Figure - available from: Frontiers in Energy Research
This content is subject to copyright.
Mollier diagram of the “local” real gas equation of state near the saturation line.

Mollier diagram of the “local” real gas equation of state near the saturation line.

Source publication
Article
Full-text available
In this paper numerical analysis of the condensing steam flow in a converging-diverging nozzle is investigated. The ANSYS Fluent results are compared with the results of the in-house academic Computational fluid dynamics code with respect to the capacity for thermodynamic assessment. The “local” real gas equation of state is used as a mathematical...

Citations

... He introduced a correction function for the heat transfer coefficient by utilizing an empirical correlation. Some researchers have used this model in their research [12,13]. Fuchs and Sutugin amended Gyarmathy's equation, proposing the utilization of the mass flow ratio between the transition phase and the free molecular regime as the corrective coefficient. ...
Article
Full-text available
As the condensation phenomenon occurs in the low-pressure stages of steam turbines, an accurate modelling of the condensing flows is very crucial and has a significant impact on the development of highly efficient steam turbines. In order to accurately simulate condensing steam flows, it is essential to choose the right condensation model. Further research to enhance condensation models is of special importance because the outcomes of numerical studies of condensation models in recent years have not been entirely compatible with the experiments and there are still uncertainties in this area. Therefore, the main aim of this paper is to evaluate a proposed droplet growth model for modelling condensation phenomenon in condensing steam flows. The new model is derived to profit from the advantages of models based on the continuum approach for large droplets and those based on the kinetic theorem for small droplets, which results in the model being robust for a wide range of Knudsen numbers. The model is implemented into a commercial CFD tool, ANSYS Fluent 2022 R1, using UDFs. The results of the CFD simulations are validated against experimental data for linear cascades within the rotor and stator blade geometries of low-pressure steam turbine stages. The findings clearly demonstrate the superiority of the new model in capturing droplet growth, particularly for very small droplets immediately following nucleation. In contrast, widely used alternative droplet growth models tend to either underpredict or overpredict the droplet growth rate. This research significantly contributes to the ongoing efforts to enhance condensation modeling, providing a more accurate tool for optimizing the design and operation of low-pressure steam turbines, ultimately leading to a higher energy efficiency and a reduced environmental impact.
... In ANSYS CFX, the physical properties of steam and water were computed based on the Industrial Formulation for Thermodynamic Properties of Water and Steam (IAPWS97) formulations [26]. As the IAPWS formulations cannot predict the thermodynamic properties of the gas phase in the wet steam region (i.e., the region below the saturation line), a local real gas equation of state (EOS in Table 1) was defined in our in-house code to cover this region [27]. For the condensation model as shown in Table 1, J is the nucleation rate (the number of new droplets per unit volume per second) and in both codes was calculated according to the classical homogeneous nucleation theory [28] (nucleation rate in Table 1) and adjusted for non-isothermal effects (C is the non-isothermal Kantrowitz correction factor in the nucleation rate in Table 1) [29]. ...
Article
Full-text available
The issues addressed in this work concern the condensing steam flows as a flow of a two-phase medium, i.e., consisting of a gaseous phase and a dispersed phase in the form of liquid droplets. The two-phase character and the necessity to treat steam as a real gas make the numerical modeling of the flow in the last steam turbine channels very difficult. There are many approaches known to solve this problem numerically, mainly based on the RANS method with the Eulerian approach. In this paper, the two Eulerian approaches were compared. In in-house CFD code, the flow governing equations were defined for a gas–liquid mixture, whereas in ANSYS CFX code, individual equations were defined for the gas and liquid phase (except momentum equations). In both codes, it was assumed that there was no velocity slip between phases. The main aim of this study was to show how the different numerical schemes and different governing equations can affect the modeling of wet steam flows and how difficult and sensitive this type of computation is. The numerical results of condensing steam flows were compared against in-house experimental data for nozzles determined at the Department of Power Engineering and Turbomachinery of the Silesian University of Technology. The presented experimental data can be used as a benchmark test for researchers to model wet steam flows. The geometries of two half nozzles and an International Wet Steam Experimental Project (IWSEP) nozzle were used for the comparisons. The static pressure measurements on the walls of the nozzles, the Schlieren technique, and the droplet size measurement were used to qualitatively identify the location of the condensation onset and its intensity. The CFD results obtained by means of both codes showed their good capabilities in terms of proper prediction of the condensation process; however, there were some visible differences in both codes in the flow field parameters. In ANSYS CFX, the condensation wave location in the half nozzles occurred much earlier compared to the experiments. However, the in-house code showed good agreement with the experiments in this region. In addition, the results of the in-house code for the mean droplet diameter in the IWSEP nozzle were closer to the experimental data.
Article
Purpose The purpose of this study is to model steam condensing flows through steam turbine blades and find the most suitable condensation model to predict the condensation phenomenon. Design/methodology/approach To find the most suitable condensation model, five nucleation equations and four droplet growth equations are combined, and 20 cases are considered for modelling the wet steam flow through steam turbine blades. Finally, by the comparison between the numerical results and experiments, the most suitable case is proposed. To find out whether the proposed case is also valid for other boundary conditions and geometries, it is used to simulate wet steam flows in de Laval nozzles. Findings The results indicate that among all the cases, combining the Hale nucleation equation with the Gyarmathy droplet growth equation results in the smallest error in the simulation of wet steam flows through steam turbine blades. Compared with experimental data, the proposed model’s relative error for the static pressure distribution on the blade suction and pressure sides is 2.7% and 2.3%, respectively, and for the liquid droplet radius distribution it totals to 1%. This case is also reliable for simulating condensing steam flows in de Laval nozzles. Originality/value The selection of an appropriate condensation model plays a vital role in the simulation of wet steam flows. Considering that the results of numerical studies on condensation models in recent years have not been completely consistent with the experiments and that there are still uncertainties in this field, further studies aiming to improve condensation models are of particular importance. As condensation models play an important role in simulating the condensation phenomenon, this research can help other researchers to better understand the purpose and importance of choosing a suitable condensation model in improving the results. This study is a significant step to improve the existing condensation models and it can help other researchers to gain a revealing insight into choosing an appropriate condensation model for their simulations.