Figure 3 - available via license: Creative Commons Attribution 2.5 Generic
Content may be subject to copyright.
ODE activates AMPK signaling in CRC cells. HCT-116 cells or patient-1-derived primary CRC cells were treated with or without applied ODE, cells were further cultured, expressions of listed proteins were tested by Western blots A, B, E and F. Stable HCT- 116 cells expressing scramble control shRNA ( " scr-shRNA " ), AMPKα1-shRNA or dominant negative (dn)-AMPKα1 ( " dnAMPKα1 " ) were treated with or without applied ODE, cells were further cultured for 6 h C. or 24 h D., expressions of listed proteins were tested by Western blots. Kinase phosphorylations and Bcl-2/HIF-1α expressions were quantified. Data in this figure were repeated three times, and similar results were obtained.  

ODE activates AMPK signaling in CRC cells. HCT-116 cells or patient-1-derived primary CRC cells were treated with or without applied ODE, cells were further cultured, expressions of listed proteins were tested by Western blots A, B, E and F. Stable HCT- 116 cells expressing scramble control shRNA ( " scr-shRNA " ), AMPKα1-shRNA or dominant negative (dn)-AMPKα1 ( " dnAMPKα1 " ) were treated with or without applied ODE, cells were further cultured for 6 h C. or 24 h D., expressions of listed proteins were tested by Western blots. Kinase phosphorylations and Bcl-2/HIF-1α expressions were quantified. Data in this figure were repeated three times, and similar results were obtained.  

Source publication
Article
Full-text available
Here we evaluated the anti-cancer activity of aqueous Oldenlandia diffusa (OD) extracts (ODE) in colorectal cancer (CRC) cells. We showed that ODE exerted potent anti-proliferative, cytotoxic and pro-apoptotic activities against a panel of established CRC lines (HCT-116, DLD-1, HT-29 and Lovo) and primary (patient-derived) human CRC cells. ODE acti...

Similar publications

Article
Full-text available
Background: Renal cell carcinomas (RCC) harboring a TFE3 gene fusion (TfRCC) represent an aggressive subset of kidney tumors. Key signaling pathways of TfRCC are unknown and preclinical in vivo data are lacking. We investigated Akt/mTOR pathway activation and the preclinical efficacy of dual mTORC1/2 versus selective mTORC1 inhibition in TfRCC. M...
Article
Full-text available
Although mammalian target of rapamycin 1 (mTORC1) negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signalling, in particular in an in vivo setting, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in neural stem cells (NSCs) lacking tuberous sclerosis complex subunit 1 (Tsc1), thereby promotin...
Article
Full-text available
Chondrosarcoma is a malignant bone neoplasm that is refractory to chemotherapy and radiation. With no current biological treatments, mutilating surgical resection is the only effective treatment. Proline rich polypeptide 1 (PRP‑1), which is a 15‑amino acid inhibitor of mammalian target of rapamycin complex‑1 (mTORC1), has been indicated to exert cy...
Article
Full-text available
Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX surve...
Article
Full-text available
Neoplastic cells display reprogrammed metabolism due to the heightened energetic demands and the need for biomass synthesis of a growing tumor. Targeting metabolic vulnerabilities is thus an important goal for cancer therapy. Here, we describe a novel small-molecule arylsulfonamide (N-cyclobutyl-N-((2,2-dimethyl-2H-pyrano[3,2-b]pyridin-6-yl)methyl)...

Citations

... The mice body weights and the tumor volumes [π/6 × larger diameter × (smaller diameter) 2 ] were recorded every six days. Estimated daily tumor growth (in mm 3 per day) was also calculated as described [29]. Alternatively, TIMM44-KO or KO-C priBlCa-1 primary bladder cancer cells (six million cells suspended in 100 μL of Matrigel basic medium) were s.c. ...
Article
Full-text available
Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.
