Cur-mediated PDT on a Western blotting gel. Moreover, UVB-induced collagen levels were restored upon application of Ce6-PEG-Cur-mediated PDT. Ce6-PEG-Cur-mediated PDT inhibited the expression of phosphorylated p38 in the MAPK signaling pathway, and it reduced the expression of phosphorylated NF-κB. In animal models, Ce6-PEG-Cur-mediated PDT inhibited the expression of MMPs, whereas procollagen type Ⅰ levels were enhanced in the dorsal skin of UVB-irradiated mice. Moreover, UVB-induced dorsal roughness was significantly reduced following Ce6-PEG-Cur-mediated PDT treatment. H&E staining and Masson’s trichrome staining showed that the thickness of the epidermal region was reduced, and the density of collagen fibers increased. Taken together, Ce6-PEG-Cur-mediated PDT might delay and improve skin photoaging by ultraviolet light, suggesting its potential for use as a more effective photo-aging treatment.
Article
Full-text available
The rise of antibacterial drug resistance means treatment options are becoming increasingly limited. We must find ways to tackle these hard-to-treat drug-resistant and biofilm infections. With the lack of new antibacterial drugs (such as antibiotics) reaching the clinics, research has switched focus to exploring alternative strategies. One such strategy is antibacterial photodynamic therapy (aPDT), a system that relies on light, oxygen, and a non-toxic dye (photosensitiser) to generate cytotoxic reactive oxygen species. This technique has already been shown capable of handling both drug-resistant and biofilm infections but has limited clinical approval to date, which is in part due to the low bioavailability and selectivity of hydrophobic photosensitisers. Nanotechnology-based techniques have the potential to address the limitations of current aPDT, as already well-documented in anti-cancer PDT. Here, we review recent advances in nanoparticle-based targeting tactics for aPDT. Graphical Abstract
Article
Photodynamic therapy (PDT) can be an effective treatment for actinic keratosis (AK) as well as selected non-melanoma skin cancers (NMSCs), such as Bowen's disease and superficial basal cell carcinoma. PDT has also demonstrated effectiveness in the management of acne vulgaris. Results from controlled clinical trials have shown the safety and efficacy of PDT for these conditions with the use of different photosensitizers and a wide range of light sources. PDT has been employed effectively as monotherapy and in combination with other topicals and alternate light or laser energy therapies. This article provides expert practical guidance for the use of the newest 5-aminolevulinic acid (ALA) product (ALA 10% gel) plus red light as monotherapy for AKs, NMSC, and acne. Here, information from clinical guidelines and a summary of supporting evidence is provided for each cutaneous condition. The authors also provide detailed guidance for employing ALA 10% gel, a photosensitizer precursor, for each of these applications.
Article
Full-text available
Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces’ functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.