Fig 4 - uploaded by Abdelaziz Beqqali
Content may be subject to copyright.
Regulation of previously identified Rbm38 targets. A-D. qPCR analysis of previously identified Rbm38 targets in hearts of wildtype and Rbm38-/-mice. E. qPCR analysis of Mef2d exon a1 or a2 inclusion. F. RT-PCR of Fgfr2 exon 8a or 8b inclusion. G. Western blot of p53 in wildtype versus Rbm38-/-hearts. Spleen (Spl) serves as a positive control for p53 protein expression. H. Western blot of HuR in wildtype versus Rbm38-/-hearts. Statistical significance was tested by a 1-way ANOVA with LSD posthoc-testing, * means p < 0.05 versus wildtype. https://doi.org/10.1371/journal.pone.0184093.g004 

Regulation of previously identified Rbm38 targets. A-D. qPCR analysis of previously identified Rbm38 targets in hearts of wildtype and Rbm38-/-mice. E. qPCR analysis of Mef2d exon a1 or a2 inclusion. F. RT-PCR of Fgfr2 exon 8a or 8b inclusion. G. Western blot of p53 in wildtype versus Rbm38-/-hearts. Spleen (Spl) serves as a positive control for p53 protein expression. H. Western blot of HuR in wildtype versus Rbm38-/-hearts. Statistical significance was tested by a 1-way ANOVA with LSD posthoc-testing, * means p < 0.05 versus wildtype. https://doi.org/10.1371/journal.pone.0184093.g004 

Source publication
Article
Full-text available
The importance of tightly controlled alternative pre-mRNA splicing in the heart is emerging. The RNA binding protein Rbm24 has recently been identified as a pivotal cardiac splice factor , which governs sarcomerogenesis in the heart by controlling the expression of alternative protein isoforms. Rbm38, a homolog of Rbm24, has also been implicated in...

Similar publications

Article
Full-text available
Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in acute myeloid leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that “non-mutated” splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model...
Article
Full-text available
RNA splicing and epigenetic gene mutations are the most frequent genetic lesions found in patients with myelodysplastic neoplasm (MDS). About 25% of patients present concomitant mutations in such pathways, suggesting a cooperative role in MDS pathogenesis. Importantly, mutations in the splicing factor ZRSR2 frequently associate with alterations in...
Article
Full-text available
Alternative splicing is facilitated by accessory proteins that guide spliceosome subunits to the primary transcript. Many of these splicing factors recognize the RNA polymerase II tail, but SFPQ is a notable exception even though essential for mammalian RNA processing. This study reveals a novel role for Dido3, one of three Dido gene products, in a...
Article
Full-text available
The cohesin complex regulates sister chromatid cohesion, chromosome organization, gene expression, and DNA repair. Cohesin is a ring complex composed of four core subunits and seven regulatory subunits. In an effort to comprehensively identify additional cohesin-interacting proteins, we used gene editing to introduce a dual epitope tag into the end...
Article
Full-text available
ELife digest The information required to produce proteins is encoded within genes. In the first step of creating a protein, its gene is “transcribed” to form a pre-messenger RNA molecule (called pre-mRNA for short). Both the gene and the pre-mRNA contain regions called exons that code for protein, and regions called introns that do not. The pre-mRN...

Citations

... Besides, RBM38 has been critical in regulating endothelial cells' response to vascular injuries [10,11]. Studies have also elucidated RBM38 role in cardiac remodeling [12]. However, the possible pathway involved during cardiac remodeling is yet to be studied. ...
... RBM38 binds to various genes such as p53, p21, GDF15, mdm2, HuR, and c-myc through their 3 UTR AU-rich elements [29]. RBM38 has also been reported as a critical splice factor of the cardiac, which plays a role in governing heart sarcomerogenesis by regulating the alternative protein isorforms expressions [12]. ...
