Fig 10 - uploaded by Mohammad Javad Sobouti
Content may be subject to copyright.
Proof for case 1-a, where there is curved line, presenting point M.

Proof for case 1-a, where there is curved line, presenting point M.

Source publication
Article
Full-text available
Unmanned aerial vehicles (UAVs) in cellular networks have garnered considerable interest. One of their applications is as flying base stations (FBSs), which can increase coverage and quality of service (QoS). Because FBSs are battery-powered, regulating their energy usage is a vital aspect of their use; and therefore the appropriate placement and t...

Citations

... Future research is needed to study such factors, costs, constraints, and the trade-off between moving vs. transmitting with greater power. The flying base station's mobility requirement also results in the limitations in energy resource (batteryoperated as opposed to having a stable and constant power supply), which in turn requires energy-efficient designs, such as those for controlling sleeping/idle state [32], charging station assignments [33], and positioning [16,34,35]. ...
Article
Full-text available
Flying base stations, also known as aerial base stations, provide wireless connectivity to the user and utilize their aerial mobility to improve communication performance. Flying base stations depend on traditional stationary terrestrial base stations for connectivity, as stationary base stations act as the gateway to the backhaul/cloud via a wired connection. We introduce the flying base station channel capacity to build on the Shannon channel capacity, which quantifies the upper-bound limit of the rate at which information can be reliably transmitted using the communication channel regardless of the modulation and coding techniques used. The flying base station’s channel capacity assumes aerial mobility and ideal positioning for maximum channel capacity. Therefore, the channel capacity limit holds for any digital and signal processing technique used and for any location or positioning of the flying base station. Because of its inherent reliance on the stationary terrestrial base station, the flying base station channel capacity depends on the stationary base station’s parameters, such as its location and SNR performance to the user, in contrast to previous research, which focused on the link between the user and the flying base station without the stationary base station. For example, the beneficial region (where there is a positive flying base station capacity gain) depends on the stationary base station’s power and channel SNR in addition to the flying base station’s own transmission power and whether it has full duplex vs. half-duplex capability. We jointly study the mobility and the wireless communications of the flying base station to analyze its position, channel capacity, and beneficialness over the stationary terrestrial base station (capacity gain). As communication protocols and implementations for flying base stations undergo development for next-generation wireless networking, we focus on information-theoretical analyses and channel capacity to inform future research and development in flying base station networking.
... Additionally, there are several other studies in the literature that propose trajectory optimization approaches for UAV-assisted MEC systems. M. J. Sobouti [13] proposed a new exact approach to solve the multiple 3D trajectory problem for flying base stations (FBS). This approach takes into consideration several constraints when used to solve this problem. ...
Article
Full-text available
The Internet of Things (IoT) devices are not able to execute resource-intensive tasks due to their limited storage and computing power. Therefore, Mobile edge computing (MEC) technology has recently been utilized to provide computing and storage capabilities to those devices, enabling them to execute these tasks with less energy consumption and low latency. However, the edge servers in the MEC network are located at fixed positions, which makes them unable to be adjusted according to the requirements of end users. As a result, unmanned aerial vehicles (UAVs) have recently been used to carry the load of these edge servers, making them mobile and capable of meeting the desired requirements for IoT devices. However, the trajectories of the UAVs need to be accurately planned in order to minimize energy consumption for both the IoT devices during data transmission and the UAVs during hovering time and mobility between halting points (HPs). The trajectory planning problem is a complicated optimization problem because it involves several factors that need to be taken into consideration. This problem is considered a multiobjective optimization problem since it requires simultaneous optimization of both the energy consumption of UAVs and that of IoT devices. However, existing algorithms in the literature for this problem have been based on converting it into a single objective, which may give preference to some objectives over others. Therefore, in this study, several multiobjective trajectory planning algorithms (MTPAs) based on various metaheuristic algorithms with variable population size and the Pareto optimality theory are presented. These algorithms aim to optimize both objectives simultaneously. Additionally, a novel mechanism called the cyclic selection mechanism (CSM) is proposed to manage the population size accurately, optimizing the number of HPs and the maximum function evaluations. Furthermore, the HPs estimated by each MTPA are associated with multiple UAVs using the k-means clustering algorithm. Then, a low-complexity greedy mechanism is used to generate the order of HPs assigned to each UAV, determining its trajectory. Several experiments are conducted to assess the effectiveness of the MTPAs with variable population size and cyclic selection mechanisms. The experimental findings demonstrate that the MTPAs with the cyclic selection mechanism outperform all competing algorithms, achieving better outcomes.
