Proposed incorporation of elastin into a collagen fibril (hydrophilic and hydrophobic segments of elastin are not shown). The random coil ends of collagen should signify the suggested interference of elastin with collagen's secondary structure during polymerization. Elastin monomers are thought to bind to collagen through local H-bonds, van-der-Waals bonds and ionic bonds, although the latter is less likely due to the low zeta potential.

Proposed incorporation of elastin into a collagen fibril (hydrophilic and hydrophobic segments of elastin are not shown). The random coil ends of collagen should signify the suggested interference of elastin with collagen's secondary structure during polymerization. Elastin monomers are thought to bind to collagen through local H-bonds, van-der-Waals bonds and ionic bonds, although the latter is less likely due to the low zeta potential.

Source publication
Article
Full-text available
Biopolymer blends are advantageous materials with novel properties that may show performances way beyond their individual constituents. Collagen elastin hybrid gels are a new representative of such materials as they employ elastin’s thermo switching behavior in the physiological temperature regime. Although recent studies highlight the potential ap...

Contexts in source publication

Context 1
... we discussed two extremes of a collagen-elastin interaction, namely, perpendicular and lateral polymerization. While we expected a mixed state between these two extremes prior to the experiments, it became quickly clear that the experiments favored the lateral state over the perpendicular and mixed state (Figure 8). This was also initially proposed as we had observed a Euler buckling-like behavior of the hybrid gels under heating in earlier experiments [13]. ...
Context 2
... was directly demonstrated with the LSM recordings of collagen and collagenelastin gels where the collagen was separately stained over the collagen-elastin and further indirectly, as the addition of elastin did not change the structural metrics pore size, fiber thickness or 2D anisotropy. Although we did not quantify changes in the axial and lateral polymerization rate, a visual inspection of the Videos S1-S4 highlights no changes in this polymerization metric after the elastin addition, i.e., the axial fiber growth still Figure 8. Proposed incorporation of elastin into a collagen fibril (hydrophilic and hydrophobic segments of elastin are not shown). ...

Citations

... This Special Issue brings together articles that report original research on the design and synthesis of novel drug delivery systems and scaffolds or highlight insights into polymer interaction [1][2][3][4][5]. To improve the current knowledge and open up new perspectives in the use of biopolymer blends, Wilharm et al. [6] characterized the interaction of collagen and elastin fibers during polymerization and revealed that elastin is incorporated homogeneously into the collagen fibers. The results contribute significantly to designing elastin-based biomaterials with or without actuatoric applications. ...
Article
Full-text available
In recent years, the biomedical engineering field has seen remarkable advancements, focusing mainly on developing novel solutions for enhancing tissue regeneration or improving therapeutic outcomes [...]
Article
Full-text available
The use of animal testing in the cosmetic industry is already prohibited in more than 40 countries, including those of the EU. The pressure for it to be banned worldwide in the future is increasing, so the need for animal alternatives is of great interest today. In addition, using animals and humans in scientific research is ethically reprehensible. This study aimed to prove some of the anti-aging properties of elastin (EL), hydrolyzed collagen (HC), and two vegan collagen-like products (Veg Col) in a tri-layered chitosan membrane that was ionically crosslinked with sodium tripolyphosphate (TPP). In the first approach, as a way of representing different layers of a biological system, such as the epidermis and the two dermis sublayers, EL, HC, or Veg Col were independently introduced into the two inner layers (2L(i+b)). Their effects were compared with those of their introduction into three layers (3L). Different experiments were performed on the membrane to test its elasticity, hydration, moisture retention, and pore reduction at different concentrations of EL, HC, and Veg Col, and the results were normalized vs. a blank membrane. This new alternative to animal or human testing can be suitable for proving certain efficacy claims for active ingredients or products in the pharmaceutical, nutritional, and cosmetic fields.