Figure 6 - uploaded by Andrea Puchnick
Content may be subject to copyright.
Patients with punctiform, non-obstructive nephrolithiasis (arrow) identified at the unenhanced phase (a) anda t the nephrographic phase (b), with no change in the diagnosis between the first and second analyses. 

Patients with punctiform, non-obstructive nephrolithiasis (arrow) identified at the unenhanced phase (a) anda t the nephrographic phase (b), with no change in the diagnosis between the first and second analyses. 

Source publication
Article
Full-text available
OBJECTIVE: To determine the role of the unenhanced phase of abdominal computed tomography in patients without a definite diagnosis or undergoing tumor staging. MATERIALS AND METHODS: A prospective and transversal study was developed with 100 consecutive patients submitted to unenhanced and contrastenhanced abdominal computed tomography. Two observe...

Citations

... In most departments unenhanced CT scans are no longer part of every abdominal CT protocol. This does not constrain major diagnosis like malignancy or inflammation, but the diagnosis of fatty liver disease is hindered [6]. According to our data the use of the baseline scan for bolus tracking may help to solve this dilemma. ...
Article
Full-text available
Nonalcoholic fatty liver disease (NAFLD) is a common pathology in western societies. Unenhanced computed tomography (CT) of the liver is a valuable tool in determining the presence of steatosis hepatis, but in most departments standard CT protocols of abdomen often do not include unenhanced scans anymore. In a small series of 22 patients the liver density was measured in the acquired low-dose baseline scan for bolus tracking and was compared to the measurement in a regular unenhanced CT scan of the upper abdomen. The mean difference between the unenhanced CT scan and the low-dose baseline scan was 3.4 HU (range 0.2–8.6 HU); the difference between these two scans was 5 HU or smaller in 82% of the patients. There was a significant difference between the two used CT scanners; this has to be kept in mind before implementing this approach into daily practice. All but one patient with fatty liver disease on unenhanced CT were diagnosed using the baseline scan. The baseline scan for bolus tracking may be useful for the diagnosis or in the followup of fatty liver disease.
... Indeed a more recent study showed that only 1 out of 250 proven hepatocellular carcinomas was detected on the unenhanced but not the portal and arterial series [12]. Despite this, the unenhanced phase remains in widespread use and offers advantages over and above lesion detection including the demonstration of hepatic steatosis, haemochromatosis or hemosiderosis, cysts, regenerative nodules, focal confluent fibrosis and calcification or haemorrhage within a lesion [12,13]. ...
Article
Dual-energy dual source CT can almost simultaneously image patients using two different tube potentials, allowing material decomposition and creation of 'virtual unenhanced' (VU) images from post-contrast series. 75 patients undergoing triple-phase liver CT examinations were imaged using a second generation dual-source CT machine with tube potentials 140/100 kVp. Post-processing VU series were derived from arterial and portal phases. Regions-of-interest from liver parenchyma and within fat ('noise' assessment) were drawn to compare VU series to conventional unenhanced (CU) series. Subjective analysis assessed image quality and the suitability of VU to replace CU series. Mean Hounsfield unit (HU) values of liver were higher in the VU series: portal 51.9 (SD = 10.29), arterial 51.1 (SD = 10.05), compared to the CU series 49.2 (SD = 9.11); P<0.001. However, Pearson's correlation of the VU and CU series remained excellent: 0.838 (portal), 0.831 (arterial). Bland-Altman plots also showed good agreement between both VU and the CU datasets. Noise measurements were significantly lower in both VU series (P<0.001). For subjective analysis, image quality was rated as very good/excellent in 100% of CU images, 93.3% of portal VU and 88.7% of arterial VU series. Overall, portal VU and arterial VU images were acceptable replacements for the CU series in 97.4% and 96.1%, respectively. Post-processing was noted to create a number of artefacts in VU images--knowledge of these is essential for interpretation. Portal and arterial-derived VU images objectively correlate to CU images and demonstrate good image quality and acceptability. VU image sets could replace the conventional unenhanced images in the vast majority of cases, significantly reducing radiation dose.
Article
Full-text available
Objective: To evaluate the necessity of the non contrast-enhanced phase in abdominal computed tomography scans. Materials and Methods: A retrospective, cross-sectional, observational study was developed, evaluating 244 consecutive abdominal computed tomography scans both with and without contrast injection. Initially, the contrast-enhanced images were analyzed (first analysis). Subsequently, the observers had access to the non-contrast-enhanced images for a second analysis. The primary and secondary diagnoses were established as a function of the clinical indications for each study (such as tumor staging, acute abdomen, investigation for abdominal collection and hepatocellular carcinoma, among others). Finally, the changes in the diagnoses resulting from the addition of the non-contrast-enhanced phase were evaluated. Results: Only one (0.4%; p > 0.999; non-statistically significant) out of the 244 reviewed cases had the diagnosis changed after the reading of non-contrast-enhanced images. As the secondary diagnoses are considered, 35 (14%) cases presented changes after the second analysis, as follows: nephrolithiasis (10%), steatosis (3%), adrenal nodule (0.7%) and cholelithiasis (0.3%). Conclusion: For the clinical indications of tumor staging, acute abdomen, investigation of abdominal collections and hepatocellular carcinoma, the non-contrast-enhanced phase can be excluded from abdominal computed tomography studies with no significant impact on the diagnosis.
Article
Full-text available
OBJETIVO: Avaliar a necessidade de realização da fase de equilíbrio nos exames de tomografia computadorizada de abdome. MATERIAIS E MÉTODOS: Realizou-se estudo retrospectivo, transversal e observacional, avaliando 219 exames consecutivos de tomografia computadorizada de abdome com contraste intravenoso, realizados num período de três meses, com diversas indicações clínicas. Para cada exame foram emitidos dois pareceres, um avaliando o exame sem a fase de equilíbrio (primeira análise) e o outro avaliando todas as fases em conjunto (segunda análise). Ao final de cada avaliação, foi estabelecido se houve mudança nos diagnósticos principais e secundários, entre a primeira e a segunda análise. Foi utilizada a extensão do teste exato de Fisher para avaliar a modificação dos diagnósticos principais (p < 0,05 como significante). RESULTADOS: Entre os 219 casos avaliados, a supressão da fase de equilíbrio provocou alteração no diagnóstico principal em apenas um exame (0,46%; p > 0,999). Com relação aos diagnósticos secundários, cinco exames (2,3%) foram modificados. CONCLUSÃO: Para indicações clínicas como estadiamento tumoral, abdome agudo e pesquisa de coleção abdominal, a fase de equilíbrio não acrescenta contribuição diagnóstica expressiva, podendo ser suprimida dos protocolos de exame.