Table 3 - uploaded by Qingyong Yang
Content may be subject to copyright.
Phenotypic comparison between transgenic and wild type plants 

Phenotypic comparison between transgenic and wild type plants 

Source publication
Article
Full-text available
The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development. To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica o...

Similar publications

Article
Full-text available
Ethylene responsive factors (ERFs) play important roles in the abiotic stress; however, only a few ERF genes from woody plants have been functionally characterized. In the present study, an ERF gene from Betula platyphylla (birch), BpERF11, was functionally characterized in response to abiotic stress. BpERF11 is a nuclear protein, which could speci...
Article
Full-text available
Transpiration is generally considered a wasteful but unavoidable consequence of photosynthesis, occurring because water is lost when stomata open for CO2 uptake. Additionally, transpiration has been ascribed the functions of cooling leaves, driving root to shoot xylem transport and mass flow of nutrients through the soil to the rhizosphere. As a co...
Article
Full-text available
Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also lea...
Article
Full-text available
Water deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S-nitrosoglutathione (GSNO), an NO donor, impr...
Article
Full-text available
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conducti...

Citations

... The genespecific primer PR12 and Taq Pro Universal SYBR qPCR Master Mix (Vazyme) were used for quantitative real-time PCR (qPCR) assays of the BnPLP1 gene using the BIO-RAD CFX96 Real-Time PCR System (BIO-RAD, California, USA). The B. napus actin gene (BnACT2) [67] (PR13) and the Arabidopsis actin gene (AtACT7) [68] (PR14) were used as internal reference genes, and triplicate quantitative assays were performed on each cDNA dilution. The synthetic cDNA of Arabidopsis and B. napus T2 and T3 plants mentioned above were used as templates for qPCR experiments. ...
Article
Full-text available
Protein prenylation mediated by the Arabidopsis thaliana PLURIPETALA (AtPLP) gene plays a crucial role in plant growth, development, and environmental response by adding a 15-carbon farnesyl group or one to two 20-carbon geranylgeranyl groups onto one to two cysteine residues at the C-terminus of the target protein. However, the homologous genes and their functions of AtPLP in rapeseed are unclear. In this study, bioinformatics analysis and gene cloning demonstrated the existence of two homologous genes of AtPLP in the Brassica napus L. genome, namely, BnPLP1 and BnPLP2. Evolutionary analysis revealed that BnPLP1 originated from the B. rapa L. genome, while BnPLP2 originated from the B. oleracea L. genome. Genetic transformation analysis revealed that the overexpression of BnPLP1 in Arabidopsis plants exhibited earlier flowering initiation, a prolonged flowering period, increased plant height, and longer main inflorescence length compared to the wild type. Contrarily, the downregulation of BnPLP1 expression in B. napus plants led to delayed flowering initiation, shortened flowering period, decreased plant height, and reduced main inflorescence length compared to the wild type. These findings indicate that the BnPLP1 gene positively regulates flowering time, plant height, and main inflorescence length. This provides a new gene for the genetic improvement of flowering time and plant architecture in rapeseed.
... HcSCL13, a ROS-scavenging GRAS protein (Zhang et al., 2020) and VaPAT1 from Vitis amurensis elevate salinity, drought and cold tolerance (Yuan et al., 2016). BrLAS overexpression in B. napus improves chlorophyll synthesis and drought resistance (Yang et al., 2011). SlGRAS40 overexpression in tomato enhances salt and drought tolerance (Liu et al., 2017). ...
Article
The GRAS transcription factor family is a plant-specific regulatory proteins that play fundamental roles in various biological processes. The acronym “GRAS” stands for “Gibberellic Acid Insensitive, Repressor of GA1-3 and Scarecrow,” representing three of its founding members. Additionally, GRAS members are instrumental in orchestrating symbiotic interactions, stress responses and other vital physiological functions. The N-terminal of GRAS protein is very diverse, but the C-terminal GRAS domain is conserved. The GRAS proteins’ C-terminal conserved domain directly influences how they work. For instance, in the Arabidopsis plant, alterations to the phenotype of the slender rice 1 (SLR1) and Repressor of GA (RGA) proteins result from mutations in this domain. More than 30 plant species have been found to have GRAS proteins, which have been classified into 17 subfamilies so far. This review focused on the structural characteristics of GRAS proteins, their growth and diversity in plants, GRAS-interacting protein complexes and their function in biological processes. Moreover, GRAS proteins also mediate responses to phytohormones, such as gibberellins and strigolactones and regulate phytochrome signaling, which is crucial for light perception and plant growth. It also discussed the significance of GRAS proteins throughout various biological processes in plants. Additionally, we outlined recent studies that used CRISPR-Cas9 technology to modify GRAS genes in a plant for various features. Additionally, there have been discussions of using GRAS genes in agricultural enhancement efforts.
