Figure - available from: Mycokeys
This content is subject to copyright. Terms and conditions apply.
Morphology of Biatora alnetorum. A Thallus with soralia in freshly collected specimen (Tønsberg 48200, UPS) B thalli with soralia in freshly collected specimens: Biatora alnetorum to the right and the similar B. flavopunctata to the left (Tønsberg 48202, BG), separated more or less by the approximately vertical, shallow crack at the centre of the image. Scale bars: 0.5 mm (A, B).

Morphology of Biatora alnetorum. A Thallus with soralia in freshly collected specimen (Tønsberg 48200, UPS) B thalli with soralia in freshly collected specimens: Biatora alnetorum to the right and the similar B. flavopunctata to the left (Tønsberg 48202, BG), separated more or less by the approximately vertical, shallow crack at the centre of the image. Scale bars: 0.5 mm (A, B).

Source publication
Article
Full-text available
Biatoraalnetorum S. Ekman & Tønsberg, a lichenised ascomycete in the family Ramalinaceae (Lecanorales, Lecanoromycetes), is described as new to science. It is distinct from other species of Biatora in the combination of mainly three-septate ascospores, a crustose thallus forming distinctly delimited soralia that develop by disintegration of convex...

Citations

... Printzen (2014) mentioned 42 species for the genus Biatora, among which several undescribed taxa were noted, and this number was followed in the last generic classification of lichens by Lücking et al. (2017). Further additions were recently published by Printzen et al. (2016), Kistenich et al. (2018), Ekman & Tønsberg (2019) and Spribille et al. (2020). However, the exact number of species is hard to determine because some authors have recently started to simultaneously split off new genera from, and combine taxa from, outside Biatora into the genus based on largely unsupported phylogenies (Kondratyuk et al. 2019). ...
Article
A unique crustose lichen species was recently documented from various types of preserved forests across boreal and temperate Europe (Norway, Ukraine, the Czech Republic) and the Caucasus (Russia). It is formally described here as the new species Biatora amylacea . A phylogeny based on ITS and mtSSU sequences demonstrates that it belongs to an isolated group within the core of Biatora s. lat., together with the recently described B. radicicola . It is a distinctive taxon within the genus on account of its amyloid exciple, otherwise known only from members of the Biatora rufidula group. The new species is also characterized by amyloid thalline hyphae and the production of soredia with a blue-green pigment. This microlichen may serve as a bioindicator species of old-growth forests.
... Even though a wide range of analytical techniques have been used to study lichen metabolites [25][26][27][28][29] , the favoured approach among lichenologists remains TLC analysis [30][31][32][33][34] . Because of its accessibility, it is still widely used today along with spot test reactions when describing 1 CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France. 2 [35][36][37][38] . However, it lacks sensitivity, relies on co-elution with standards, and metabolite identification can be challenging as such approaches are based on comparative identification and not on the generation of proper spectroscopic data. ...
Article
Full-text available
While analytical techniques in natural products research massively shifted to liquid chromatography-mass spectrometry, lichen chemistry remains reliant on limited analytical methods, Thin Layer Chromatography being the gold standard. To meet the modern standards of metabolomics within lichenochemistry, we announce the publication of an open access MS/MS library with 250 metabolites, coined LDB for Lichen DataBase, providing a comprehensive coverage of lichen chemodiversity. These were donated by the Berlin Garden and Botanical Museum from the collection of Siegfried Huneck to be analyzed by LC-MS/MS. Spectra at individual collision energies were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/MTBLS999) while merged spectra were uploaded to the GNPS platform (CCMSLIB00004751209 to CCMSLIB00004751517). Technical validation was achieved by dereplicating three lichen extracts using a Molecular Networking approach, revealing the detection of eleven unique molecules that would have been missed without LDB implementation to the GNPS. From a chemist’s viewpoint, this database should help streamlining the isolation of formerly unreported metabolites. From a taxonomist perspective, the LDB offers a versatile tool for the chemical profiling of newly reported species.
Thesis
Les lichens sont des champignons symbiotiques dont la chimie est exploitée par l’Homme depuis l’antiquité. Ils n’ont cependant pas été intégrés aux études de métabolomique récentes ce qui a installé l’idée que les lichens sont pauvres en molécules. 1050 molécules leur sont classiquement attribuées, bien que ce décompte date et qu’il semble éloigné de ce qui pourrait être attendu pour un mode de vie concernant 19 387 espèces. En métabolomique, LC-MS et la déréplication à l’aide de bases de données sont régulièrement usitées pour permettre le profilage des échantillons. Ces bases de données ne sont cependant pas adaptées à l’étude des lichens, qui produisent principalement des molécules qui leur sont uniques. Dans cette optique, plusieurs bases de données spécifiques aux lichens ont été créées ici, en utilisant des données de la littérature ainsi qu’en produisant des données spectrales. Des outils ont été créées pour améliorer la déréplication par la prédiction des molécules contenues dans les extraits à partir des ions qu’elles produisent. Tout ceci a été appliqué à l’analyse de 300 échantillons de lichens pour mettre en évidence la diversité chimique de ces champignons à l’aide de techniques modernes. Ceci a permis de prédire quelque 8000 molécules avec des degrés de certitude variables. L’étude détaillée des résultats pour mettre à jour les connaissances sur les lichens reste à faire, mais ceux-ci permettent déjà d’avancer que ces organismes sont à l’origine d’une chimie sous-estimée et qui reste encore à explorer.
