Rabbit pluripotent stem cells. A) Morphology, derivation or reprogramming methods, growth factor used, and pluripotency state of rabbit ESCs [17], rabbit iPSCs [17] and rbEKA cells [40]. MEFs = mitomycin-treated mouse embryonic fibroblasts; KOSR = knock out serum replacement; FGF2 = fibroblast growth factor 2; FBS = foetal bovine serum; LIF = leukaemia inhibitory factor; hOKSM = human factors OCT4, KLF4, SOX2 and C-MYC; Scale bar = 50 μm. B) Immunodetection of inactive X chromosome (H2AK119 ubiquitination in red) in rbESCs with DNA counterstaining (blue) (personal unpublished data). Cells analyzed here were derived by unicellular dissociation with Accutase and cultured on MEFs with KOSR/ FBS + FGF2 [30]. Confocal single z-section, Scale bar = 10 μm.

Rabbit pluripotent stem cells. A) Morphology, derivation or reprogramming methods, growth factor used, and pluripotency state of rabbit ESCs [17], rabbit iPSCs [17] and rbEKA cells [40]. MEFs = mitomycin-treated mouse embryonic fibroblasts; KOSR = knock out serum replacement; FGF2 = fibroblast growth factor 2; FBS = foetal bovine serum; LIF = leukaemia inhibitory factor; hOKSM = human factors OCT4, KLF4, SOX2 and C-MYC; Scale bar = 50 μm. B) Immunodetection of inactive X chromosome (H2AK119 ubiquitination in red) in rbESCs with DNA counterstaining (blue) (personal unpublished data). Cells analyzed here were derived by unicellular dissociation with Accutase and cultured on MEFs with KOSR/ FBS + FGF2 [30]. Confocal single z-section, Scale bar = 10 μm.

Source publication
Article
Full-text available
Both embryo-derived (ESC) and induced pluripotent stem cell (iPSC) lines have been established in rabbit. They exhibit the essential characteristics of primed pluripotency. In this review, we described their characteristic features at both molecular and functional levels. We also described the attempts to reprogram rabbit pluripotent stem cells (rb...

Similar publications

Article
Full-text available
How the epigenetic landscape is established in development is still being elucidated. Here, we uncover developmental pluripotency associated 2 and 4 (DPPA2/4) as epigenetic priming factors that establish a permissive epigenetic landscape at a subset of developmentally important bivalent promoters characterized by low expression and poised RNA-polym...