Article
Full-text available
Myocardial hypertrophy is a pathological thickening of the myocardium, leading to various ailments, such as myocardial infarction and heart failure. RBM38 is critical in modulating mRNA translation for multiple protective activities such as p53 tumor repressor and p21 kinase cell cycle inhibitors. Liver X receptors (LXR-α) agonists reduce cellular hypertrophy initiated by various hypertrophic stimuli as lipopolysaccharides and Ang II. This research investigates the possible cooperation between RBM38 and LXR-α and mechanisms in modulating myocardial hypertrophy. H9C2 cells were treated with PE, TNF-α, and AngII to induce myocardial hypertrophy. RBM38 and LXR- α were overexpressed or silenced in H9C2 cells, and hypertrophy markers (ANF and Myh7) were determined with Western blot and RT-qPCR. Binding assays were done through RNA immunoprecipitation. H&E and Rhodamine-labeled phalloidin staining assays were used to assess the relative cell surface change. The results demonstrated RBM38 downregulation in in vitro models of myocardial hypertrophy. Modulation of RBM38 expression also exerted inverse effects on myocardial hypertrophy markers. Further observations also showed that LXR-α expression regulates the myocardial hypertrophy markers in H9C2 cells and RBM38 binds with LXR-α mRNA, consequently inhibiting LXR-α expression. Finally, overexpression of RBM38 rescues Angiotensin II–induced myocardial hypertrophy by regulating LXR-α dependent lipogenesis pathway. In conclusion, RBM38 Overexpression rescues Angiotensin II–induced myocardial hypertrophy by regulating LXR-α dependent lipogenesis pathway.
... In this regard, it is relevant to mention that Rbm38, a closely related family member of Rbm24 is expressed in the heart as well. Rbm24 and Rbm38 share 68% of sequence identity, which suggests they could be genetically redundant 32 . In a recent study, we generated somatic Rbm38 KO mice to investigate its role in the heart. ...
... In a recent study, we generated somatic Rbm38 KO mice to investigate its role in the heart. Homozygous loss of Rbm38 resulted in hematopoietic defects but cardiac form and function were not affected, neither at baseline, nor during pressure overload-induced cardiac remodeling 32 . In that study, it was suggested that Rbm24 compensated for the loss of Rbm38. ...
Article
Full-text available
RNA-binding proteins are key regulators of post-transcriptional processes such as alternative splicing and mRNA stabilization. Rbm24 acts as a regulator of alternative splicing in heart and skeletal muscle, and is essential for sarcomere assembly. Homozygous inactivation of Rbm24 in mice disrupts cardiac development and results in embryonic lethality around E12.5. In the present study, we generated somatic Rbm24 knockout (KO) mice and investigated the effects of reduced levels of Rbm24 in the adult heart. Due to the embryonic lethality of Rbm24 KO mice, we examined cardiac structure and function in adult Rbm24 heterozygotes (HETs). Rbm24 protein expression was 40% downregulated in HET hearts compared to WT hearts. Force measurements on isolated membrane-permeabilized myocytes showed increased sarcomere slack length and lower myofilament passive stiffness in adult Rbm24 HET compared to wildtype cardiomyocytes. As a result of the differences in sarcomere slack length, the relations between force development and sarcomere length differed between WT and Rbm24 HET hearts. No differences in sarcomere structure and titin isoform composition were observed. Likewise, in vivo cardiac function and myocardial structure was unaltered in Rbm24 HET mice compared to WT, at baseline and upon pressure overload after transverse aortic constriction. In conclusion, we generated a somatic Rbm24 KO model and recapitulated the previously reported embryonic phenotype. In adult Rbm24 HET cardiomyocytes we observed increased sarcomere slack length, but no difference in sarcomere structure and cardiac function.
... [6][7][8] In several tumours Rbm38 displayed different functions: in some cancer types it acts as a tumour suppressor, [9][10][11] whereas in others its overexpression is associated with poor clinical outcome by influencing, e.g. the drug and radiation resistance. 12 13,14 and loss of Rbm38 lead to T-cell lymphomagenesis. 15 Also the role of Rbm38 on cardiac remodelling was recently examined, 14 but the function of Rbm38 in endothelial cells is still unclear. ...
... 12 13,14 and loss of Rbm38 lead to T-cell lymphomagenesis. 15 Also the role of Rbm38 on cardiac remodelling was recently examined, 14 but the function of Rbm38 in endothelial cells is still unclear. ...