... It abrogates the expression of metalloproteinases (MMPs) and caveolin-1 [152]. The extract inhibited p-ERK, p-38, NF-κB, MMP-9, and Icam-1 [153], and may also inhibit AMPK [154]. ...
Article
Full-text available
Traditional herbal medicine (THM) is a “core” from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
... The activation of impaired 5′ adenosine monophosphateactivated in GDM mice, which may contribute to insulin resistance (Lu et al., 2016). Naringin therapy increases AMPK activation, which may lead to increased glucose uptake and reduced insulin resistance (Gravandi et al., 2021). ...
Article
Full-text available
To reveal the effects of Oldenlandia diffusa (OD) on relieving the progression and development of gestational diabetes mellitus (GDM), and explore the underlying mechanism. A rat model of GDM was established by streptozotocin injection. The effects of OD on GDM rats were evaluated by measuring the levels of fasting blood glucose (FBG), insulin, and hemoglobin A1c (HbA1c), and exposing to oral glucose tolerance test (OGTT) and histological evaluation of the pancreas. The levels of insulin and inflammation response-related factors (tumor necrosis factor [TNF]-α, Interleukin [IL]-6 and IL-1β) were evaluated by enzyme-linked immunosorbent assay (ELISA). Additionally, immunoblot assay was performed to investigate the effects of OD on the nuclear factor-κb (NF-κB) pathway and 5' adenosine monophosphate-activated protein kinase (AMPK) pathway. OD decreased blood glucose level, pancreatic tissue damage, and insulin secretion in GDM rats. OD also reduced serum inflammatory levels (TNF-α, IL-6, and IL-1β) in GDM rats. Mechanically, OD could inhibit NF-κB pathway and activate AMPK pathway in the pancreatic tissue of GDM rats. OD affected glucose metabolism and inflammation level in rats with streptozotocin-induced GDM, and the underlying mechanism was through AMPK pathway. OD might serve as a promising and potential drug for the treatment of GDM.
... Cells were cultured in DMEM medium plus 10% FBS. The primary human colon cancer cells (derived from three primary colon cancer patients, namely "pri-Can-1/-2/-3") and the primary human colon epithelial cells ("pri-Epi," from one independent donor) were from Dr. Lu as well [26][27][28]. The protocols of culturing primary human cell were described previously [29]. ...
Article
Full-text available
Colorectal cancer (CRC) is the second common cause of cancer-related human mortalities. Dysregulation of histone 3 (H3) methylation could lead to transcriptional activation of multiple oncogenes, which is closely associated with CRC tumorigenesis and progression. Nuclear receptor-binding SET Domain protein 2 (NSD2) is a key histone methyltransferase catalyzing histone H3 lysine 36 dimethylation (H3K36me2). Its expression, the potential functions, and molecular mechanisms in CRC are studied here. Gene Expression Profiling Interactive Analysis (GEPIA) bioinformatics results showed that the NSD2 mRNA expression is elevated in both colon cancers and rectal cancers. Furthermore, NSD2 mRNA and protein expression levels in local colon cancer tissues are significantly higher than those in matched surrounding normal tissues. In primary human colon cancer cells and established CRC cell lines, shRNA-induced silencing or CRISPR/Cas9-induced knockout of NSD2 inhibited cell viability, proliferation, cell cycle progression, migration, and invasion. Furthermore, NSD2 shRNA or knockout induced mitochondrial depolarization, DNA damage, and apoptosis in the primary and established CRC cells. Contrarily, ectopic NSD2 overexpression in primary colon cancer cells further enhanced cell proliferation, migration, and invasion. H3K36me2, expressions of multiple oncogenes ( ADAM9 , EGFR , Sox2 , Bcl-2 , SYK , and MET ) and Akt activation were significantly decreased after NSD2 silencing or knockout in primary colon cancer cells. Their levels were however increased after ectopic NSD2 overexpression. A catalytic inactive NSD2 (Y1179A) also inhibited H3K36me2, multiple oncogenes expression, and Akt activation, as well as cell proliferation and migration in primary colon cancer cells. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD2 shRNA largely inhibited primary colon cancer cell xenograft growth in nude mice. Together, NSD2 exerted oncogenic functions in CRC and could be a promising therapeutic target.