Citations

... Interestingly, a comparison of rbESC and rbiPSC lines produced from the same breed of New Zealand white rabbit showed different features that bring rbiPSC lines closer to the naive state of pluripotency than rbESC lines [47]. These characteristics mainly concern their proliferation rate, their resistance to unicellular dissociation, their global transcriptome, and their expression of markers specific to the primed and naive pluripotency states [71]. The variation of these characteristics allows the classification of rbPSC lines on a graduated scale of primed pluripotency with rbESCs at one end (most primed state) and rbiPSCs at the other end (closer to the naive state) (Figure 1). ...
Article
Full-text available
Pluripotent stem cells (PSCs) possess the following two main properties: self-renewal and pluripotency. Self-renewal is defined as the ability to proliferate in an undifferentiated state and pluripotency as the capacity to differentiate into cells of the three germ layers, i.e., ectoderm, mesoderm, and endoderm. PSCs are derived from early embryos as embryonic stem cells (ESCs) or are produced by reprogramming somatic cells into induced pluripotent stem cells (iPSCs). In mice, PSCs can be stabilized into two states of pluripotency, namely naive and primed. Naive and primed PSCs notably differ by their ability to colonize a host blastocyst to produce germline-competent chimeras; hence, naive PSCs are valuable for transgenesis, whereas primed PSCs are not. Thanks to its physiological and developmental peculiarities similar to those of primates, the rabbit is an interesting animal model for studying human diseases and early embryonic development. Both ESCs and iPSCs have been described in rabbits. They self-renew in the primed state of pluripotency and, therefore, cannot be used for transgenesis. This review presents the available data on the pluripotent state and the chimeric ability of these rabbit PSCs. It also examines the potential barriers that compromise their intended use as producers of germline-competent chimeras and proposes possible alternatives to exploit them for transgenesis.
Thesis
Full-text available
Les cellules souches pluripotentes (PSC) sont caractérisées par leurs capacités à s’autorenouveler et à pouvoir se différencier dans tous les types cellulaires somatiques. De nombreuses lignées de PSC ont été dérivées chez les mammifères, dans différents milieux de culture et issues de différentes espèces. Elles s’autorenouvèlent cependant dans différents états de pluripotence, chacun ayant ces propres caractéristiques. Afin de mieux comprendre cette variabilité d’une lignée de PSC à l’autre, il est nécessaire de se pencher sur la source de la pluripotence : l’embryon péri-implantatoire. Les cellules pluripotentes embryonnaires progressent le long d’un continuum de pluripotence, dont les caractéristiques évoluent au cours du développement. Les nombreux processus impliqués dans la régulation de la pluripotence in vivo sont communs aux PSC in vitro. Chez le lapin, différentes lignées de PSC sont accessibles à différents niveaux de pluripotence. De plus, les cellules embryonnaires pluripotentes de lapin sont facilement accessibles du fait de l’implantation tardive chez le lapin et du grand nombre d’embryons produits par lapine. Enfin, le lapin est proche phylogénétiquement des rongeurs et des primates et son développement embryonnaire présente peu de particularités par rapport aux autres mammifères étudiés. Cependant, les caractéristiques des différents processus régulant la pluripotence au cours du développement embryonnaire pré-implantatoire du lapin sont relativement peu connus par rapport à ceux de la souris et des primates. C’est pourquoi j’ai réalisé différentes analyses transcriptomiques sur l’embryon préimplantatoire de lapin, complétées par des analyses moléculaires sur le métabolisme et l’épigénome. Grâce à ces données, j’ai pu décrire la ségrégation des premiers lignages embryonnaires, ainsi que les processus régulant le continuum de pluripotence dans l’embryon de lapin. Ces résultats montrent que le continuum de pluripotence chez le lapin est très similaire à celui des autres espèces de mammifères euthériens, là où celui de la souris possède de nombreuses particularités. Ces informations offrent également de nouvelles pistes dans l’étude de la pluripotence in vitro. L’hétérochromatine et le cycle cellulaire semblent ainsi être des cibles prometteuses dans la manipulation de PSC de lapin. J’ai pu réaliser des expériences préliminaires à l’aide d’inhibiteurs ciblant les enzymes favorisant la formation de l’hétérochromatine sur des embryons en culture. J’ai également utilisé ces inhibiteurs sur une lignée de PSC in vitro. Dans les deux cas, ces inhibiteurs ont permis de manipuler l’état de pluripotence des cellules traitées.
Article
Full-text available
Induced pluripotent stem cells (iPSCs) are obtained by genetically reprogramming adult somatic cells via the overexpression of specific pluripotent genes. The resulting cells possess the same differentiation properties as blastocyst-stage embryonic stem cells (ESCs) and can be used to produce new individuals by embryonic complementation, nuclear transfer cloning, or in vitro fertilization after differentiation into male or female gametes. Therefore, iPSCs are highly valuable for preserving biodiversity and, together with somatic cells, can enlarge the pool of reproductive samples for cryobanking. In this study, we subjected rabbit iPSCs (rbiPSCs) and rabbit ear tissues to several cryopreservation conditions with the aim of defining safe and non-toxic slow-freezing protocols. We compared a commercial synthetic medium (STEM ALPHA.CRYO3) with a biological medium based on fetal bovine serum (FBS) together with low (0-5%) and high (10%) concentrations of dimethyl sulfoxide (DMSO). Our data demonstrated the efficacy of a CRYO3-based medium containing 4% DMSO for the cryopreservation of skin tissues and rbiPSCs. Specifically, this medium provided similar or even better biological results than the commonly used freezing medium composed of FBS and 10% DMSO. The results of this study therefore represent an encouraging first step towards the use of iPSCs for species preservation.