Article
Full-text available
Aims: Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury. Methods and results: Left common carotid arteries of C57BL/6 mice were electrically denudated and endothelial regeneration was evaluated. Profiling of RNA-binding proteins revealed dysregulated expression of Rbm38 in the denudated and regenerated areas. We next tested the importance of Rbm38 in human umbilical vein endothelial cells (HUVECs) and analyzed its effects on cellular proliferation, migration und apoptosis. Rbm38 silencing in vitro demonstrated important beneficial functional effects on migratory capacity and proliferation of endothelial cells. In vivo, local silencing of Rbm38 also improved re-endothelialization of denuded carotid arteries. Luciferase reporter assay identified miR-98 and let-7f to regulate Rbm38 and the positive proliferative properties of Rbm38 silencing in vitro and in vivo were mimicked by therapeutic overexpression of these miRNAs. Conclusions: The present data identified Rbm38 as an important factor of the regulation of various endothelial cell functions. Local inhibition of Rbm38 as well as overexpression of the upstream regulators miR-98 and let-7f improved endothelial regeneration in vivo and thus may be a novel therapeutic entry point to avoid endothelial damage after balloon angioplasty.
... The role of Rbm24 in the postnatal and adult heart, however, is yet unknown. We have recently shown that Rbm38, a closely related family member of Rbm24, is dispensable for normal cardiac function, both at baseline and after pressure overload-induced cardiac remodeling 12 . Rbm24 and Rbm38 share 68% of sequence identity, which suggests they could be genetically redundant 12 . ...
... We have recently shown that Rbm38, a closely related family member of Rbm24, is dispensable for normal cardiac function, both at baseline and after pressure overload-induced cardiac remodeling 12 . Rbm24 and Rbm38 share 68% of sequence identity, which suggests they could be genetically redundant 12 . We hypothesized that, since Rbm38 is dispensable for proper cardiac structure and function, Rbm24 might be more important in the adult heart. ...
Article
Full-text available
The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfβ-signaling genes, suggesting enhanced Tgfβ-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and induced extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfβR1 and TgfβR2 expression.
Article
Alternative splicing generates specialized protein isoforms that allow the heart to adapt during development and disease. The recent discovery that mutations in the splicing factor RNA-binding protein 20 (RBM20) cause a severe form of familial dilated cardiomyopathy has sparked a great interest in alternative splicing in the field of cardiology. Since then, identification of splicing factors controlling alternative splicing in the heart has grown at a rapid pace. Despite the intriguing observation that a certain overlap exists between the targets of some splicing factors, an integrated and systematic analysis of their splicing networks is missing. Here, we compared the splicing networks of individual splicing factors by re-analyzing original RNA-sequencing data from eight previously published mouse models, in which a single splicing factor has been genetically deleted (i.e. HNRNPU, MBNL1/2, QKI, RBM20, RBM24, RBPMS, SRSF3, SRSF4). We show that key splicing events in Camk2d, Ryr2, Tpm1, Tpm2 and Pdlim5 require the combined action of the majority of these splicing factors. Additionally, we identified common targets and pathways among splicing factors, with the largest overlap between the splicing networks of MBNL, QKI and RBM24. We also re-analyzed a large-scale RNA-sequencing study on hearts of 128 heart failure patients. Here, we observed that MBNL1, QKI and RBM24 expression varied greatly. This variation in expression correlated with differential splicing of their downstream targets as found in mice, suggesting that aberrant splicing by MBNL1, QKI and RBM24 might contribute to the disease mechanism in heart failure.
Article
Full-text available
Lipids play a critical role in many cellular processes by serving as structural components of cell membranes or functioning as energy fuel and signaling molecules. The RNA-binding proteins RBM24 and RBM38 share an identical RNA-binding domain and thereby, regulate a group of same targets, such as p21. However, it is not certain whether RBM24 and RBM38 participates in lipid homeostasis. Here, lipidomic analysis showed that a deficiency in RBM24 or RBM38 leads to altered lipid metabolism, with more profound alteration by loss of RBM24 in MCF7 cells. We also showed that mice deficient in RBM24 were prone to chronic inflammation and liver steatosis, but not spontaneous tumors. These data let us speculate whether RBM24 regulates ferroptosis, a programmed cell death that links inflammation and liver steatosis via lipid peroxidation. Indeed, we found that over-expression of RBM24 protected, whereas knockout of RBM24 sensitized, cells to Erastin-induced ferroptosis by modulating the mRNA stability of SLC7A11, a ferroptosis inhibitor. Moreover, we showed that knockdown of SLC7A11 reversed the effect of RBM24 on ferroptosis. Together, our study revealed that RBM24 regulates lipid metabolism and SLC7A11 mRNA stability to modulate ferroptosis and inflammatory response.