Article
Full-text available
Lichens are widely acknowledged to be a key component of high latitude ecosystems. However, the time investment needed for full inventories and the lack of taxonomic identification resources for crustose lichen and lichenicolous fungal diversity have hampered efforts to fully gauge the depth of species richness in these ecosystems. Using a combination of classical field inventory and extensive deployment of chemical and molecular analysis, we assessed the diversity of lichens and associated fungi in Glacier Bay National Park, Alaska (USA), a mixed landscape of coastal boreal rainforest and early successional low elevation habitats deglaciated after the Little Ice Age. We collected nearly 5000 specimens and found a total of 947 taxa, including 831 taxa of lichen-forming and 96 taxa of lichenicolous fungi together with 20 taxa of saprotrophic fungi typically included in lichen studies. A total of 98 species (10.3% of those detected) could not be assigned to known species and of those, two genera and 27 species are described here as new to science: Atrophysma cyanomelanos gen. et sp. nov., Bacidina circumpulla , Biatora marmorea , Carneothele sphagnicola gen. et sp. nov., Cirrenalia lichenicola , Corticifraga nephromatis , Fuscidea muskeg , Fuscopannaria dillmaniae , Halecania athallina , Hydropunctaria alaskana , Lambiella aliphatica , Lecania hydrophobica , Lecanora viridipruinosa , Lecidea griseomarginata , L. streveleri , Miriquidica gyrizans , Niesslia peltigerae , Ochrolechia cooperi , Placynthium glaciale , Porpidia seakensis , Rhizocarpon haidense , Sagiolechia phaeospora , Sclerococcum fissurinae , Spilonema maritimum , Thelocarpon immersum , Toensbergia blastidiata and Xenonectriella nephromatis . An additional 71 ‘known unknown’ species are cursorily described. Four new combinations are made: Lepra subvelata (G. K. Merr.) T. Sprib., Ochrolechia minuta (Degel.) T. Sprib., Steineropsis laceratula (Hue) T. Sprib. & Ekman and Toensbergia geminipara (Th. Fr.) T. Sprib. & Resl. Thirty-eight taxa are new to North America and 93 additional taxa new to Alaska. We use four to eight DNA loci to validate the placement of ten of the new species in the orders Baeomycetales , Ostropales , Lecanorales , Peltigerales , Pertusariales and the broader class Lecanoromycetes with maximum likelihood analyses. We present a total of 280 new fungal DNA sequences. The lichen inventory from Glacier Bay National Park represents the second largest number of lichens and associated fungi documented from an area of comparable size and the largest to date in North America. Coming from almost 60°N, these results again underline the potential for high lichen diversity in high latitude ecosystems.