... AAV injection was performed daily for 7 days. Tumor parameters were recorded and tumor volumes were calculated using the following formula: V (volume) = 0.5328 × length × width× height (mm 3 ) [22][23][24]. The animal procedures were approved by the Institute Animal Ethics Review Board of The Second Affiliated Hospital of Soochow University. ...
Article
Full-text available
The nuclear receptor-binding SET domain 3 (NSD3) catalyzes methylation of histone H3 at lysine 36 (H3K36), and promotes malignant transformation and progression of human cancer. Its expression, potential functions and underlying mechanisms in pancreatic cancer are studied. Bioinformatics studies and results from local human tissues show that NSD3 is upregulated in human pancreatic cancer tissues, which is correlated with poor overall survival. In primary and established pancreatic cancer cells, NSD3 silencing (by shRNAs) or CRISPR/Cas9-induced NSD3 knockout potently inhibited cell proliferation, migration and invasion, while provoking cell cycle arrest and apoptosis. Conversely, ectopic expression of NSD3-T1232A mutation significantly accelerated proliferation, migration, and invasion of pancreatic cancer cells. H3K36 dimethylation, expression of NSD3-dependent genes (Prkaa2, Myc, Irgm1, Adam12, and Notch3), and mTOR activation (S6K1 phosphorylation) were largely inhibited by NSD3 silencing or knockout. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD3 shRNA potently inhibited pancreatic cancer xenograft growth in nude mice. These results suggest that elevated NSD3 could be an important driver for the malignant progression of pancreatic cancer.
... Conversely, overexpression of AMPKa1 can suppress human cancer cell growth and proliferation (17). Further supporting the tumor suppressor function for AMPK, a number of anti-cancer agents were found to activate AMPK signaling to induce cancer cell death and apoptosis (18)(19)(20)(21). ...
Article
Full-text available
Osteosarcoma (OS) is a common primary bone malignancy. We here investigated the potential activity of PF-06409577, a novel, potent, and direct activator of AMP-activated protein kinase (AMPK), against human OS cells. In established (U2OS, MG-63, and SaOs-2 lines) and primary human OS cells, PF-06409577 inhibited cell viability and proliferation, while inducing cell apoptosis and cell cycle arrest. PF-06409577 induced AMPK activation, mTORC1 inhibition, autophagy induction, and downregulation of multiple receptor tyrosine kinase inOS cells. AMPK inactivation by AMPKα1 shRNA, CRISPR/Cas9 knockout, or dominant negative mutation (T172A) was able to abolish PF-06409577-induced activity in OS cells. In vivo, PF-06409577 oral administration at well-tolerated doses potently inhibited growth of U2OS cells and primary human OS cells in severe combined immunodeficient mice. AMPK activation, mTORC1 inhibition, autophagy induction, as well as RTK degradation and apoptosis activation were detected in PF-06409577-treated xenografts. In conclusion, activation of AMPK by PF-06409577 inhibits OS cell growth.
... The primary colon cancer cells were cultured in RPMI-1640 medium with 12% fetal bovine serum (FBS) and described supplements [27,28]. The primary human colon epithelial cells were provided by Dr. Lu [27,29,30]. Primary colon cancer cells and epithelial cells at passage 3-10 were utilized for the experiments. ...
