Fig 2 - uploaded by Peter Edward Mortimer
Content may be subject to copyright.
Muyocopron garethjonesii (holotype). a–c Superficial ascomata on substrate. d, e Arrangement of cells in outer region of ascomata. f Section of ascoma. g Peridium. h Pseudoparaphyses. i–l Asci. m–o Ascospores. p Germinated ascospore. q, r Colony on PDA after 7 days. Scale bars: d = 100 μm, e = 20 μm, f = 100 μm, g = 10 μm, h = 5 μm, i–l = 10 μm, m–p = 5 μm.  

Muyocopron garethjonesii (holotype). a–c Superficial ascomata on substrate. d, e Arrangement of cells in outer region of ascomata. f Section of ascoma. g Peridium. h Pseudoparaphyses. i–l Asci. m–o Ascospores. p Germinated ascospore. q, r Colony on PDA after 7 days. Scale bars: d = 100 μm, e = 20 μm, f = 100 μm, g = 10 μm, h = 5 μm, i–l = 10 μm, m–p = 5 μm.  

Source publication
Article
Full-text available
During a survey of microfungi on leaves of Pandanus species in the Nabanhe Valley at Xishuangbanna, Yunnan Province, China in August 2016, we collected and isolated a new saprobic taxon belonging in Muyocopron (Muyocopronaceae). Both morphological characters and phylogenetic analyses of LSU and SSU sequence data provide strong evidence to place the...

Citations

Article
Full-text available
Pleurotremataceae species are saprobes on decaying wood in terrestrial, mangrove, and freshwater habitats. The generic boundary of the family has traditionally been based on morphology. All genera of Pleurotremataceae have a high degree of morphological overlap, of which the generic circumscription of Melomastia and Dyfrolomyces has not been well resolved. Thus, the delimitation of genera has always been challenging. Melomastia traditionally differs from Dyfrolomyces in having 2-septate, oblong, with obtuse-ends ascospores. These main characteristics have been used to distinguish Melomastia from Dyfrolomyces for a long time. However, the above characteristics sometimes overlap among Dyfrolomyces and Melomastia species. Based on the morphology and multigene phylogeny with newly obtained data, we synonymized Dyfrolomyces under Melomastia following up-to-date results. Four novel species (i.e., Melomastia fusispora, M. oleae, M. sichuanensis and M. winteri) collected from the dead branches of Olea europaea L. in Chengdu Olive Base, Sichuan Province in China are introduced based on detailed morphological characterization and phylogenetic analyses of sequences based on nuclear ribosomal (LSU and SSU) and protein-coding gene (tef1-α). The 11 new combinations proposed are Melomastia aquatica (= Dyfrolomyces aquaticus), M. chromolaenae (= D. chromolaenae), M. distoseptata (= D. distoseptatus), M. mangrovei (= D. mangrovei), M. marinospora (= D. marinosporus), M. neothailandica (= D. neothailandicus), M. phetchaburiensis (= D. phetchaburiensis), M. sinensis (= D. sinensis), M. thailandica (= D. thailandica), M. thamplaensis (= D. thamplaensis) and M. tiomanensis (= D. tiomanensis).
Article
Full-text available
This article provides descriptions and illustrations of microfungi associated with the leaf litter of Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis collected from Taiwan. These host species are native to the island and Celtis formosana is an endemic tree species. The study revealed 95 species, consisting of two new families (Cylindrohyalosporaceae and Oblongohyalosporaceae), three new genera (Cylindrohyalospora, Neodictyosporium and Oblongohyalospora), 41 new species and 54 new host records. The newly described species are Acrocalymma ampeli (Acrocalymmaceae), Arthrinium mori (Apiosporaceae), Arxiella celtidis (Muyocopronaceae), Bertiella fici (Melanommataceae), Cercophora fici (Lasiosphaeriaceae), Colletotrichum celtidis, C. fici, C. fici-septicae (Glomerellaceae), Conidiocarpus fici-septicae (Capnodiaceae), Coniella fici (Schizoparmaceae), Cylindrohyalospora fici (Cylindrohyalosporaceae), Diaporthe celtidis, D. fici-septicae (Diaporthaceae), Diaporthosporella macarangae (Diaporthosporellaceae), Diplodia fici-septicae (Botryosphaeriaceae), Discosia celtidis, D. fici (Sporocadaceae), Leptodiscella sexualis (Muyocopronaceae), Leptospora macarangae (Phaeosphaeriaceae), Memnoniella alishanensis, M. celtidis, M. mori (Stachybotryaceae), Micropeltis fici, M. ficina (Micropeltidaceae), Microthyrium fici-septicae (Microthyriaceae), Muyocopron celtidis, M. ficinum, Mycoleptodiscus alishanensis (Muyocopronaceae), Neoanthostomella fici (Xylariales genera incertae sedis), Neodictyosporium macarangae (Sordariales genera incertae sedis), Neofusicoccum moracearum (Botryosphaeriaceae), Neophyllachora fici (Phyllachoraceae), Nigrospora macarangae (Apiosporaceae), Oblongohyalospora macarangae (Oblongohyalosporaceae), Ophioceras ficinum (Ophioceraceae), Parawiesneriomyces chiayiensis (Wiesneriomycetaceae), Periconia alishanica, P. celtidis (Periconiaceae), Pseudocercospora fici-septicae (Mycosphaerellaceae), Pseudoneottiospora cannabacearum (Chaetosphaeriaceae) and Pseudopithomyces mori (Didymosphaeriaceae). The new host records are Alternaria burnsii, A. pseudoeichhorniae (Pleosporaceae), Arthrinium hydei, A. malaysianum, A. paraphaeospermum, A. rasikravindrae, A. sacchari (Apiosporaceae), Bartalinia robillardoides (Sporocadaceae), Beltrania rhombica (Beltraniaceae), Cladosporium tenuissimum (Cladosporiaceae), Coniella quercicola (Schizoparmaceae), Dematiocladium celtidicola (Nectriaceae), Diaporthe limonicola, D. millettiae, D. pseudophoenicicola (Diaporthaceae), Dictyocheirospora garethjonesii (Dictyosporiaceae), Dimorphiseta acuta (Stachybotryaceae), Dinemasporium parastrigosum (Chaetosphaeriaceae), Discosia querci (Sporocadaceae), Fitzroyomyces cyperacearum (Stictidaceae), Gilmaniella bambusae (Ascomycota genera incertae sedis), Hermatomyces biconisporus (Hermatomycetaceae), Lasiodiplodia thailandica, L. theobromae (Botryosphaeriaceae), Memnoniella echinata (Stachybotryaceae), Muyocopron dipterocarpi, M. lithocarpi (Muyocopronaceae), Neopestalotiopsis asiatica, N. phangngaensis (Sporocadaceae), Ophioceras chiangdaoense (Ophioceraceae), Periconia byssoides (Periconiaceae), Pestalotiopsis dracaenea, P. formosana, P. neolitseae, P. papuana, P. parva, P. portugallica, P. trachycarpicola (Sporocadaceae), Phragmocapnias betle (Capnodiaceae), Phyllosticta capitalensis (Phyllostictaceae), Pseudopestalotiopsis camelliae-sinensis (Sporocadaceae), Pseudopithomyces chartarum, P. sacchari (Didymosphaeriaceae), Pseudorobillarda phragmitis (Pseudorobillardaceae), Robillarda roystoneae (Sporocadaceae), Sirastachys castanedae, S. pandanicola (Stachybotryaceae), Spegazzinia musae (Didymosphaeriaceae), Stachybotrys aloeticola, S. microspora (Stachybotryaceae), Strigula multiformis (Strigulaceae), Torula fici (Torulaceae), Wiesneriomyces laurinus (Wiesneriomycetaceae) and Yunnanomyces pandanicola (Sympoventuriaceae). The taxonomic placement of most taxa discussed in this study is based on morphological observation of specimens, coupled with multi-locus phylogenetic analyses of sequence data. In addition, this study provides a host-fungus database for future studies and increases knowledge of fungal diversity, as well as new fungal discoveries from the island.
Article
Full-text available
Plants harbour diverse communities of fungal species in their internal compartments. Endophytic fungi help their hosts to establish, survive, and adapt to different environments. Here, we examined the diversity of endophytic fungi in the leaflets and branches of Poincianella pyramidalis, a plant species endemic to the Brazilian tropical dry forest (Caatinga). A total of 360 fragments of leaflets and branches were analysed and 189 endophytic fungi were isolated and distributed among 21 ascomycetous genera based on their ITS and LSU rDNA sequences. Diaporthe was the most frequently identified genus, followed by Didymella and Rhytidhysteron. The colonisation rate of plant fragments was higher in the branches (74 %) than in leaflets (14 %). The richness of the genera of endophytic fungi was also higher in the branches than in leaflets, whereas no difference was observed in endophyte diversity between the plant parts, based on Shannon-Wiener and Fisher alpha diversity indices. Our results indicate that endemic plant species from Brazilian dry forest, such as P. pyramidalis, are predominantly colonised by ascomycetous fungi, especially members of the class Dothideomycetes.