... The standard protocols of labeled probes followed the manufacturer's instructions (Promega, Madison, WI, USA). Prehybridization and hybridization were performed under 65°C stringent conditions (Yang et al., 2011a;Zhang et al., 2015). ...
Article
Full-text available
Background Tocotrienols and tocopherols, which are synthesized in plastids of plant cells with similar functionalities, comprise vitamin E to serve as a potent lipid-soluble antioxidant in plants. The synthesis of tocopherols involves the condensation of homogentisic acid (HGA) and phytyl diphosphate (PDP) under the catalysis of homogentisate phytyltransferase (HPT). Tocotrienol synthesis is initiated by the condensation of HGA and geranylgeranyl diphosphate (GGDP) mediated by homogentisate geranylgeranyl transferase (HGGT). As one of the most important oil crops, canola seed is regarded as an ideal plant to efficiently improve the production of vitamin E tocochromanols through genetic engineering approaches. However, only a modest increase in tocopherol content has been achieved in canola seed to date. Methods In this study, we transformed barley HGGT (HvHGGT) into canola to improve total tocochromanol content in canola seeds. Results and discussion The results showed that the total tocochromanol content in the transgenic canola seeds could be maximally increased by fourfold relative to that in wild-type canola seeds. Notably, no negative impact on important agronomic traits was observed in transgenic canola plants, indicating great application potential of the HvHGGT gene in enhancing tocochromanol content in canola in the future. Moreover, the oil extracted from the transgenic canola seeds exhibited significantly enhanced oxidative stability under high temperature in addition to the increase in total tocochromanol content, demonstrating multiple desirable properties of HvHGGT.
... Increased very-long-chain alkanes biosynthesis Increased drought resistance [149] Arabidopsis thaliana CER1 Increased very-long-chain alkanes biosynthesis Increased abiotic stresses resistance [150] Brassica napus BnLAS Increased epidermal wax deposition Improved drought tolerance [151] Arabidopsis thaliana DEWAX Reduction in total wax loads in leaves and stems and altered the ultrastructure of cuticular layers. ...
Article
Full-text available
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
... Furthermore, in wild Amur grape (Vitis amurensis), overexpression of VaPAT1 enhances the cold resistance of grape calli by regulating JA biosynthesis . BnLAS overexpression enhances drought resistance in Arabidopsis (Yang et al. 2011). In tomato (Solanum lycopersicum), SlGRAS4 and SlGRAS6 are upregulated in plants treated with the elicitor EIX from Trichoderma viride (Mayrose et al. 2006). ...
Article
Full-text available
Key message GhSCL13-2A, a member of the PAT1 subfamily in the GRAS family, positively regulates cotton resistance to Verticillium dahliae by mediating the jasmonic acid and salicylic acid signaling pathways and accumulation of reactive oxygen species. Abstract Verticillium wilt (VW) is a devastating disease of upland cotton (Gossypium hirsutum) that is primarily caused by the soil-borne fungus Verticillium dahliae. Scarecrow-like (SCL) proteins are known to be involved in plant abiotic and biotic stress responses, but their roles in cotton defense responses are still unclear. In this study, a total of 25 GhPAT1 subfamily members in the GRAS family were identified in upland cotton. Gene organization and protein domain analysis showed that GhPAT1 members were highly conserved. GhPAT1 genes were widely expressed in various tissues and at multiple developmental stages, and they were responsive to jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signals. Furthermore, GhSCL13-2A was induced by V. dahliae infection. V. dahliae resistance was enhanced in Arabidopsis thaliana by ectopic overexpression of GhSCL13-2A, whereas cotton GhSCL13-2A knockdowns showed increased susceptibility. Levels of reactive oxygen species (ROS) and JA were also increased and SA content was decreased in GhSCL13-2A knockdowns. At the gene expression level, PR genes and SA signaling marker genes were down-regulated and JA signaling marker genes were upregulated in GhSCL13-2A knockdowns. GhSCL13-2A was shown to be localized to the cell membrane and the nucleus. Yeast two-hybrid and luciferase complementation assays indicated that GhSCL13-2A interacted with GhERF5. In Arabidopsis, V. dahliae resistance was enhanced by GhERF5 overexpression; in cotton, resistance was reduced in GhERF5 knockdowns. This study revealed a positive role of GhSCL13-2A in V. dahliae resistance, establishing it as a strong candidate gene for future breeding of V. dahliae-resistant cotton cultivars.
