Figure 4 - uploaded by Justin Francis Beckers
Content may be subject to copyright.
Phylum-level distribution of: (a) bacteria ice; and (b) bacteria water clone cludes all phyla that were represented by <10 clones in each library (see main text for more details). Chloroplast rRNA gene sequences are separated because they were not included in subsequent analyses.

Phylum-level distribution of: (a) bacteria ice; and (b) bacteria water clone cludes all phyla that were represented by <10 clones in each library (see main text for more details). Chloroplast rRNA gene sequences are separated because they were not included in subsequent analyses.

Source publication
Article
Full-text available
The most familiar icy environments, seasonal lake and stream ice, have received little microbiological study. Bacteria and Eukarya dominated the microbial assemblage within the seasonal ice of Miquelon Lake, a shallow saline lake in Alberta, Canada. The bacterial assemblages were moderately diverse and did not vary with either ice depth or time. Th...

Context in source publication

Context 1
... order to identify the origin of the dominant bands and elucidate the differences between the ice and water consortia, we constructed a bacterial and eukaryal clone library for the bulked ice (homogenized all ice depths and all sample dates) and bulked water (homogenized all sample dates). The dominant band in the bacterial DGGE (Figure 3a) (initially making up 71% of the bacterial ice clone library and 41% of the bacterial water clone library) was identified as a chloroplast rRNA gene sequence closely related to those from Nannochloropsis oceanica and Chlorella minutissima (Figure 4). These clones were excluded from further analysis. ...

Similar publications

Article
Full-text available
As the most important component of ecosystems, microbial communities play a significant role in global biogeochemical cycles. Geographical barriers created by topographic differences are proposed as one of the main factors to shape microbial diversity, functional composition and their evolution across aquatic ecosystem. There are few studies that c...
Article
Full-text available
In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a b...
Preprint
Full-text available
Background Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in regulating global biogeochemical cycle, plant growth and adaptability. However, the Ferula sinkiangensis bacterial community and the processes that drive its assembly remain unclea...
Article
Full-text available
Introduction Damming has substantially fragmented and altered riverine ecosystems worldwide. Dams slow down streamflows, raise stream and groundwater levels, create anoxic or hypoxic hyporheic and riparian environments and result in deposition of fine sediments above dams. These sediments represent a good opportunity to study human legacies alterin...
Preprint
Full-text available
Tonle Sap Lake, the largest freshwater body in Southeast Asia, plays an important role in lives and environment. The lake is reportedly under anthropogenic pressure and suffer from eutrophication. The floating villagers suffer from waterborne diseases. However, the shift in bacterial community due to human activities in this great lake has not yet...

Citations

Article
Full-text available
Coastal terrestrial–aquatic interfaces (TAIs) are dynamic zones of biogeochemical cycling influenced by salinity gradients. However, there is significant heterogeneity in salinity influences on TAI soil biogeochemical function. This heterogeneity is perhaps related to unrecognized mechanisms associated with carbon (C) chemistry and microbial communities. To investigate this potential, we evaluated hypotheses associated with salinity-associated shifts in organic C thermodynamics; biochemical transformations; and nitrogen-, phosphorus-, and sulfur-containing heteroatom organic compounds in a first-order coastal watershed on the Olympic Peninsula of Washington, USA. In contrast to our hypotheses, thermodynamic favorability of water-soluble organic compounds in shallow soils decreased with increasing salinity (43–867 µS cm−1), as did the number of inferred biochemical transformations and total heteroatom content. These patterns indicate lower microbial activity at higher salinity that is potentially constrained by accumulation of less-favorable organic C. Furthermore, organic compounds appeared to be primarily marine- or algae-derived in forested floodplain soils with more lipid-like and protein-like compounds, relative to upland soils that had more lignin-, tannin-, and carbohydrate-like compounds. Based on a recent simulation-based study, we further hypothesized a relationship between C chemistry and the ecological assembly processes governing microbial community composition. Null modeling revealed that differences in microbial community composition – assayed using 16S rRNA gene sequencing – were primarily the result of limited exchange of organisms among communities (i.e., dispersal limitation). This results in unstructured demographic events that cause community composition to diverge stochastically, as opposed to divergence in community composition being due to deterministic selection-based processes associated with differences in environmental conditions. The strong influence of stochastic processes was further reflected in there being no statistical relationship between community assembly processes (e.g., the relative influence of stochastic assembly processes) and C chemistry (e.g., heteroatom content). This suggests that microbial community composition does not have a mechanistic or causal linkage to C chemistry. The salinity-associated gradient in C chemistry was, therefore, likely influenced by a combination of spatially structured inputs and salinity-associated metabolic responses of microbial communities that were independent of community composition. We propose that impacts of salinity on coastal soil biogeochemistry need to be understood in the context of C chemistry, hydrologic or depositional dynamics, and microbial physiology, while microbial composition may have less influence.
Article
Full-text available
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.