Article
Full-text available
Long non-coding RNA EPIC1 (Lnc-EPIC1) binds MYC protein, which is essential for MYC function and expression of MYC target genes. The current study tested its expression and potential functions in human colon cancer cells. We show that Lnc-EPIC1 expression is elevated in human colon cancer tissues and primary human colon cancer cells. Whereas its expression is relatively low in normal colon tissues and colon epithelial cells. In the primary human colon cancer cells, Lnc-EPIC1 siRNA largely inhibited cancer cell growth, proliferation, migration and invasion. Further, Lnc-EPIC1 silencing induced significant apoptosis activation in colon cancer cells. Conversely, ectopic overexpression of Lnc-EPIC1 augmented colon cancer cell growth, proliferation, migration and invasion. RNA-immunoprecipitation and RNA pull-down results confirmed that Lnc-EPIC1 directly binds MYC protein in colon cancer cells. MYC target proteins, including cyclin A, cyclin D and CDK9, were downregulated with Lnc-EPIC1 silencing, but upregulated after Lnc-EPIC1 overexpression in colon cancer cells. Further Lnc-EPIC1 silencing or overexpression failed to alter functions of MYC-knockout colon cancer cells. Collectively, overexpressed Lnc-EPIC1 is important for the progression of human colon cancer cells.
... The primary human colon cancer cells from four written-informed consent primary colon cancer patients, pCan1/2/3/4, and primary human colon epithelial cells from two healthy donors, pEpi1/2, were provided by Dr. Lu at Nanjing Medical University [15][16][17] . The primary human cells were cultured in the described medium 15,18 . ...
... The primary human cells were cultured in the described medium 15,18 . The established HCT116 colon cancer cells were also provided by Dr. Lu [15][16][17] . All the established and primary cells were subjected to routine mycoplasma and microbial contamination examination every 2-3 months. ...
... Tumor volumes were recorded using the described formula 30 . Estimated daily tumor growth (in mm 3 per day) was calculated as described 16 . All animal studies were in accordance with regulations of the Institutional Animal Care and Use Committee and Ethics Committee of Nanjing Medical University (Nanjing, China). ...
Article
Full-text available
A1874 is a novel BRD4-degrading proteolysis targeting chimera (PROTAC). In primary colon cancer cells and established HCT116 cells, A1874 potently inhibited cell viability, proliferation, cell cycle progression, as well as cell migration and invasion. The BRD4-degrading PROTAC was able to induce caspase and apoptosis activation in colon cancer cells. Furthermore, A1874-induced degradation of BRD4 protein and downregulated BRD-dependent genes (c-Myc, Bcl-2, and cyclin D1) in colon cancer cells. Significantly, A1874-induced anti-colon cancer cell activity was more potent than the known BRD4 inhibitors (JQ1, CPI203, and I-BET151). In BRD4-knockout colon cancer cells A1874 remained cytotoxic, indicating the existence of BRD4-independent mechanisms. In addition to BRD4 degradation, A1874 cytotoxicity in colon cancer cells was also associated with p53 protein stabilization and reactive oxygen species production. Importantly, the antioxidant N-acetyl-cysteine and the p53 inhibitor pifithrin-α attenuated A1874-induced cell death and apoptosis in colon cancer cells. In vivo, A1874 oral administration potently inhibited colon cancer xenograft growth in severe combined immuno-deficient mice. BRD4 degradation and p53 protein elevation, as well as apoptosis induction and oxidative stress were detected in A1874-treated colon cancer tissues. Together, A1874 inhibits colon cancer cell growth through both BRD4-dependent and -independent mechanisms.
... NINJ2 mRNA levels in a total of twenty (20) human colon cancer tissues ("Cancer") and paracancer normal colon epithelial tissues ("Normal") were analyzed. As shown, NINJ2 mRNA levels were significantly upregulated in the colon cancer tissues ( Figure 1C). ...
... Following selection by cancer cells ("pri-Can-1/-2/-3") and primary human colon epithelial cells ("pri-Epi-1/-2") were tested by qPCR (A) and Western blotting (B and C), respectively. A total of twenty (20) pairs of human colon cancer tissues ("Cancer") and paired surrounding normal colon epithelial tissues ("Normal") were homogenized anddissolved in tissue lysis buffer, NINJ2 mRNA and protein expressions were tested by qPCR (C) and Western blotting (D and E), respectively. "Pat" stands for "Patient No." (D). ...