Article
The unique co‐occurrence of thyriothecia belonging to three fossil genera of epiphyllous fungi, Stomiopeltites Alvin & Muir (Micropeltidaceae), Callimothallus Dilcher, and Trichothyrites Rosendahl (Microthyriaceae), are reported on the leaves of the same host plant, Cunninghamia shangcunica Kodrul, Gordenko & Sokolova from the Oligocene Shangcun Formation of the Maoming Basin, South China. In China, Stomiopeltites is identified for the first time, Callimothallus is known from the Oligocene and Miocene of Guangxi and Zhejiang provinces, and Trichothyrites previously has been found only in the Eocene palynological assemblages of the Maoming Basin. The presence of abundant and diverse epiphyllous micromycetes, together with the taxonomic composition of the Shangcun megaflora and pollen assemblage, as well as quantitative climatic estimates obtained using Climate Leaf Analysis Multivariate Program (CLAMP), confirm the existence of a warm and humid climate in this region during the late early Oligocene. The geographic and stratigraphic distributions, comparisons with extant analogues, as well as ecological and paleoclimatic implications of the fossil fungi are discussed. This article is protected by copyright. All rights reserved.
Article
This article provides morphological descriptions and illustrations of microfungi associated with the invasive weed, Chromolaena odorata, which were mainly collected in northern Thailand. Seventy-seven taxa distributed in ten orders, 23 families (of which Neomassarinaceae is new), 12 new genera (Chromolaenicola, Chromolaenomyces, Longiappendispora, Pseudocapulatispora, Murichromolaenicola, Neoophiobolus, Paraleptospora, Pseudoroussoella, Pseudostaurosphaeria, Pseudothyridariella, Setoarthopyrenia, Xenoroussoella), 47 new species (Aplosporella chromolaenae, Arthrinium chromolaenae, Chromolaenicola chiangraiensis, C. lampangensis, C. nanensis, C. thailandensis, Chromolaenomyces appendiculatus, Diaporthe chromolaenae, Didymella chromolaenae, Dyfrolomyces chromolaenae, Leptospora chromolaenae, L. phraeana, Longiappendispora chromolaenae, Memnoniella chromolaenae, Montagnula chiangraiensis, M. chromolaenae, M. chromolaenicola, M. thailandica, Murichromolaenicola chiangraiensis, M. chromolaenae, Muyocopron chromolaenae, M. chromolaenicola, Neomassarina chromolaenae, Neoophiobolus chromolaenae, Neopyrenochaeta chiangraiensis, N. chromolaenae, N. thailandica, N. triseptatispora, Nigrograna chromolaenae, Nothophoma chromolaenae, Paraleptospora chromolaenae, P. chromolaenicola, Patellaria chromolaenae, Pseudocapulatispora longiappendiculata, Pseudoroussoella chromolaenae, Pseudostaurosphaeria chromolaenae, P. chromolaenicola, Pseudothyridariella chromolaenae, Pyrenochaetopsis chromolaenae, Rhytidhysteron chromolaenae, Setoarthopyrenia chromolaenae, Sphaeropsis chromolaenicola, Tremateia chiangraiensis, T. chromolaenae, T. thailandensis, Xenoroussoella triseptata, Yunnanensis chromolaenae), 12 new host records, three new taxonomic combinations (Chromolaenicola siamensis, Pseudoroussoella elaeicola, Pseudothyridariella mahakashae), and two reference specimens (Torula chromolaenae, T. fici) are described and illustrated. Unlike some other hosts, e.g. bamboo (Poaceae) and Pandanaceae, the dominant group of fungi on Siam weed were Dothideomycetes. Only 15 species previously recorded from northern Thailand were found in this study. Most of the taxa are likely to have jumped hosts from surrounding plants and are unlikely to be a specialist to Siam weed. Most fungal families found on Siam weed had divergence estimates with stem ages in the Cretaceous, which coincided with the expected origin of the host family (Asteraceae). This further indicates that the species have jumped hosts, as it is unlikely that the taxa on the alien Siam weed came from the Americas with its host. They may, however, have jumped from other Asteraceae hosts. In a preliminary screening 40 (65%) of the 62 species tested showed antimicrobial activity and thus, the fungi associated with C. odorata may be promising sources of novel bioactive compound discovery. We provide a checklist of fungi associated with C. odorata based on the USDA Systematic Mycology and Microbiology Laboratory (SMML) database, relevant literature and our study. In total, 130 taxa (116 identified and 14 unidentified species) are distributed in 20 orders, 48 families and 85 genera. Pseudocercospora is the most commonly encountered genus on Siam weed.