... Lower power consumption models must be taken into consideration, and the performance of the mentioned approaches under imperfect CSI should be enhanced. The evaluation processes as mentioned Asia Bangladesh [61,149] China [74,75,79,99,104,105,107,109,110,118,123,126,128,131,132,142,144] Georgia [77] Hong Kong [64] India [54,62,65,96,115,120] Iran [66,73,88,89] Japan [95] Korea [55,68,72,76,103] Malaysia [47,63] Pakistan [147] Saudi Arabia [102] Taiwan [117] Turkey [98] UAE [78] Australia Australia [92,119] Europe UK [49,94,101,129] Czech Republic [50,91] France [59,69] Sweden [52,113,114] Spain [67] Georgia [77] Italy [93,100,125] Turkey [98] Greece [106] Poland [113] Germany [116] Belgium [122] Finland [143] Hungary [64,146] Ireland [150] North America USA [51,53,60,86,90,127,130,148] Canada [97,145] Chicago [121] South America Brazil [48,87,124] in this manuscript could be expanded to take into account the QoS that the UEs experience and to combat energy consumption by BS resource adaption techniques. Also, it has been observed that most of the past literature ignores the energy consumed while switching on-off BSs. ...
Article
Full-text available
In today’s 5G era, the energy efficiency (EE) of cellular base stations is crucial for sustainable communication. Recognizing this, Mobile Network Operators are actively prioritizing EE for both network maintenance and environmental stewardship in future cellular networks. The paper aims to provide an outline of energy-efficient solutions for base stations of wireless cellular networks. A total of 5722 studies have been figured out by using the search string and after performing the six stages of SLR protocol, 82 studies were finalised that are published in 26 supreme journals and 19 featured conferences. EE solutions have been segregated into five primary categories: base station hardware components, sleep mode strategies, radio transmission mechanisms, network deployment and planning, and energy harvesting. The predominance of sleep mode procedures is evident in the selected survey studies. Notably, China, Korea, and the US are vigorously engaged in this field, specifically related to the 5G network. This review paper identifies the possible potential solutions for reducing the energy consumption of the networks and discusses the challenges so that more accurate and valid measures could be designed for future research.
Article
The need for continuous coverage, as well as low-latency, and ultrareliable communication in 5G and beyond cellular networks encouraged the deployment of high-altitude platforms and low-altitude drones as flying base stations (FBSs) to provide last-mile communication where high cost or geographical restrictions hinder the installation of terrestrial base stations (BSs) or during the disasters where the BSs are damaged. The performance of unmanned aerial vehicle (UAV)-assisted cellular systems in terms of coverage and quality of service offered for terrestrial users depends on the number of deployed FBSs, their 3-D location as well as trajectory. While several recent works have studied the 3-D positioning in UAV-assisted 5G networks, the problem of jointly addressing coverage and user data rate has not been addressed yet. In this article, we propose a solution for joint 3-D positioning and trajectory planning of FBSs with the objectives of the total distance between users and FBSs and minimizing the sum of FBSs flight distance by developing a fuzzy candidate points selection method.
Preprint
Full-text available
Terahertz (THz) frequencies are important for next generation wireless systems due to the advantages in terms of large available bandwidths. On the other hand, the limited range due to high attenuation in these frequencies can be overcome via densely installed heterogeneous networks also utilizing UAVs in a three-dimensional hyperspace. Yet, THz communications rely on precise beam alignment, if not handled properly results in low signal strength at the receiver which impacts THz signals more than conventional ones. This work focuses on the importance of precise alignment in THz communication systems and the significant effect of proper alignment is validated through comprehensive measurements conducted through a state-of-the-art measurement setup, which enables accurate data collection between 240 GHz to 300 GHz at varying angles and distances in an anechoic chamber eliminating reflections. By analyzing the channel frequency and impulse responses of these extensive and particular measurements, this study provides the first quantifiable results in terms of measuring the effects of beam misalignment in THz frequencies.