Article
Full-text available
Three new genera Coppinsidea, Vandenboomia and Wolseleyidea are described and the genera Ivanpisutia, Lecaniella and Myrionora are resurrected on the basis of a phylogenetic analysis of multi-locus sequence data of the Ramalinaceae including the nuclear protein-coding marker rpb2, the internal transcribed spacer and a fragment of the small mitochondrial subunit. The genus Hertelidea was positioned within the Ramalina clade of the phylogenetic tree of the Ramalinaceae. Bacidia sipmanii, Phyllopsora chlorophaea, P. castaneocincta and Ramalina subbreviuscula were recorded from South Korea for the first time here confirming by molecular data, too. Forty-eight new combinations are proposed: Bacidia alnetorum (basionym: Biatora alnetorum S. Ekman et Tønsberg), Biatora amazonica (basionym: Phyllopsora amazonica Kistenich et Timdal), Biatora cuyabensis (basionym: Lecidea cuyabensis Malme), Biatora halei (basionym: Pannaria halei Tuck.), Biatora kalbii (basionym: Phyllopsora kalbii Brako), Biatora subhispidula (basionym: Psoroma subhispidulum Nyl.), Coppinsidea alba (basionym: Catillaria alba Coppins et Vězda), Coppinsidea aphana (basionym: Lecidea aphana Nyl.), Coppinsidea croatica (basionym: Catillaria croatica Zahlbr.), Coppinsidea fuscoviridis (basionym: Bilimbia fuscoviridis Anzi), Coppinsidea pallens (basionym: Bilimbia pallens Kullh.), Coppinsidea ropalosporoides (basionym: Gyalidea ropalosporoides S. Y. Kondr., L. Lőkös et J.-S. Hur), Coppinsidea scotinodes (basionym: Lecidea scotinodes Nyl.), Coppinsidea sphaerella (basionym: Lecidea sphaerella Hedl.), Ivanpisutia hypophaea (basionym: Biatora hypophaea Printzen et Tønsberg), Ivanpisutia ocelliformis (basionym: Lecidea ocelliformis Nyl.), Lecaniella belgica (basionym: Lecania belgica van den Boom et Reese Naesb.), Lecaniella cyrtellina (basionym: Lecanora cyrtellina Nyl.), Lecaniella dubitans (basionym: Lecidea dubitans Nyl.), Lecaniella erysibe (basionym: Lichen erysibe Ach.), Lecaniella hutchinsiae (basionym: Lecanora hutchinsiae Nyl.), Lecaniella naegelii (basionym: Biatora naegelii Hepp), Lecaniella prasinoides (basionym: Lecania prasinoides Elenkin), Lecaniella sylvestris (basionym: Biatora sylvestris Arnold), Lecaniella tenera (basionym: Scoliciosporum tenerum Lönnr.), Mycobilimbia albohyalina (basionym: Lecidea anomala f. albohyalina Nyl.), Mycobilimbia cinchonarum (basionym: Triclinum cinchonarum Fée), Mycobilimbia concinna (basionym: Phyllopsora concinna Kistenich et Timdal), Mycobilimbia ramea (basionym: Bacidina ramea S. Ekman), Mycobilimbia siamensis (basionym: Phyllopsora siamensis Kistenich et Timdal), Myrionora australis (basionym: Biatora australis Rodr. Flakus et Printzen), Myrionora ementiens (basionym: Lecidea ementiens Nyl.), Myrionora flavopunctata (basionym: Lecanora flavopunctata Tønsberg), Myrionora globulosa (basionym: Lecidea globulosa Flörke), Myrionora hemipolia (basionym: Lecidea arceutina f. hemipolia Nyl.), Myrionora lignimollis (basionym: Biatora ligni-mollis T. Sprib. et Printzen), Myrionora malcolmii (basionym: Phyllopsora malcolmii Vězda et Kalb), Myrionora vacciniicola (basionym: Lecidea vacciniicola Tønsberg), Phyllopsora agonimioides (basionym: Coenogonium agonimioides J. P. Halda, S.-O. Oh et J.-S. Hur), Phyllopsora sunchonensis (basionym: Agonimia sunchonensis S. Y. Kondr. et J.-S. Hur), Vandenboomia chlorotiza (basionym: Lecidea chlorotiza Nyl.), Vandenboomia falcata (basionym: Lecania falcata van den Boom, M. Brand, Coppins, Magain et Sérus.), Wolseleyidea africana (basionym: Phyllopsora africana Timdal et Krog), Wolseleyidea byssiseda (basionym: Lecidea byssiseda Nyl. ex Hue), Wolseleyidea canoumbrina (basionym: Lecidea canoumbrina Vain.), Wolseleyidea furfurella (basionym: Phyllopsora furfurella Kistenich et Timdal), Wolseleyidea ochroxantha (basionym: Lecidea ochroxantha Nyl.), and Wolseleyidea swinscowii (basionym: Phyllopsora swinscowii Timdal et Krog). The combination Biatora longispora (Degel.) Lendemer et Printzen is validated here. The new names Biatora vezdana for Lecania furfuracea Vĕzda and Coppinsidea vainioana for Lecidea sphaeroidiza Vain. are proposed. The phenomenon of presence of ‘extraneous mycobiont DNA’ in lichen association, i.e. DNA, belonging neither to mycobiont nor photobiont or to endophytic fungi is for the first time illustrated. So the presence of nrITS and mtSSU sequences of crustose lichen Coppinsidea ropalosporoides in thalli of crustose Verrucaria margacea and foliose Kashiwadia orientalis , as well as nrITS of Phyllopsora sp. KoLRI in Agonimia pacifica and Biatora longispora , or nrITS and mtSSU of Biatora longispora in thalli of Agonimia pacifica, Oxneriopsis oxneri and Pyxine limbulata, Ivanpisutia oxneri in thalli of Rinodina xanthophaea , etc. is documented. Scarce cases of presence of ‘extraneous mycobiont DNA’ in representatives of the Teloschistaceae, Physciaceae known from literature data are discussed, too.