Article
Full-text available
Genome mining of Ascomycete sp. F53 (F53), a fungal endophyte of the traditional Chinese medicinal plant Taxus yunnanensis (Chinese yew), revealed 35 putative specialized metabolite biosynthesis gene clusters, one of which encodes a rarely seen tandem polyketide synthase pathway with close homology to azaphilone biosynthesis pathways. A novel compound, lijiquinone 1, was subsequently isolated from F53 and structurally and functionally characterized. The m/z 385 [M + H⁺]⁺ compound, comprised of a cyclohexenone side group attached to a core bicyclic ring, displayed cytotoxicity against human myeloma cells (IC50 = 129 μM), as well as antifungal activity against Candida albicans (IC50 = 79 μM) and Cryptococcus albidus (IC50 = 141 μM). Our results suggest that enzymes encoded on the lij gene cluster are responsible for the synthesis of 1 and that the medicinal properties of T. yunnanensis could be partially mediated by this novel azaphilone. This study highlights the utility of combining traditional knowledge with contemporary genomic approaches for the discovery of new bioactive compounds.
Article
Full-text available
Pseudopalawania siamensis gen. et sp. nov., from northern Thailand, is introduced based on multi-gene analyses and morphological comparison. An isolate was fermented in yeast malt culture broth and explored for its secondary metabolite production. Chromatographic purification of the crude ethyl acetate (broth) extract yielded four tetrahydroxanthones comprised of a new heterodimeric bistetrahydroxanthone, pseudopalawanone (1), two known dimeric derivatives, 4,4′-secalonic acid D (2) and penicillixanthone A (3), the corresponding monomeric tetrahydroxanthone paecilin B (4), and the known benzophenone, cephalanone F (5). Compounds 1-3 showed potent inhibitory activity against Gram-positive bacteria. Compounds 2 and 3 were inhibitory against Bacillus subtilis with minimum inhibitory concentrations (MIC) of 1.0 and 4.2 μg/mL, respectively. Only compound 2 showed activity against Mycobacterium smegmatis. In addition, the dimeric compounds 1-3 also showed moderate cytotoxic effects on HeLa and mouse fibroblast cell lines, which makes them less attractive as candidates for development of selectively acting antibiotics.
Article
Full-text available
Mycoleptodiscus includes plant pathogens, animal opportunists, saprobic and endophytic fungi. The present study presents the first molecular phylogeny and revision of the genus based on four loci, including ITS, LSU, rpb2, and tef1. An extensive collection of Mycoleptodiscus cultures, including ex-type strains from the CBS, IMI, MUCL, BRIP, clinical isolates from the USA, and fresh isolates from Brazil and Spain, was studied morphologically and phylogenetically to resolve their taxonomy. The study showed that Mycoleptodiscus sensu lato is polyphyletic. Phylogenetic analysis places Mycoleptodiscus in Muyocopronales (Dothideomycetes), together with Arxiella, Leptodiscella, Muyocopron, Neocochlearomyces, and Paramycoleptodiscus. Mycoleptodiscus terrestris, the type species, and M. sphaericus are reduced to synonyms, and one new species is introduced, M. suttonii. Mycoleptodiscus atromaculans, M. coloratus, M. freycinetiae, M. geniculatus, M. indicus, M. lateralis (including M. unilateralis and M. variabilis as its synonyms) and M. taiwanensis belong to Muyocopron (Muyocopronales, Dothideomycetes), and M. affinis, and M. lunatus to Omnidemptus (Magnaporthales, Sordariomycetes). Based on phylogenetic analyses we propose Muyocopron alcornii sp. nov., a fungus associated with leaf spots on Epidendrum sp. (Orchidaceae) in Australia, Muyocopron zamiae sp. nov. associated with leaf spots on Zamia (Zamiaceae) in the USA, and Omnidemptus graminis sp. nov. isolated from a grass (Poaceae) in Spain. Furthermore, Neomycolepto­discus venezuelense gen. & sp. nov. is introduced for a genus similar to Mycoleptodiscus in Muyocopronaceae.