... GRAS genes play important roles in regulating the responses to abiotic stresses in plants. Transgenic BnLAS Arabidopsis thaliana plants had higher drought tolerances than wild type plants [3]. The PeSCL7 gene of Populus euphratica was transferred into A. thaliana (Arabidopsis thaliana), which improved the drought resistance and salt tolerance of transgenic plants [4]. ...
Article
Full-text available
The GRAS transcription factor is an important transcription factor in plants. In recent years, more GRAS genes have been identified in many plant species. However, the GRAS gene family has not yet been studied in Avena sativa. We identified 100 members of the GRAS gene family in A. sativa (Avena sativa), named them AsGRAS1~AsGRAS100 according to the positions of 21 chromosomes, and classified them into 9 subfamilies. In this study, the motif and gene structures were also relatively conserved in the same subfamilies. At the same time, we found a great deal related to the stress of cis-acting promoter regulatory elements (MBS, ABRE, and TC-rich repeat elements). qRT‒PCR suggested that the AsGRAS gene family (GRAS gene family in A. sativa) can regulate the response to salt, saline–alkali, and cold and freezing abiotic stresses. The current study provides original and detailed information about the AsGRAS gene family, which contributes to the functional characterization of GRAS proteins in other plants.
... Up-regulated genes FLA11 and FLA12 involved in leaf cuticle and wax could improve tolerance to water loss in ryegrass and poplar [74,75]. More wax was accumulated in the leaves of WIN1-overexpresssing Arabidopsis transgenic plants [76]. Therefore, these transcriptional changes may contribute to the better growth and fruit quality of Fuji/MdGH3 RNAi compared to Fuji/GL-3 after drought treatment. ...
Article
Full-text available
Drought stress is an important environmental factor limiting apple yield and fruit quality. Previously, we identified GRETCHEN HAGEN3.6 (GH3.6) as a negative regulator of drought stress in apple trees. Using transgenic MdGH3 RNAi (knocking down MdGH3.6 and its five homologs) plants as rootstock can increase drought tolerance, water use efficiency, flowering, and fruit quality of the Fuji scion after drought stress. However, the molecular mechanism behind this phenomenon is still unknown. Here, we performed transcriptome sequencing of the grafted plants (Fuji/GL-3 where Fuji was used as the scion and non-transgenic GL-3 was used as the rootstock, and Fuji/MdGH3 RNAi where MdGH3 RNAi was used as the rootstock) under control and drought conditions. Under control conditions, 667 up-regulated genes and 176 down-regulated genes were identified in the scion of Fuji/MdGH3 RNAi, as compared to the scion of Fuji/GL-3. Moreover, 941 up-regulated genes and 2226 down-regulated genes were identified in the rootstock of MdGH3 RNAi plants relative to GL-3. GO terms of these differentially expressed genes (DEGs) in scion and rootstock showed associations with plant growth, fruit development, and stress responses. After drought stress, 220 up-regulated and 452 down-regulated genes were identified in MdGH3 RNAi rootstock, as compared to GL-3. Significantly enriched GO terms included response to abiotic stimulus, cell division, microtubule-based process, metabolic and biosynthetic process of flavonoid, pigment, and lignin. The comparison between the scion of Fuji/MdGH3 RNAi and Fuji/GL-3 yielded a smaller number of DEGs; however, all of them were significantly enriched in stress-related GO terms. Furthermore, 365 and 300 mRNAs could potentially move from MdGH3 RNAi rootstock to scion under control and drought conditions, respectively, including FIDDLEHEAD (FDH), RESPONSIVE TO DESICCATION 26 (RD26), ARS-binding factor 2 (ABF2), WRKY75, and ferritin (FER). Overall, our work demonstrates the effects of rootstock on scion at the transcriptional level after drought stress and provides theoretical support for further understanding and utilization of MdGH3 RNAi plants.
... Cuticular wax is a mixture of very-long-chain fatty acids (VLCFAs) and their derivatives [5,6]. Cuticles also protect plants from various biotic and abiotic stresses [7,8], profoundly affect plant-insect interactions [9], affect the pollen-stigma signaling [10], and prevent epidermal fusions [11]. ...