... Culture of HT-29 cells was reported early [12]. The primary human colon cancer cells, derived from three primary colon cancer patients ("pri-Can-1/-2/-3"), as well as the primary human colon epithelial cells ("pri-Epi-1/-2", from two independent donors) were provided by Dr. Lu [19][20][21]. The primary human cells were cultured in medium for primary human cells (DMEM, 15% FBS, 10 mg/mL transferrin, 2 mM glutamine, 1 mM pyruvate, 10 mM HEPES, 100 units/mL penicillin/streptomycin, 0.1 mg/mL gentamicin, 0.2 units/mL insulin, 0.1 mg/mL hydrocortisone, and 2 g/L fungizone) [19]. ...
Article
Full-text available
Ninjurin 2 (NINJ2) is a novel adhesion molecule. Its expression and potential function in human colorectal cancer (CRC) cells are studied. We show that NINJ2 is overexpressed in established (HT-29) and primary CRC cells and in human colon cancer tissues. Its expression level is low in colon epithelial cells and normal colon tissues. NINJ2 shRNA or knockout (by CRSIPR/Cas9) potently inhibited human CRC cell survival and proliferation, while significantly inducing cell apoptosis. Conversely, lentivirus-mediated NINJ2 overexpression promoted CRC cell proliferation. NINJ2 co-immunoprecipitated with multiple RTKs (EGFR, PDGFRα/β and FGFR) in CRC cells and human colon cancer tissues. In HT-29 cells, RTKs' downstream signalings, Akt and Erk, were significantly inhibited by NINJ2 shRNA or knockout, but augmented following ectopic NINJ2 overexpression. In vivo, NINJ2-silenced or NINJ2-knockout CRC xenografts grew significantly slower than the control xenografts. Akt-Erk activation was largely inhibited in CRC xenografts with NINJ2 silencing or knockout. Taken together, NINJ2 overexpression promotes CRC cell growth in vitro and in vivo.
... Activity assays for TUNEL and caspase-3 were conducted for each group as previously described. 17 Experiments were performed in triplicate independently. ...
Article
Full-text available
Background In conjunction with the methionine adenosyltransferase 2A (MAT2A), MAT2B protein catalyses the formation of methyl donor S-adenosylmethionine to mediate cell metabolism, including proliferation and apoptosis. In this study, we investigated the functional and molecular mechanisms by which MAT2B influences triple-negative breast cancer (TNBC). Methods The mRNA level of MAT2B in three human TNBC cell lines and 40 TNBC tissue samples was analysed using quantitative reverse transcription polymerase chain reaction. The relationship between MAT2B expression and the clinicopathological characteristics of TNBC patients was also analysed. Further, MAT2B function was investigated using a series of in vitro and in vivo assays with cells in which MAT2B was inhibited using RNAi. Results We found that the mRNA levels of MAT2B were upregulated in all human TNBC cell lines tested. Moreover, positive expression of MAT2B was significantly correlated with higher T classification and M-stage. We also found that a higher level of MAT2B was correlated with worse relapse-free survival (RFS) according to a log-rank test. Next, we showed that the direct inhibition, using RNAi, of MAT2B in MDA-MB-231 and MDA-MB-468 cells inhibited cell growth and migration and induced apoptosis. Knockdown of MAT2B in MDA-MB-231 cells also repressed the expression of phosphorylated AKT and phosphorylated extracellular regulated protein kinases 1/2 (ERK1/2). Both phosphorylated AKT and ERK1/2 inhibitors reduced cell growth and migration, and induced apoptosis in MDA-MB-231 cells. As expected, knockdown of MAT2B in MDA-MB-231 cells significantly decreased the rate of tumour growth in vivo. Conclusion Our results demonstrated that targeting MAT2B could suppress cell growth and migration and induce apoptosis by inhibiting the AKT and ERK pathways in TNBC. Thus, targeting MAT2B requires further investigation as a therapeutic intervention for TNBC.