Article
Full-text available
This article is the ninth in the series of Fungal Diversity Notes, where 107 taxa distributed in three phyla, nine classes, 31 orders and 57 families are described and illustrated. Taxa described in the present study include 12 new genera, 74 new species, three new combinations, two reference specimens, a re-circumscription of the epitype, and 15 records of sexual-asexual morph connections, new hosts and new geographical distributions. Twelve new genera comprise Brunneofusispora, Brunneomurispora, Liua, Lonicericola, Neoeutypella, Paratrimmatostroma, Parazalerion, Proliferophorum, Pseudoastrosphaeriellopsis, Septomelanconiella, Velebitea and Vicosamyces. Seventy-four new species are Agaricus memnonius, A. langensis, Aleurodiscus patagonicus, Amanita flavoalba, A. subtropicana, Amphisphaeria mangrovei, Baorangia major, Bartalinia kunmingensis, Brunneofusispora sinensis, Brunneomurispora lonicerae, Capronia camelliae-yunnanensis, Clavulina thindii, Coniochaeta simbalensis, Conlarium thailandense, Coprinus trigonosporus, Liua muriformis, Cyphellophora filicis, Cytospora ulmicola, Dacrymyces invisibilis, Dictyocheirospora metroxylonis, Distoseptispora thysanolaenae, Emericellopsis koreana, Galiicola baoshanensis, Hygrocybe lucida, Hypoxylon teeravasati, Hyweljonesia indica, Keissleriella caraganae, Lactarius olivaceopallidus, Lactifluus midnapurensis, Lembosia brigadeirensis, Leptosphaeria urticae, Lonicericola hyaloseptispora, Lophiotrema mucilaginosis, Marasmiellus bicoloripes, Marasmius indojasminodorus, Micropeltis phetchaburiensis, Mucor orantomantidis, Murilentithecium lonicerae, Neobambusicola brunnea, Neoeutypella baoshanensis, Neoroussoella heveae, Neosetophoma lonicerae, Ophiobolus malleolus, Parabambusicola thysanolaenae, Paratrimmatostroma kunmingensis, Parazalerion indica, Penicillium dokdoense, Peroneutypa mangrovei, Phaeosphaeria cycadis, Phanerochaete australosanguinea, Plectosphaerella kunmingensis, Plenodomus artemisiae, P. lijiangensis, Proliferophorum thailandicum, Pseudoastrosphaeriellopsis kaveriana, Pseudohelicomyces menglunicus, Pseudoplagiostoma mangiferae, Robillarda mangiferae, Roussoella elaeicola, Russula choptae, R. uttarakhandia, Septomelanconiella thailandica, Spencermartinsia acericola, Sphaerellopsis isthmospora, Thozetella lithocarpi, Trechispora echinospora, Tremellochaete atlantica, Trichoderma koreanum, T. pinicola, T. rugulosum, Velebitea chrysotexta, Vicosamyces venturisporus, Wojnowiciella kunmingensis and Zopfiella indica. Three new combinations are Baorangia rufomaculata, Lanmaoa pallidorosea and Wojnowiciella rosicola. The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated. The epitype of Sarcopeziza sicula is re-circumscribed based on cyto- and histochemical analyses. The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time. In addition, the new host records and country records are Amanita altipes, A. melleialba, Amarenomyces dactylidis, Chaetosphaeria panamensis, Coniella vitis, Coprinopsis kubickae, Dothiorella sarmentorum, Leptobacillium leptobactrum var. calidus, Muyocopron lithocarpi, Neoroussoella solani, Periconia cortaderiae, Phragmocamarosporium hederae, Sphaerellopsis paraphysata and Sphaeropsis eucalypticola.
Article
Inaccurate taxonomic placement of fossils can lead to the accumulation of errors in molecular clock studies and their generated evolutionary lineages. There are limited fossil data that can be used in divergence time estimations. Therefore, reliable morphological characterization and taxonomical identification of fossil fungi are extremely important. Most fossils of Dothideomycetes and Sordariomycetes are from the early Cenozoic (66–23 Mya), with fewer from the late Mesozoic (174–145 Mya). However, it is hard to distinguish some fossil descriptions as photographs and illustrations are unclear; thus, the validity of using these fossils in calibrations of molecular clocks is problematic. This study brings scattered paleobiological data on selected fossil Ascomycota, using descriptions, fossil images and illustrations, coupled with recent age estimations, and taxonomic and phylogenetic affinity of extant species. As an integrated approach, this study summarizes a historical fossil outline with a reliable minimum age for 16 calibrating points viz. crown of Aigialus, Anzia, Aspergillus, Asterina, Calicium chlorosporum–C. nobile, Capnodiales, Chaenotheca, Colletotrichum, Diaporthales, Meliola, Ophiocordyceps, Microthyriales, Microthyrium, Muyocopron, Pezizomycotina and Stigmatomyces. A scheme of Ascomycota ancient lineages is also provided in order to improve divergence time estimations.