Article
Full-text available
Background RNA-binding motif protein 24 (RBM24) functions as a splicing regulator, which is critical for organ development and is dysregulated in human cancers. Here, we aim to uncover the biological function of RBM24 in colorectal tumourigenesis. Methods Xenograft tumour model, Rbm24 knockout and Apcmin/+ mouse models were utilised. Colorectal cancer cells overexpressing or silencing RBM24 were established. RNA immunoprecipitation (RIP) assay was conducted to detect protein-RNA associations. Gene expression was measured by immunohistochemistry, western blotting, or quantitative PCR (qPCR). Results Rbm24-knockout mice developed spontaneous colorectal adenomas with lower expression of phosphatase and tensin homolog (PTEN). Immunohistochemical staining for the proliferation markers Ki-67 and pHH3 and BrdU assay showed intestinal hyperplasia in Rbm24-knockout mice compared to wild-type mice. RBM24 expression in colorectal adenoma tissues of Apcmin/+ mouse was downregulated compared with adjacent normal samples and was positively correlated with PTEN expression. In vitro, RBM24 overexpression suppressed cell proliferation, migration, invasion and increased sensitivity to 5-FU or cisplatin in CRC cells. Mechanistically, RBM24 maintained PTEN mRNA stability by directly binding to the GT-rich region at positions 8101–8251 in the 3′-UTR of PTEN mRNA, prolonging the half-life of PTEN mRNA, thereby increasing PTEN expression. Hence, low expression of RBM24 downregulated PTEN mRNA, causing the activation of PI3K-Akt signalling in CRC cells. Furthermore, RBM24 expression in CRC tissues was lower than adjacent normal samples. RBM24 expression was positively correlated with PTEN expression and negatively correlated with Ki-67 level. CRC patients with high RBM24 expression had a favourable outcome. Conclusions Taken together, RBM24 expression is markedly lower in colorectal tumours than in para-carcinoma tissues. Rbm24-knockout mice develop spontaneous colorectal adenomas. RBM24 directly binds and stabilises PTEN mRNA, which could cause the suppression of CRC cell proliferation, migration and invasion, thereby repressing colorectal tumourigenesis. These findings support the tumour-suppressive role of RBM24. Targeting RBM24 holds strong promise for the diagnosis and treatment of CRC.
Article
Full-text available
Pre-mRNA splicing is an essential mechanism for ensuring integrity of the transcriptome in eukaryotes. Therefore, splicing deficiency might cause a decrease in functional proteins and the production of nonfunctional, aberrant proteins. To prevent the production of such aberrant proteins, eukaryotic cells have several mRNA quality control mechanisms. In addition to the known mechanisms, we previously found that transcription elongation is attenuated to prevent the accumulation of pre-mRNA under splicing-deficient conditions. However, the detailed molecular mechanism behind the defect in transcription elongation remains unknown. Here, we showed that the RNA binding protein Rbm38 reduced the transcription elongation defect of the SMEK2 gene caused by splicing deficiency. This reduction was shown to require the N- and C-terminal regions of Rbm38, along with an important role being played by the RNA-recognition motif of Rbm38. These findings advance our understanding of the molecular mechanism of the transcription elongation defect caused by splicing deficiency.
Article
Full-text available
Cardiovascular disease is an enormous socioeconomic burden worldwide and remains a leading cause of mortality and disability despite significant efforts to improve treatments and personalize healthcare. Heart failure is the main manifestation of cardiovascular disease and has reached epidemic proportions. Heart failure follows a loss of cardiac homeostasis, which relies on a tight regulation of gene expression. This regulation is under the control of multiple types of RNA molecules, some encoding proteins (the so-called messenger RNAs) and others lacking protein-coding potential, named noncoding RNAs. In this review article, we aim to revisit the notion of regulatory RNA, which has been thus far mainly confined to noncoding RNA. Regulatory RNA, which we propose to abbreviate as regRNA, can include both protein-coding RNAs and noncoding RNAs, as long as they contribute, directly or indirectly, to the regulation of gene expression. We will address the regulation and functional role of messenger RNAs, microRNAs, long noncoding RNAs, and circular RNAs (ie, regRNAs) in heart failure. We will debate the utility of regRNAs to diagnose, prognosticate, and treat heart failure, and we will provide directions for future work.
Article
The central dogma of molecular biology illustrates the importance of messenger RNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is approximately 20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and diseases.