Article
Full-text available
In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome of Brassica rapa, Bra024749 (BrCER60.A09), encoding a β-ketoacyl-CoA synthase, was identified as the candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09 in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09 enzyme. Moreover, comparative transcriptome analysis revealed that the ‘cutin, suberine, and wax biosynthesis’ pathway was significantly enriched, and genes involved in this pathway were almost upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1, were developed and validated. Overall, these results provide a new information for the cuticular wax biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of Brassica rapa.
... AtSCL14 interacts with Class II TGA to activate the detoxification system of the plant to reduce harm (Fode et al., 2008). In Arabidopsis thaliana, overexpression of BnLAS in Brassica napus leads to smaller stomatal opening, more wax deposition in leaves, and a lower water loss rate, indicating that BnLAS has potential applications in improving drought tolerance of plants (Yang, et al., 2011). In tomatoes, the transcript accumulation of SlGRAS4 exhibited more than 250fold change during cold stress compared to that in the control plants, which means that GRAS can respond positively to cold stress (Huang et al., 2015). ...
Article
Full-text available
GRAS proteins are plant-specific transcription factors and play important roles in plant growth, development, and stress responses. In this study, a total of 48 GRAS genes in the eggplant (S. melongena) genome were identified. These genes were distributed on 11 chromosomes unevenly, with amino acid lengths ranging from 417 to 841 aa. A total of 48 GRAS proteins were divided into 13 subgroups based on the maximum likelihood (ML) model. The gene structure showed that 60.42% (29/48) of SmGRASs did not contain any introns. Nine pairs of SmGRAS appeared to have a collinear relationship, and all of them belonged to segmental duplication. Four types of cis-acting elements, namely, light response, growth and development, hormone response, and stress response, were identified by a cis-acting element predictive analysis. The expression pattern analysis based on the RNA-seq data of eggplant indicated that SmGRASs were expressed differently in various tissues and responded specifically to cold stress. In addition, five out of ten selected SmGRASs (SmGRAS2/28/32/41/44) were upregulated under cold stress. These results provided a theoretical basis for further functional study of GRAS genes in eggplant.
... Some were found to function in the formation of the epidermal patterning. The overexpression of BnEPFL6 results in a reduction of SD (Huang et al. 2014), and the Constitutive overexpression of Lateral Suppressor (BnLAS) also leads to significantly increased SD, which further indicates a potential to utilize BnLAS in the improvement of drought tolerance in plants (Yang et al. 2011). Analysis of gpat4 RNA interference lines of B. napus revealed that the BnGPAT4 deficiency resulted in altered stomatal structures in leaves (Chen et al. 2011). ...
Article
Full-text available
Main Conclusion Stomatal density and guard cell length of 274 global core germplasms of rapeseed reveal that the stomatal morphological variation contributes to global ecological adaptation and diversification of Brassica napus.AbstractStomata are microscopic structures of plants for the regulation of CO2 assimilation and transpiration. Stomatal morphology has changed substantially in the adaptation to the external environment during land plant evolution. Brassica napus is a major crop to produce oil, livestock feed and biofuel in the world. However, there are few studies on the regulatory genes controlling stomatal development and their interaction with environmental factors as well as the genetic mechanism of adaptive variation in B. napus. Here, we characterized stomatal density (SD) and guard cell length (GL) of 274 global core germplasms at seedling stage. It was found that among the significant phenotypic variation, European germplasms are mostly winter rapeseed with high stomatal density and small guard cell length. However, the germplasms from Asia (especially China) are semi-winter rapeseed, which is characterized by low stomatal density and large guard cell length. Through selective sweep analysis and homology comparison, we identified several candidate genes related to stomatal density and guard cell length, including Epidermal Patterning Factor2 (EPF2; BnaA09g23140D), Epidermal Patterning Factor Like4 (EPFL4; BnaC01g22890D) and Suppressor of LLP1 (SOL1 BnaC01g22810D). Haplotype and phylogenetic analysis showed that natural variation in EPF2, EPFL4 and SOL1 is closely associated with the winter, spring, and semi-winter rapeseed ecotypes. In summary, this study demonstrated for the first time the relation between stomatal phenotypic variation and ecological adaptation in rapeseed, which is useful for future molecular breeding of rapeseed in the context of evolution and domestication of key stomatal traits and global climate change.