Ophthalmologic findings

Ophthalmologic findings

Source publication
Article
Full-text available
Objective To identify the underlying genetic cause in 2 sisters affected with progressive lower extremity spasticity, neuropathy, and early-onset deafness. Methods Whole-exome sequencing was performed, and segregation testing of variants was investigated using targeted Sanger sequencing. An inherited paternal mosaic mutation was further evaluated...

Similar publications

Article
Full-text available
Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patient...
Article
Full-text available
Background Autosomal recessive hereditary spastic paraplegia (HSP) due to AP4M1 mutations is a very rare neurodevelopmental disorder reported for only a few patients. Methods We investigated a Greek HSP family using whole exome sequencing (WES). Results A novel AP4M1A frameshift insertion, and a very rare missense variant were identified in all t...

Citations

... New insights in Neurocristopathies All the typical craniofacial features observed in WS type I can be explained by NC defects: a) hair hypopigmentation is due to the lack of hair follicle melanocytes in the distribution of prosencephalic NC; b) the tubular nose owing to hypoplasia of the lateral portions of the nose (alae nasi) with a hyperplastic (with increased tissue amount), broad, and high nasal bridge that gives the pleasant feline facies are present in nearly all patients with WS type I and suggest a defect in prosencephalic NC; c) finally, the neurosensory hearing loss is the result of lack of melanocytes in the cochlear stria vascularis, another NC derivative (Sandell et al., 2014;Sarnat and Flores-Sarnat, 2005). WS type IV is a different disease, characterized by congenital hypomyelinating neuropathy, and defects in Schwann cell function, which is another NC derivative (Donkervoort et al., 2017). ...
Article
Full-text available
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans, which result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Article
Background and purposeHereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases divided into pure and complex forms, with spasticity in lower limbs only, or associated with other neurologic and non-neurologic manifestations, respectively. Although widely reported in other populations, very little data exist in sub-Saharan Africa.Methods Patients with neurodegenerative features were evaluated over a 19-month period at the Department of Neurology, Teaching Hospital of Point “G”, Bamako, Mali. The diagnosis of HSP was considered based on family history and the absence of other known non-genetic causes. Genetic analysis including candidate gene and whole exome sequencing was performed and variant pathogenicity was tested using prediction tools and ACMG guidelines.ResultsOf the 170 families with hereditary neurological disorders enrolled, 16 had features consistent with HSP, a frequency of 9%. The average age of onset was 14.7 years with 46% starting before age 6. The male/female ratio was 2.6:1. Complex forms were seen in 75% of cases, and pure forms in 25%. Pyramidal findings were present in all patients. Associated features included mental retardation, peripheral neuropathy, epilepsy, oculomotor impairment and urinary urgency. Most patients were treated with a muscle relaxant and physical therapy, and restorative surgery was done in one. Genetic testing identified novel variants in three families (19%).Conclusion This study confirms the clinical variability of HSPs and adds African data to the current literature.
Article
Full-text available
Background Waardenburg syndrome (WS) is a rare genetic disorder characterized by musculoskeletal abnormalities, deafness and hypopigmentation of hair and skin. This article’s aim is to investigate clinical and genetic characteristics of WS in three unrelated Caucasian individuals. Case presentation The first patient was a 25-year-old female with congenital bilateral hearing loss, bright-blue-eyes, hypopigmentation of hair and skin, megacolon, language retardation, tenosynovitis and neuromas. The second case was an infant symptomatic from birth, with dysphagia, Hirschsprung disease and neurological abnormalities. The third patient was a 14-year-old boy with congenital bilateral hearing loss and ileocolic Hirschsprung disease. In order to identify variants in potentially causal genes of the patients’ phenotype, genetical testing was conducted: targeted clinical exome, targeted exome and trio exome, respectively. We identified three novel variants spread throughout the coding sequence of SOX10 . The c.395C>G variant identified de novo in patient 1 was a single nucleotide substitution in exon 2. The c.850G>T variant identified as heterozygous in patient 2 was a loss-of-function variant that generated a premature stop codon. The c.966dupT variant identified in patient 3 was a duplication that generated a premature stop codon. It had been identified in his father, arising a possible germinal mosaicism. According to in silico predictors the variant identified in patient 1 was considered as pathogenic, whereas the other two were classified as likely pathogenic. Conclusions An exact description of the mutations responsible for WS provides useful information to explain clinical features of WS and contributes to better genetic counselling of WS patients.
Thesis
Hereditary Spastic Paraplegias (HSPs) are a group of rare, inherited, neurodegenerative disorders that arise following the progressive degeneration of the corticospinal tracts, leading to lower limbs spasticity, the disorder hallmark. HSPs are characterized by an extreme heterogeneity that encompasses both genetic and clinical features, extending to additional disorder’s features, such as age of onset and severity. This phenotypic variability is typically observed among HSP patients carrying pathogenic mutations in SPAST, the most frequently mutated HSP causative gene. After assembling a cohort of 842 SPAST-HSP patients, a combination of different Next Generation Sequencing approaches was used to dig deeper into the causes of the observed heterogeneity, especially focusing on the identification of age of onset genetic modifiers. Sequencing data resulting from Whole Genome Genotyping were used to perform both association and linkage analysis that, combined with RNA sequencing expression data, allowed to identify different candidate variants/genes, potentially acting as SPAST-HSP age of onset modifiers.
Article
Waardenburg syndrome (WS) is a group of genetic disorders associated with varying components of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and eyes. There exist four different WS subtypes, each defined by the absence or presence of additional features. One of the genes associated with WS is SOX10, a key transcription factor for the development of neural crest‐derived lineages. Here we report a 12‐year‐old boy with a novel de novo SOX10 frameshift mutation and unique combination of clinical features including primary peripheral demyelinating neuropathy, hearing loss and visual impairment but absence of Hirschsprung disease and the typical pigmentary changes of hair or skin. This expands the spectrum of currently recognized phenotypes associated with WS and illustrates the phenotypic heterogeneity of SOX10‐associated WS.
Article
Purpose of review: This review aims at updating the clinical and genetic aspects of hereditary spastic paraplegias (HSPs) and hereditary cerebellar ataxias (HCAs), focusing on the concept of spastic-ataxia phenotypic spectrum and on newly identified clinical overlaps with other neurological and nonneurological diseases. Recent findings: Next-generation sequencing (NGS) has allowed the discovery of new genes involved in HSPs and HCAs. They include new HCAs genes such as GRM1 (SCA44), FAT2 (SCA45), PLD3 (SCA46), SCYL1 (SCAR21), UBA5 (SCAR24) and XRCC1 (SCAR26) as well as CAPN1 (SPG76) and CPT1C (SPG73) in HSPs. Furthermore, NGS allowed enriching known genes phenotype, reinforcing the overlap between HSPs and HCAs defining the spastic ataxia spectrum. Clear examples are the expanded phenotypes associated with mutations in SPG7, PNPLA6, GBA2, KIF1C, CYP7B1, FA2H, ATP13A2 and many others. Moreover, other genes not previously linked to HCAs and HSPs have been implicated in spastic or ataxic phenotypes. Summary: The increase of HSPs and HCAs-related phenotypes and the continuous discovery of genes complicate clinical diagnostic in practice but, at the same time, it helps highlighting common pathological pathways, therefore opening new ways to the development of common therapeutic approaches.